Stochastic integration and Itô formula

João Guerra

CEMAPRE and ISEG, UTL

November 4, 2014

João Guerra (CEMAPRE and ISEG, UTL)

Stochastic integration and Itô formula

November 4, 2014 1 / 20

Stochastic integration

- The stochastic integral $I_t(F) = \int_0^t \int_E F(s, x) M(ds, dx)$, with $F \in \mathcal{H}_2$, satisfies:
 - ① I_t is a linear operator
 - ② $\mathbb{E}[I_t(F)] = 0;$ $E\left[\left(I_{t}(F)\right)^{2}\right] = \int_{0}^{t} \int_{E-\{0\}} \mathbb{E}\left[\left|F(s,x)\right|^{2}\right] \nu(dx) ds + \delta_{0}(E) \int_{0}^{t} \mathbb{E}\left[\left|F(s,0)\right|^{2}\right] ds.$

 - 3 $\{I_t(F), t \ge 0\}$ is $\{\mathcal{F}_t\}$ adapted 4 $\{I_t(F), t \ge 0\}$ is a square-integrable martingale.

Sketch of the Proof of (3): Let $(F_n, n \in \mathbb{N})$ be a sequence of simple processes in \mathcal{H}_2 converging to F.

Then $(I_t(F_n), t \ge 0)$ is adapted and $I_t(F_n) \longrightarrow I_t(F)$ in L^2 .

Therefore, there is a subsequence $(F_{n_k}; n_k \in \mathbb{N})$ such that $I_t(F_{n_k}) \longrightarrow I_t(F)$ a.s. as $n_k \to \infty$.

Therefore $\{I_t(F), t \ge 0\}$ is $\{\mathcal{F}_t\}$ adapted.

João Guerra (CEMAPRE and ISEG, UTL)

Stochastic integration and Itô formula

November 4, 2014

2/20

Stochastic integration

Sketch of the Proof of (4):

Let F be a simple process in \mathcal{H}_2 and choose $0 < s = t_l < t_{l+1} < t$.

Then $I_t(F) = I_s(F) + I_{s,t}(F)$ and by prop. (3),

$$\mathbb{E}_{s}(I_{t}(F)) = I_{s}(F) + \mathbb{E}_{s}(I_{s,t}(F))$$

Moreover,

$$\mathbb{E}_{s}(I_{s,t}(F)) = \mathbb{E}_{s}\left(\sum_{j=l+1}^{m}\sum_{k=1}^{n}F_{k}(t_{j})M((t_{j},t_{j+1}],A_{k})\right)$$

$$= \sum_{j=l+1}^{m}\sum_{k=1}^{n}\mathbb{E}_{s}(F_{k}(t_{j}))\mathbb{E}_{s}[M((t_{j},t_{j+1}],A_{k})] = 0.$$

Therefore $\mathbb{E}_s(I_t(F)) = I_s(F)$ and $\{I_t(F), t \geq 0\}$ is a martingale. Now, let $(F_n, n \in \mathbb{N})$ be a sequence of simple processes converging to F in L^2 . It can be proved that (see Applebaum) $\mathbb{E}_s(I_t(F_n)) \to \mathbb{E}_s(I_t(F))$ in L^2 and therefore $\mathbb{E}_s(I_t(F)) = I_s(F)$ is a square-integrable martingale

4

The stochastic integrals can be defined in an extended space: P₂ (T, E) (where H₂ ⊂ P₂ (T, E)), defined as the set of all mappings F: [0, T] × E × Ω → ℝ
1) F is predictable

2)

$$P\left[\int_{0}^{T}\int_{E-\left\{0\right\}}\left|F\left(t,x\right)\right|^{2}\nu\left(dx\right)dt<\infty\right]=1,\tag{1}$$

$$P\left[\int_0^T |F(t,0)|^2 dt < \infty\right] = 1.$$
 (2)

- If $F \in \mathcal{P}_2(T, E)$ then $\{I_t(F), t \ge 0\}$ is a local martingale but not necessarily a martingale.
- If $E = \{0\}$ we use the notation $\mathcal{P}_2(T)$ for $\mathcal{P}_2(T, E)$.
- Therefore $\mathcal{P}_{2}\left(T\right)$ is the set of all predictable mappings $G:\left[0,T\right]\times\Omega\rightarrow\mathbb{R}$ such that

 $P\left[\int_{0}^{T}\left|G\left(t\right)\right|^{2}dt<\infty\right]=1$

João Guerra (CEMAPRE and ISEG, UTL)

Stochastic integration and Itô formula

November 4, 2014

4/20

Lévy-Type stochastic integrals

Lévy type stochastic integrals

We say Y is a Lévy type stochastic integral if

$$Y_{t}^{i} = Y_{0} + \int_{0}^{t} G^{i}(s) ds + \int_{0}^{t} F_{j}^{i}(s) dB_{s}^{j} + \int_{0}^{t} \int_{|x| < 1} H^{i}(s, x) \widetilde{N}(ds, dx) + \int_{0}^{t} \int_{|x| > 1} K^{i}(s, x) N(ds, dx), \quad i = 1, ..., d, j = 1, ..., m$$
(3)

where $\left|G^{i}\right|^{\frac{1}{2}}$, $F_{i}^{i} \in \mathcal{P}_{2}\left(T\right)$ and $H^{i} \in \mathcal{P}_{2}\left(T,E\right)$ and K is predictable.

With stochastic differentials notation, in the one-dimensional case, we can write:

$$dY(t) = G(t) dt + F(t) dB(t) + \int_{|x| < 1} H(t, x) \widetilde{N}(dt, dx)$$
$$+ \int_{|x| \ge 1} K(t, x) N(dt, dx).$$

Lévy type stochastic integrals

 Let M be an adapted and left-continuous process. Then we can define a new process {Z_t, t ≥ 0} by

$$dZ(t) = M(t) dY(t)$$

or

$$dZ(t) = M(t) G(t) dt + M(t) F(t) dB(t) + M(t) H(t,x) \widetilde{N}(dt, dx) + M(t) K(t,x) N(dt, dx).$$

João Guerra (CEMAPRE and ISEG, UTL)

Stochastic integration and Itô formula

November 4, 2014

6 / 20

Lévy-Type stochastic integrals

Example - Lévy stochastic integrals

X: Lévy process with characteristics (b, A, ν) and Lévy-Itô decomposition

$$X(t) = bt + B_A(t) + \int_{|x|<1} x\widetilde{N}(t, dx) + \int_{|x|\geq 1} xN(t, dx).$$

Let $L \in \mathcal{P}_{2}(t)$ for all $t \geq 0$. and choose in (3) $F_{j}^{i} = A_{j}^{i}L$, $H^{i} = K^{i} = x^{i}L$.

The process Y such that

$$dY(t) = L(t) dX(t)$$

is called a Lévy stochastic integral.

8

Example - Ornstein Uhlenbeck (OU) process

OU process:

$$Y(t) = e^{-\lambda t} y_0 + \int_0^t e^{-\lambda(t-s)} dX(s),$$

where y_0 is fixed.

- This process can be used for volatility modelling in finance.
- Exercise: Prove that if X is a one-dimensional Brownian motion then Y(t) is a Gaussian process with mean $e^{-\lambda t}y_0$ and variance $\frac{1}{2\lambda}\left(1-e^{-2\lambda t}\right)$

João Guerra (CEMAPRE and ISEG, UTL)

Stochastic integration and Itô formula

November 4, 2014

8 / 20

Lévy-Type stochastic integrals

Example - Ornstein Uhlenbeck (OU) process

• In differential form the OU process is the solution of the SDE:

$$dY(t) = -\lambda Y(t) dt + dX(t),$$

which is known as the Langevin equation (is a stochastic differential equation).

 The Langevin equation is also a model for the physical phenomenon of Brownian motion: includes the viscous drag of the medium on the particle as well as random fluctuations.

Itô formula for Poisson stochastic integrals

• Consider the Poisson stoch. integral $W(t) = W(0) + \int_0^t \int_A K(s, x) N(ds, dx)$, with A bounded below and K predictable.

Lemma

(Itô formula 1): If $f \in C(\mathbb{R})$ then

$$f(W(t))-f(W(0)) = \int_0^t \int_A [f(W(s-)+K(s,x))-f(W(s-))] N(ds,dx)$$
 a.s.

João Guerra (CEMAPRE and ISEG, UTL)

Stochastic integration and Itô formula

November 4, 2014

10 / 20

Itô formula

Itô formula for Poisson stochastic integrals

Proof: Let $Y(t) = \int_A xN(t, dx)$. The jump times of Y can be defined by $T_0^A = 0$, $T_n^A = \inf \left\{ t > T_{n-1}^A; \Delta Y(t) \in A \right\}$ Then

$$\begin{split} &f(W(t)) - f(W(0)) = \sum_{0 \le s \le t} [f(W(s)) - f(W(s-))] \\ &= \sum_{n=1}^{\infty} \left[f\left(W\left(t \land T_{n}^{A}\right)\right) - f\left(W\left(t \land T_{n-1}^{A}\right)\right) \right] \\ &= \sum_{n=1}^{\infty} f\left(W\left(t \land T_{n}^{A}-\right) + K\left(t \land T_{n}^{A}, \Delta Y\left(t \land T_{n}^{A}\right)\right)\right) - f\left(W\left(t \land T_{n}^{A}-\right)\right) \\ &= \int_{0}^{t} \int_{A} \left[f\left(W(s-) + K(s,x)\right) - f\left(W(s-)\right) \right] N(ds, dx) \,. \end{split}$$

Itô formula for Brownian motion

Let M be a Brownian integral with drift:

$$M^{i}(t) = \int_{0}^{t} F_{j}^{i}(s) dB^{j}(s) + \int_{0}^{t} G^{i}(s) ds,$$

with F_{j}^{i} , $\left|G^{i}\right|^{\frac{1}{2}} \in \mathcal{P}_{2}(t)$.

• Let us define the quadratic variation process:

$$[M^{i}, M^{j}](t) = \sum_{k=1}^{m} \int_{0}^{t} F_{k}^{i}(s) F_{k}^{j}(s) ds.$$

João Guerra (CEMAPRE and ISEG, UTL)

Stochastic integration and Itô formula

November 4, 2014

12 / 20

Itô formula

Itô formula for Brownian motion

Theorem

(Itô formula 2) If $f \in C^2\left(\mathbb{R}^d\right)$ then

$$f(M(t))-f(M(0))=\int_{0}^{t}\partial_{i}f\left(M(s)\right)dM^{i}\left(s\right)+\frac{1}{2}\int_{0}^{t}\partial_{i}\partial_{j}f\left(M(s)\right)d\left[M^{i},M^{j}\right]\left(s\right). \ a.s.$$

Proof: See Applebaum

Itô formula for Lévy type stochastic integrals

Let

$$dY(t) = G(t) dt + F(t) dB(t) + \int_{|x| < 1} H(t, x) \widetilde{N}(dt, dx) + \int_{|x| \ge 1} K(t, x) N(dt, dx)$$

- $dY_c(t) := G(t) dt + F(t) dB(t)$
- $dY_d(t) := \int_{|x| < 1} H(t, x) \widetilde{N}(dt, dx) + \int_{|x| > 1} K(t, x) N(dt, dx)$

João Guerra (CEMAPRE and ISEG, UTL)

Stochastic integration and Itô formula

November 4, 2014

14 / 20

Itô formula

Itô formula for Lévy type stochastic integrals

Theorem

(Itô formula 3): If $f \in C^2(\mathbb{R}^d)$ then

$$f(Y(t)) - f(Y(0)) = \int_{0}^{t} \partial_{i} f(Y(s-)) dY_{c}^{i}(s) + \frac{1}{2} \int_{0}^{t} \partial_{i} \partial_{j} f(Y(s-)) d\left[Y_{c}^{i}, Y_{c}^{j}\right](s) dY_{c}^{i}(s) + \int_{0}^{t} \int_{|x| \ge 1} \left[f(Y(s-) + K(s,x)) - f(Y(s-))\right] N(ds, dx) dS$$

$$+ \int_{0}^{t} \int_{|x| < 1} \left[f(Y(s-) + H(s,x)) - f(Y(s-))\right] \widetilde{N}(ds, dx) dS$$

$$+ \int_{0}^{t} \int_{|x| < 1} \left[f(Y(s-) + H(s,x)) - f(Y(s-))\right] \widetilde{N}(ds, dx) dS$$

Proof: see Applebaum

Itô formula for Lévy type stochastic integrals

Theorem

(Itô formula 4): If $f \in C^2(\mathbb{R}^d)$ then

$$f(Y(t)) - f(Y(0)) = \int_0^t \partial_i f(Y(s-)) dY^i(s) + \frac{1}{2} \int_0^t \partial_i \partial_j f(Y(s-)) d\left[Y_c^i, Y_c^j\right](s) + \sum_{0 \le s \le t} \left[f(Y(s)) - f(Y(s-)) - \Delta Y^i(s) \partial_i f(Y(s-)) \right].$$

Proof: see Applebaum

João Guerra (CEMAPRE and ISEG, UTL)

Stochastic integration and Itô formula

November 4, 2014

16 / 20

Itô formula

Itô formula for Lévy type stochastic integrals

Quadratic variation process for Y:

$$\left[Y^{i},Y^{j}\right](t) = \left[Y_{c}^{i},Y_{c}^{j}\right](t) + \sum_{0 \leq s \leq t} \Delta Y^{i}(s) \Delta Y^{j}(s).$$

0

$$[Y^{i}, Y^{j}](t) = \sum_{k=1}^{m} \int_{0}^{t} F_{k}^{i}(s) F_{k}^{j}(s) ds + \int_{0}^{t} \int_{|x|<1} H^{i}(s, x) H^{j}(s, x) \widetilde{N}(ds, dx) + \int_{0}^{t} \int_{|x|\geq1} K^{i}(s, x) K^{j}(s, x) N(ds, dx).$$
(4)

Itô's product formula

Theorem

If Y¹ and Y² are real valued Lévy type stochastic integrals then

$$Y^{1}(t) Y^{2}(t) = Y^{1}(0) Y^{2}(0) + \int_{0}^{t} Y^{1}(s-) dY^{2}(s) + \int_{0}^{t} Y^{2}(s-) dY^{1}(s) + [Y^{1}, Y^{2}](t).$$

Proof Take $f(x_1, x_2) = x_1 x_2$ and apply Itô's formula 4:

$$\begin{split} Y^{1}\left(t\right) Y^{2}\left(t\right) - Y^{1}\left(0\right) Y^{2}\left(0\right) &= \int_{0}^{t} Y^{1}\left(s-\right) dY^{2}\left(s\right) \\ &+ \int_{0}^{t} Y^{2}\left(s-\right) dY^{1}\left(s\right) + \left[Y_{c}^{1}, Y_{c}^{2}\right]\left(t\right) \\ &+ \sum_{0 \leq s \leq t} \left[Y^{1}\left(s\right) Y^{2}\left(s\right) - Y^{1}\left(s-\right) Y^{2}\left(s-\right) - \Delta Y^{1}\left(s\right) Y^{2}\left(s-\right) - \Delta Y^{2}\left(s\right) Y^{1}\left(s-\right)\right] \end{split}$$

and the result follows.

João Guerra (CEMAPRE and ISEG, UTL)

Stochastic integration and Itô formula

November 4, 2014

18 / 20

Itô formula

Itô's product formula

Product formula in differential form:

$$d(Y^{1}(t) Y^{2}(t)) = Y^{1}(t-) dY^{2}(t) + Y^{2}(t-) dY^{1}(t) + d[Y^{1}, Y^{2}](t).$$

 The Itô correction arises as the result of the following formal product relations (see (4)):

$$dB^{i}(t) dB^{j}(t) = \delta^{ij} dt$$
, $N(dt, dx) N(dt, dy) = N(dt, dx) \delta(x - y)$, all other products of differential vanish.

- Applebaum, D. (2004). Lévy Processes and Stochastic Caculus. Cambridge University Press. - (Sections 4.3 and 4.4)
- Applebaum, D. (2005). Lectures on Lévy Processes, Stochastic Calculus and Financial Applications, Ovronnaz September 2005, Lecture 2 in http://www.applebaum.staff.shef.ac.uk/ovron2.pdf
- Cont, R. and Tankov, P. (2003). Financial modelling with jump processes. Chapman and Hall/CRC Press - (Sections 8.1, 8.2 and 8.3).