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Introduction

Diffusion dynamics

Risk neutral dynamics described by a diffusion process

dSt

St

= rdt + σ (t ,St ) dWt .

The value C (S, t) of European or Barrier option is the solution of the

parabolic PDE (Black-Scholes PDE):

∂C

∂t
+ rS

∂C

∂S
+
σ2 (t ,S) S2

2

∂2C

∂S2
− rC (t ,S) = 0,

with boundary conditions depending on the payoff of the option.
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Introduction

Lévy dynamics

Risk neutral dynamics described by a Lévy process

St = S0 exp (rt + Xt ) , (1)

where X is a Lévy process with triplet
(
γ, σ2, ν

)
under some risk neutral

measure Q such that Ŝt = e−rtSt = exp (Xt ) is a martingale.

Ŝt = e−rtSt = exp (Xt ) is a martingale with respect to Q. We know from a

previous lecture (see lecture 7) that this is equivalent to

γ = −σ
2

2
−
∫
R

(
ey − 1− y1{|y|≤1}

)
ν (dy) . (2)

We will assume that (condition equivalent to the existence of 2nd moment

for St ) ∫
|y|≥1

e2yν (dy) <∞.
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PIDE’s for option prices

The value C (S, t) of an European or Barrier option is the solution of the

2nd order partial integro-differential eq. (P.I.D.E.)

∂C

∂t
+ rS

∂C

∂S
+
σ2S2

2

∂2C

∂S2
− rC (t ,S)

+

∫
R

[
C (t ,Sey )− C (t ,S)− S (ey − 1)

∂C

∂S
(t ,S)

]
ν (dy) = 0,

with boundary conditions depending on the payoff of the option.

A Lévy process is a Markov processand the associated semigroup has

infinitesimal generator L : f → Lf given by the integro-differential operator

(for f ∈ C2 (R) with compact support)

Lf (x) = lim
t→0

E [f (x + Xt )]− f (x)

t

=
σ2

2

∂2f

∂x2
+ γ

∂f

∂x
+ (3)

+

∫
R

[
f (x + y)− f (x)− y1{|y|≤1}

∂f

∂x
(x)

]
ν (dy) ,

and the transition or evolution operator is

Pt f (x) = E [f (x + Xt )] .
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PIDE’s for option prices

Replacing (2) in (3), we obtain

Lf (x) =
σ2

2

[
∂2f

∂x2
− ∂f

∂x

]
+

+

∫
R

[
f (x + y)− f (x)− (ey − 1)

∂f

∂x
(x)

]
ν (dy)

The risk neutral dynamics SDE (under Q) that corresponds to (1) is

dŜt

Ŝt

= σdWt +

∫
R

(ex − 1) Ñ (dt .dx) . (4)
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PIDE’s for option prices

Value of European option with payoff H (ST ) is Ct = C(t ,S) with

C(t ,S) = E
[
e−r(T−t)H (ST ) |St = S

]
Introducing the change of variable: τ = T − t , x = ln (S/S0) and defining

h (x) = H (S0ex ) and f (τ, x) = erτC (T − τ,S0ex ), we get:

f (τ, x) = E [h (x + rτ + Xτ )] . (5)

If h is in the domain of L then we can differentiate with respect to τ and

we obtain (using the definition of the infinitesimal generator):

∂f

∂τ
= Lf + r

∂f

∂x
on (0,T ]× R, (6)

f (0, x) = h (x) .

which is a Partial integro-differential equation (P.I.D.E.).
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PIDE’s for option prices

Similarly, if f is smooth, then using a change of variable we obtain a

similar equation:

∂C

∂t
+ LSC (t ,S)− rC (t ,S) = 0,

C(T ,S) = H(S),

where

LSf (x) = rx
∂f

∂x
+
σ2x2

2

∂2f

∂x2
+

+

∫
R

[
f (xey )− f (x)− x (ey − 1)

∂f

∂x
(x)

]
ν (dy) .

is the infinitesimal generator of St (with state space (0,∞)).

This reasoning is heuristic: payoff is usually not in the domain of L and is

usually not even differentiable. Example h(x) = [K − S0ex ]+ for a put

option.
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Classical solutions

Assume that the Payoff H is Lipschitz: |H (x)− H (y)| ≤ c |x − y |.
Then Ct = C(t ,S) with

C(t ,S) = E
[
e−r(T−t)H (ST ) |St = S

]
= e−r(T−t)E

[
H
(
Ser(T−t)+XT−t

)]
.

Proposition

If σ > 0 then

∂C

∂t
+ rS

∂C

∂S
+
σ2S2

2

∂2C

∂S2
− rC (t ,S)

+

∫
R

[
C (t ,Sey )− C (t ,S)− S (ey − 1)

∂C

∂S
(t ,S)

]
ν (dy) = 0,

C (T ,S) = H (S) , for all S > 0.
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Classical solutions

Proof.

idea: Apply Itô’s formula do the martingale Ĉ (t ,St ) = e−rtC(t ,St ), identify the

drift part and set it to zero. C(t ,S) is a smooth function of S (see Cont - [1]).

Applying Itô’s formula and using (4), we obtain:

dĈt = a (t) dt + dMt ,

where

a (t) = e−rt

[
−rC +

∂C

∂t
+
σ2S2

t−
2

∂2C

∂S2
+ rSt−

∂C

∂S

]
(t ,St−)

+ e−rt

∫
R

[
C (t ,St−ex )− C (t ,St−)− St− (ex − 1)

∂C

∂S
(t ,St−)

]
ν (dx) ,

dMt = e−rt

[
∂C

∂S
(t ,St−)σSt−dWt +

∫
R

(C (t ,St−ex )− C (t ,St−)) Ñ (dt ,dx)

]
.
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Classical solutions

Proof.

(cont.) Let us now show that M is a martingale. Since H is Lipschitz and eXt is

a martingale, we have that C is also Lipschitz

|C (t ,S1)− C (t ,S2)| ≤ e−r(T−t)
∣∣∣E [H (S1er(T−t)+XT−t

)
− H

(
S2er(T−t)+XT−t

)]∣∣∣
≤ c |S1 − S2|E

[
eXT−t

]
= c |S1 − S2| .

Therefore the predictable function ψ (t , x) = C (t ,St−ex )− C (t ,St−) satisfies

E

[∫ T

0

∫
|ψ (t , x)|2 ν (dx) dt

]
≤

≤ c2

∫
(ex − 1)

2
ν (dx) E

[∫ T

0

S2
t−dt

]
<∞.

Hence,
∫ t

0

∫
R e−rs (C (s,Ss−ex )− C (s,Ss−)) Ñ (ds,dx) is a square-integrable

martingale.
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Classical solutions

Proof.

(cont.) Moreover, since C is Lipschitz, ∂C
∂S

is bounded by a constant

c.Therefore

E

[∫ T

0

(
∂C

∂S
(t ,St−) St−

)2

dt

]
≤ c2E

[∫ T

0

S2
t−dt

]
<∞,

and
∫ t

0

∫
R e−rs ∂C

∂S
(s,Ss−)σSs−dWs is also a square integrable martingale.

Therefore Ĉt −Mt =
∫ t

0
a (s) ds is a square integrable martingale.But∫ t

0
a (s) ds is also a continuous process with finite variation and therefore,

a(t) = 0 a.s. in the Q measure. �

It is possible to prove that a sufficient condition to apply the previous

Proposition, in the case of pure jump processes (σ = 0), is that

∃β ∈ (0,2) : lim inf
ε→0

ε−β
∫ ε

−ε
|x |2 ν (dx) > 0. (7)
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Classical solutions

Condition (7) holds for Lévy densities behaving near zero as

ν (x) = c/x1+β , with β > 0.

The pure jump variance-Gamma model does not satisfies this condition.

In this case, the P.I.D.E. reduces to a first order eq. but even the C1

smoothness may fail.

If σ 6= 0, one can use the P.I.D.E. in order to compute the option price.

In pure jump models, if condition (7) falis, the smoothness of the option

price with respect to the underlying may fail.
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Feynman Kac formula

Feynman-Kac formula

A Feynman-Kac formula is the following one (let X
t,x
s denote the Lévy

process at time s > t such that X
t,x
t = x)

Proposition

Consider a bounded function h ∈ L∞ (R) and σ > 0. Then the Cauchy

problem

∂f

∂t
(t , x) + γ

∂f

∂x
(t , x) +

σ2

2

∂2f

∂x2
(t , x)

+

∫ [
f (t , x + y)− f (t , x)− y1|y|≤1

∂f

∂x
(t , x)

]
ν (dy) = 0,

f (T , x) = h (x) , for all x ∈ R.

has a unique solution given by

f (t , x) = E
[
h
(

X
t,x
T

)]
.
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Viscosity solutions

Example of lack of smoothness in pure jump models

Variance Gamma process: the characteristic function of Xt is

Φt (u) =

(
1 +

u2σ2k

2
− iθku

)− t
k

,

where

ν (x) =
1

k |x |e
Ax−B|x|.

In this case, the value of an European binary option with payoff

h (x) = 1x≥x0
is continuous but not differentiable in x for t < k

2
: the option

price has a vertical tangent at the money (see Cont - [2])
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Viscosity solutions
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Viscosity solutions

Viscosity solutions

The notion of viscosity solution is an intrinsic definition of solution and

does not impose a priori the existence of derivatives (continuity is

enough).

In the case of pure jump processes (σ = 0) that do not satisfy condition

(7) like the Variance-Gamma process, one cans study the solution of the

P.I.D.E., considering that these solutions are not necessarily classical

solutions (with first and second derivatives well defined), but are viscosity

solutions (only required to be continuous). This is discussed in detail in

[1] and [2].
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Numerical methods

Numerical methods for P.I.D.E.’s

Multinomial trees

Finite difference methods

Finite elements

Galerkin methods
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