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Stochastic integration

@ The stochastic integral I, (F fo Je F (s, x)M (ds,dx) , with F € Ho,
satisfies:

@ | is a linear operator
@ E[l(F)] =0
E | (F)?] = s Je_ oy B [IF (5, X)P] v (dx) ds+d0 (E) [y B [IF (s,0)] ds.
@ {It(F),t >0} is {F} adapted
@ {I:(F), t > 0} is a square-integrable martingale.
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Stochastic integration

Sketch of the Proof of (3): Let (F,,n € N) be a sequence of simple
processes in H, converging to F.

Then (k(Fn),t > 0) is adapted and I;(F,) — k(F) in L2.

Therefore, there is a subsequence (F, ; nk € N) such that I (Fp, ) — 1:(F)
a.s. as ng — oo.

Therefore {I; (F), t > 0} is {#;} adapted. ®
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Stochastic integration

Sketch of the Proof of (4):
Let F be a simple process in ‘H, and choose 0 < s =1t <t.,; <t.

Then I((F) = Is(F) + Is.«(F) and by prop. (3),

Es(lt(F)) = Is(F) + Es(Ist(F))
Moreover,

Es(lsi(F)) = Es Z Z Fie (4) M ((4, 2], Ac)
j=l+1k=1

= 3 S B (Fe (§)) Es [M (4, 41] , Ak)] = O.

j=14+1 k=1

Therefore Es(I:(F)) = Is(F) and {I; (F), t > 0} is a martingale.

Now, let (Fn, n € N) be a sequence of simple processes converging to F in L2,
It can be proved that (see Applebaum) Es(l¢(Fn)) — Es(l¢(F)) in L? and
therefore Es(l;(F)) = Is(F) is a square-integrable martingalel
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Lévy-Type stochastic integrals

@ The stochastic integrals can be defined in an extended space: P, (T,E)
(where H, C P, (T,E)), defined as the set of all mappings
F:[O,T]xExQ—=R
1) F is predictable
2)

P [/OT /E—{O} IF (t,x)]* v (dx) dt < OO_ =1, (1)

P /T 2 =
IF (t,0)]°dt < oo| = 1. 2)
0

o IfF € P,(T,E) then {I;(F), t > 0} is a local martingale but not
necessarily a martingale.

o If E = {0} we use the notation P, (T) for P, (T,E).
@ Therefore P, (T) is the set of all predictable mappings G : [0, T] x Q2 — R

such that
.
/ G (t)[*dt < oo] =1
0
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Lévy-Type stochastic integrals

Lévy type stochastic integrals

@ We say Y is a Lévy type stochastic integral if

t t . t : ~
Y, :Yo+/ G (s)ds+/ F (s)dB‘5+/ H' (s,x)N (ds,dx)
0 0 0

Ix|<1

t
+// K'(s,x)N(ds,dx), i=1,...d,j=1,...m (3)
0 Jx|>1

where \G‘]%, F/ € P2(T)and H' € P, (T,E) and K is predictable.

o With stochastic differentials notation, in the one-dimensional case, we
can write:

dY (t) = G (t)dt + F (t)dB (t) +/ H (t,x) N (dt, dx)

[x]<1

+ /|x|21 K (t,x) N (dt,dx).
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Lévy-Type stochastic integrals

Lévy type stochastic integrals

o Let M be an adapted and left-continuous process. Then we can define a
new process {Z;,t > 0} by

dz (t) = M (1) dY (t)

or
dZ(t) =M (t)G (t)dt + M (t) F (t)dB (t) + M (t) H (t,x) N (dt, dx)
+M (1)K (t,x)N (dt, dx).
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Lévy-Type stochastic integrals

Example - Lévy stochastic integrals

@ X: Lévy process with characteristics (b, A, v) and Lévy-I1td decomposition

X(t):bt+BA(t)+/

Ix|<1

xN(t,dx)+/ xN (t, dx) .

x[=>1

Let L € P, (t) forallt > 0. and choose in (3) F/ = AlL, H' = K' = x'L.
@ The process Y such that

dy (t) = L (t)dX (t)

is called a Lévy stochastic integral.
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Lévy-Type stochastic integrals

Example - Ornstein Uhlenbeck (OU) process

@ OU process:

t
Y(t):e_”yoJr/ e Mt=S)dX (s),
0

where yj is fixed.
@ This process can be used for volatility modelling in finance.

o Exercise: Prove that if X is a one-dimensional Brownian motion then Y (t)
is a Gaussian process with mean e ~*'y, and variance 55 (1 — e=2")
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Lévy-Type stochastic integrals

Example - Ornstein Uhlenbeck (OU) process

o In differential form the OU process is the solution of the SDE:
dY (t) = =AY (t)dt +dX (t),

which is known as the Langevin equation (is a stochastic differential
equation).

@ The Langevin equation is also a model for the physical phenomenon of
Brownian motion: includes the viscous drag of the medium on the particle
as well as random fluctuations.
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1t6 formula

1t0 formula for Poisson stochastic integrals

@ Consider the Poisson stoch. integral
W (t) =W (0) + fot JAn K (s,x)N (ds, dx), with A bounded below and K
predictable.

Lemma
(Ité formula 1): If f € C (R) then

F(W (1))—f (W (0)):/O /A[f (W (s=) + K (5,%)) — F (W (s=))]N (ds,dx) a.s

v
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1t6 formula

1t0 formula for Poisson stochastic integrals

Proof: LetY (t) = [, XN (t,dx). The jump times of Y can be defined by
Te =0T =inf{t >T} ;AY (t) € A}
Then

FW (1) —fF(W(0))= > [f(W(s))~f(W(s—))]

0<s<t

_Z EATH)) —F (W (tATEL))]

_Zf EATA) +K (EATEAY (tATH)) —F (W (tATR-))

:/0 /A[f (W (5—) + K (5,X)) — f (W (=) N (ds, dx).
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1t6 formula

1t6 formula for Brownian motion

o Let M be a Brownian integral with drift:
M'(t) = / Fj (s)dB! (s) +/ G' (s)ds,
0 0

. 1
with F/, |G']2 € P, (t).
o Let us define the quadratic variation process:

[ME M) (1) = g/o Fi (s)F) (s)ds.
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1t6 formula

1t6 formula for Brownian motion

12720

Theorem
(It6 formula 2) If f € C? (RY) then

f (M (t))—f (M (0))=/0t of (M (s))dMi(s)+% /Ot a:f (M (s))d [M',M!] (s). as.

v

Proof: See Applebaum
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1t6 formula

1t formula for Léevy type stochastic integrals

o Let

dY (t) = G (t)dt+F (t)dB (t)—i—/

Ix|<1

H(t,x)N(dt,dx)+/ K (t,x) N (dt, dx)

x[=>1

o dYc(t) := G (t)dt + F (t)dB (t)
0 dYq(t) = [y oy H (6,X)N (dt,dx) + [, 1o, K (t,%) N (dt, dx)
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1t6 formula

1t formula for Léevy type stochastic integrals

Theorem
(It6 formula 3): If f € C? (RY) then

FY @) =1 (Y @) = [ a1 (Y (s-)avi()+5 [ a1 (¥ (s-)d [Yeve] ©
+¥Lt/L21ﬁ<v(s—>+—K<s»o>—+<Y(s—»]N(d&cu)
+ELI/LK1U<Y(s—>+—H(s»o)—f(v<s—»1ﬁ(wadx>

f(Y (s=)+H(s,x)) —f(Y (s—
ﬁéﬁmi(“)+ (.%)) = (Y (s-))
—H' (s,x) & (Y (s=))] v (dx) ds

@ Proof: see Applebaum
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1t6 formula

1t formula for Léevy type stochastic integrals

Theorem
(Itd formula 4): If f € C? (R?) then

F(Y (1)) —f (Y (0)):/ aif (Y (s—))in(s)+%/o 8,0 (Y (s—))d [Yg,vg} (s
+ 3 [F(Y () —f(Y (s-) — AY () Bf (Y (s-))] -
0<s<t

@ Proof: see Applebaum

Jodo Guerra (CEMAPRE and ISEG, UTL) Stochastic integration and It6 formula November 4, 2014 16 /20

1t6 formula

1t formula for Léevy type stochastic integrals

N—"

@ Quadratic variation process for Y':

YY) (1) = [Yg,vl} )+ Y AY'(s)AYi(s).

0<s<t

(YL Y (t) = Z/ Fi (s)Fl (s ds+/ /X|<1Hi(s,x)Hj (s,x) N (ds, dx)
(4)
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1t6 formula

1t0’s product formula

Theorem

If Y1 and Y2 are real valued Lévy type stochastic integrals then

Yl(t)YZ(t):Yl(O)Yz(O)+/OtY1(s—)dY2(s)

+/tY2(s—)dY1(s)+ [YLY?](t).
0

Proof Take f (X1, X2) = X1X2 and apply 1t6’s formula 4:

YL(t)Y2(t) — Y1(0)Y2(0) = /O Y1(s—)dY2(s)

+ /tYZ(s—)le(s) + [YZ& YE] (1)
0
+ ) [YH(s)Y2(s) = Y (s—) Y2 (s—) — AY(s) Y2 (s—) — AY?(s) Y (s—)]

and the result follows.
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1t6 formula

1t0’s product formula

o Product formula in differential form:
d(Y'(t)Y?(t) =Y (t=)dY?(t) + Y2 (t=)dY ' (t) +d [Y',Y?](1).

@ The It correction arises as the result of the following formal product
relations (see (4)):

dB' (t)dB’ (t) = d'dt,
N (dt,dx) N (dt,dy) = N (dt,dx)é (x —y),
all other products of differential vanish.
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1t6 formula
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