Lévy Processes simulation

João Guerra

CEMAPRE and ISEG, UTL

João Guerra (CEMAPRE and ISEG, UTL)

Lévy Processes simulation

1/21

Lévy Processes simulation Simulation techniques

- Lévy processes allow more realistic models of price dynamics and than traditional diffusion-based models.
- The price to pay for this is an increased complexity of computations.
- Lévy processes are quite tractable when compared to nonlinear diffusion models, but analytical pricing methods are only available for European options.
- For pricing exotic options, risk management, etc., we need numerical methods.
- Two possible choices of numerical methods: (1) Monte Carlo methods;
 (2) Numerical solution of partial integro-differential equations (PIDE methods) by finite differences or finite elements schemes.
- For higher dimensions, the computational complexity of PIDE methods grows exponentially with dimension.
- On the contrary, the complexity of Monte Carlo methods grows only linearly with the dimension.
- In higher dimensions there is no alternative to simulation methods important to develop efficient algorithms for simulating Levy processes.

- The standard Brownian motion B = {B_t, t ≥ 0} has normally distributed independent increments ⇒ we discretize time by taking time steps of small size Δt and simulate the values of B at time points {nΔt, n = 0, 1, ...}.
- Then

$$B_0 = 0,$$

$$B_{n\Delta t} = B_{(n-1)\Delta t} + \sqrt{\Delta t} z_n, \quad n \ge 1,$$
(1)

where $\{z_n, n = 1, 2, ...\}$ is a series of standard normal random numbers.

João Guerra (CEMAPRE and ISEG, UTL)

Lévy Processes simulation

2/21

Simulation of standard Brownian motion

Simulation of a Poisson Process

- The simulation of a Poisson process N = {N_t, t ≥ 0} with intensity parameter λ can be done in several different ways. We consider two methods.
- (1) The Method of Exponential Spacings:makes use of the fact that the inter-arrival times of the jumps of N follow an Exponential Exp(λ) distribution with mean λ⁻¹.
- An *Exp*(λ) random number, *e_n*, can be obtained from a *Uniform*(0, 1) random number, *u_n*, by

$$e_n = -\frac{\log(u_n)}{\lambda}.$$

Let

$$s_0 = 0,$$

 $s_n = s_{n-1} + e_n, \quad n = 1, 2,$ (2)

• Simulation of a path of a *N* in time points $\{n\Delta t, n = 0, 1, ...\}$:

$$N_0 = 0,$$

$$N_{n\Delta t} = \sup_k \left\{ k : s_k \le n\Delta t \right\}.$$
(3)

João Guerra (CEMAPRE and ISEG, UTL)

Lévy Processes simulation

Simulation of a Poisson Process

Figure 8.1 A sample path of a Poisson process.

4/21

- (2) The Uniform method: if we need to simulate a Poisson process with intensity parameter λ > 0 up to a time point T > 0,
- (i) first generate a random variate N with distribution Poisson(λT) distributed.
- (ii) simulate *N* independent random uniform numbers $u_1, ..., u_N$. Denote by $u_{(1)} < u_{(2)} < \cdots < u_{(N)}$ the order-statistics of this sequence.
- (iii) Then the jump points of the Poisson process are given by the points $Tu_{(1)}, ..., Tu_{(N)}$, i.e. the Poisson process has a value 0 for time points $t < Tu_{(1)}$. At $t = Tu_{(1)}$ the process jumps to 1 and stays there until $t = Tu_{(2)}$, where it jumps to 2, etc.

João Guerra (CEMAPRE and ISEG, UTL)

Lévy Processes simulation

6/21

Simulation of a Lévy Processes simulation

- In order to simulate a Lévy process, we can approximate the process by a compound Poisson process.
- Special care has to be taken for the very small jumps.We can simply replace these very small jumps by their expected values. In some cases a further improvement can be made by replacing these small jumps by a Brownian motion.
- The Compound Poisson approximation for a Lévy process with characteristic triplet $[\gamma, \sigma^2, \nu(dx)]$:
- (i) discretize the Lévy measure ν (dx): choose small 0 < ε < 1 and make a partition of ℝ\ [-ε, ε] .of the following form:

 $a_0 < a_1 < \cdots < a_k = -\varepsilon, \ \varepsilon = a_{k+1} < a_{k+2} < \cdots < a_{d+1}.$

- (ii) Jumps larger than ε are approximated by a sum of independent Poisson processes: we take an independent Poisson process N⁽ⁱ⁾ for each interval [a_{i-1}, a_i), i = 1, 2, ..., k; [a_i, a_{i+1}), i = k + 1, ..., d., with intensity λ_i given by the Lévy measure of the interval *i*.
- (iii) We choose a point c_i (the jump size) in each interval i such that the variance of N⁽ⁱ⁾ matches the part of the variance of the Lévy Process corresponding to this interval.

Approximation of the small jumps by their expected value

- Approximation of the small jumps by their expected value
- Approximate the original Lévy process X = {X_t, t ≥ 0} by a process X^d = {X_t^d, t ≥ 0} with a Brownian motion component and d independent Poisson Processes N⁽ⁱ⁾, with intensity parameter λ_i (i = 1, 2, ..., d) (the small jumps (|c_i| < 1) are compensated).

$$X_{t}^{d} = \gamma t + \sigma B_{t} + \sum_{i=1}^{d} c_{i} \left(N_{t}^{(i)} - \lambda_{i} t \mathbf{1}_{|c_{i}| < 1} \right),$$

$$\lambda_{i} = \begin{cases} \nu \left([a_{i-1}, a_{i}] \right) & \text{for } 1 \leq i \leq k \\ \nu \left([a_{i}, a_{i+1}] \right) & \text{for } k+1 \leq i \leq d \end{cases},$$

$$c_{i}^{2} \lambda_{i} = \begin{cases} \int_{a_{i-1}}^{a_{i}} x^{2} \nu \left(dx \right) & \text{for } 1 \leq i \leq k \\ \int_{a_{i}}^{a_{i+1}} x^{2} \nu \left(dx \right) & \text{for } k+1 \leq i \leq d \end{cases}.$$

$$(4)$$

 If the original process has no Brownian component (σ = 0), then neither does the approximating process.

João Guerra (CEMAPRE and ISEG, UTL)

Lévy Processes simulation

8/21

Approximation of the small jumps by a Brownian motion

 Improvement - incorporate the contribution from the variation of small jumps:

$$\sigma^{2}(\varepsilon) = \int_{|\mathbf{x}| < \varepsilon} \mathbf{x}^{2} \nu(d\mathbf{x}).$$
(5)

 We let all (compensated) jumps smaller than ε contribute to the Brownian part of X: approximate X by a process

$$X_t^d = \gamma t + \widetilde{\sigma} B_t + \sum_{i=1}^d c_i \left(N_t^{(i)} - \lambda_i t \mathbf{1}_{|c_i| < 1} \right),$$
(6)

$$\widetilde{\sigma}^2 = \sigma^2 + \sigma^2 \left(\varepsilon\right). \tag{7}$$

- A Brownian term now appears even when the original process does not have one (σ = 0).
- One can show that this type of approximation is valid if

$$\lim_{\varepsilon \to 0} \frac{\sigma(\varepsilon)}{\varepsilon} = \infty.$$
 (8)

Approximation of the small jumps by a Brownian motion

Special cases:

- The NIG (normal inverse Gaussian) process: replacing the small jumps by a Brownian motion is valid since one can show that $\sigma(\varepsilon) \sim \sqrt{2\alpha\delta/\pi}\varepsilon^{\frac{1}{2}}$ and (8) holds.
- The Meixner Process: in this case one can also show that $\sigma(\varepsilon) \sim \sqrt{2\alpha\delta/\pi}\varepsilon^{\frac{1}{2}}$ and (8) holds and the approximation is also valid.
- The CGMY process: one cans show that if Y > 0 then (8) holds. So, one can approximate the small jumps by a Brownian motion if Y > 0.
- The Gamma process: In this case $\sigma(\varepsilon)/\varepsilon \to \sqrt{a/2}$ when $\varepsilon \to 0$ and we cannot approximate the small jumps by a Brownian motion.
- The VG (Variance-Gamma) process: since a VG process is the difference of two Gamma processes, we cannot replace the small jumps by a Brownian component in the approximation.

João Guerra (CEMAPRE and ISEG, UTL)

Lévy Processes simulation

Lévy Processes simulation Choice of the Poisson processes

- The choice of the intervals $[a_{i-1}, a_i)$, for i = 1, 2, ..., k; $[a_i, a_{i+1})$, for i = k + 1, ..., d, is crucial.
- For Lévy processes with Lévy measure living on \mathbb{R} , we set d = 2k, with the same number of Poisson processes for negative jumps and positive jumps.
- 3 ways of choosing the intervals:
- (i) equally space intervals: $|a_i a_{i-1}|$ is fixed for all *i*: it has the disadvantage of causing an "explosion" of the values of λ_i for c_i close to zero.
- (ii) equally weighted intervals: we keep the Lévy measures on the intervals fixed, i.e., $\nu([a_{i-1}, a_i))$ is fixed for all $1 \le i \le k$ and $\nu([a_i, a_{i+1}))$ is fixed for all $k + 1 \le i \le d$.

For this choise, the outher intervals can be quite large.

11

10/21

- (iii) intervals with inverse linear boundaries: the boundaries are given by $a_{i-1} = -\alpha/i$ and $a_{2k+2-i} = \alpha/i$, $1 \le i \le k+1$ and $\alpha > 0$.
- The intervals with inverse linear boundaries leads to much more gradually decaying intensity parameters λ_i and there is no explosion to infinity near zero.
- Note also that in all cases the intensities of down-jumps are slightly higher than those of the corresponding up-jumps; this reflects the fact that log returns of stocks are negatively skewed.

João Guerra (CEMAPRE and ISEG, UTL)

Lévy Processes simulation

13 **12 / 21**

Lévy Processes simulation

Choice of the Poisson processes

Choice of the Poisson processes

Simulation of a Gamma process

- To simulate a Gamma process: use a Gamma random number generator.
- When X is Gamma(a, b), then, for c > 0, X/c is Gamma(a, bc). \Longrightarrow we only need a generator for Gamma(a, 1) random numbers.
- Johnk's Gamma Generator (for a < 1):</p>
 - 1. Generate two independent uniform random number u_1 and u_2 .
- 2. Set $x = u_1^{1/a}$ and $y = u_2^{1/(1-a)}$
- 3. If $x + y \le 1$ goto step 4, else goto step 1.
- 4. Generate an Exp(1) random variable, i.e. z = -log(u), where u is a uniform random number.
- 5. Return the number zx/(x + y) as the Gamma(a, 1) random number.
- There are other Gamma random generators (Berman generator and others).

Simulation of a Gamma process

In order to simulate a sample path of a Gamma process G = {G_t, t ≥ 0}, where G_t follows a Gamma(at, b) distribution, we simulate the value of G at time points {n∆t, n = 0, 1, ...} as follows:

(1) generate independent Gamma(at, b) random numbers $\{g_n, n \ge 1\}$. (2) Then:

$$G_0 = 0,$$

 $G_{n\Delta t} = G_{(n-1)\Delta t} + g_n, \quad n \ge 1.$

João Guerra (CEMAPRE and ISEG, UTL)

Lévy Processes simulation

17 16 / 21

Lévy Processes simulation

Simulation of a Gamma process

Simulation of the Variance-Gamma (VG) processes

- Simulation of VG with parameters C, G, M > 0 as the difference of 2 Gamma processes: $X_t^{(VG)} = G_t^{(1)} - G_t^{(2)}$, where $G^{(1)}$ has parameters a = C and b = M, and $G^{(2)}$ has parameters a = C and b = G.
- Simulation of a VG Process as a time-changed Brownian Motion: it is best explained if we use the parameters (σ, ν, φ) for the VG instead of C, G, M.

$$X_t^{(VG)} = \theta G_t + \sigma B_{G_t}.$$

A sample path of the VG process can be obtained by sampling a standard Brownian motion and a Gamma process.

João Guerra (CEMAPRE and ISEG, UTL)

Lévy Processes simulation

19 **18 / 21**

Simulation of the Variance-Gamma (VG) processes

Figure 8.5 A sample path of a VG process.

Simulation of the Variance-Gamma (VG) process

Figure 8.5 A sample path of a VG process.

João Guerra (CEMAPRE and ISEG, UTL)

Lévy Processes simulation

21 **20 / 21**

Lévy Processes simulation

- Cont, R. and Tankov, P. (2003). Financial modelling with jump processes. Chapman and Hall/CRC Press.
- Schoutens, W. (2002). Lévy Processes in Finance: Pricing Financial Derivatives. Wiley.