Mathematics II

Undergraduate Degrees in Economics and Management Regular period, January 5th, 2016

Part II

1. Determine and classify all critical points of $f(x, y, z)=2 x^{4}+y^{2}+z^{2}-x y^{2}+x-2 z$.

Solution: The critical points of f are the solutions of the nonlinear system $\nabla f=$ 0 , that is

$$
\begin{aligned}
\nabla f=0 & \Leftrightarrow\left\{\begin{array} { l }
{ \frac { \partial f } { \partial x } = 0 } \\
{ \frac { \partial f } { \partial y } = 0 } \\
{ \frac { \partial f } { \partial z } = 0 }
\end{array} \Leftrightarrow \left\{\begin{array} { r }
{ 8 x ^ { 3 } - y ^ { 2 } + 1 = 0 } \\
{ 2 y - 2 x y = 0 } \\
{ 2 z - 2 = 0 }
\end{array} \Leftrightarrow \left\{\begin{array}{r}
8 x^{3}-y^{2}+1=0 \\
2 y(1-x)=0 \\
z=1
\end{array}\right.\right.\right. \\
& \Leftrightarrow\left\{\begin{array} { r }
{ 8 x ^ { 3 } + 1 = 0 } \\
{ y = 0 } \\
{ z = 1 }
\end{array} \vee \left\{\begin{array} { r }
{ y ^ { 2 } = 9 } \\
{ x = 1 } \\
{ z = 1 }
\end{array} \Leftrightarrow \left\{\begin{array} { r }
{ x = - \frac { 1 } { 2 } } \\
{ y = 0 } \\
{ z = 1 }
\end{array} \vee \left\{\begin{array}{r}
y= \pm 3 \\
x=1 \\
z=1
\end{array}\right.\right.\right.\right.
\end{aligned}
$$

So, the critical points are: $\left(-\frac{1}{2}, 0,1\right) ;(1,3,1) ;(1,-3,1)$. They can be classified using the hessian matrix

$$
\begin{gathered}
H_{f}(x, y, z)=\left(\begin{array}{ccc}
24 x^{2} & -2 y & 0 \\
-2 y & (2-2 x) & 0 \\
0 & 0 & 2
\end{array}\right) \\
H_{f}\left(-\frac{1}{2}, 0,1\right)=\left(\begin{array}{lll}
6 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & 2
\end{array}\right), \quad H_{f}(1, \pm 3,1)=\left(\begin{array}{ccc}
24 & \mp 6 & 0 \\
\mp 6 & 0 & 0 \\
0 & 0 & 2
\end{array}\right)
\end{gathered}
$$

For the point $\left(-\frac{1}{2}, 0,1\right)$ we have $\Delta_{1}=6>0, \Delta_{2}=18>0, \Delta_{3}=36>0$ and so the point is a local minimum.

For the other points we have that $\Delta_{1}=24>0, \Delta_{2}=-36<0, \Delta_{3}=-72<0$, which means that the hessian matrix in indefinite and the points are saddle points.
2. Compute $\iint_{\Omega} x(y-1) d x d y$, where $\Omega=\left\{(x, y) \in \mathbb{R}^{2}: x+y \geq 1, y \leq 1-x^{2}, x \geq 0\right\}$.

Solution:

$$
\begin{aligned}
& \iint_{\Omega} x(y-1) d x d y=\int_{0}^{1} \int_{1-x}^{1-x^{2}} x(y-1) d y d x \\
& \quad=\int_{0}^{1} x\left[\frac{(y-1)^{2}}{2}\right]_{y=1-x}^{y=1-x^{2}} d x \\
& \quad=\int_{0}^{1} \frac{x}{2}\left(x^{4}-x^{2}\right) d x=\frac{1}{2}\left[\frac{x^{6}}{6}-\frac{x^{4}}{4}\right]_{x=0}^{x=1}=-\frac{1}{24}
\end{aligned}
$$

3. After certain economic considerations, it was possible to establish the following differential equation, for the dynamic equilibrium price of a given commodity.

$$
y^{\prime \prime}(x)+a y^{\prime}(x)+b y(x)=c,
$$

where $y(x)$ is the price at time x and a, b, c are known constants.
(a) Assuming that $a=1, b=\frac{1}{2}, c=1$, and $y(0)=y^{\prime}(0)=1$, determine the equilibrium price $y(x)$. Provide a long run estimate $(t \rightarrow+\infty)$ of the equilibrium price.

Solution: Substituting all the given parameters in the differential equation, we get the initial value problem $y^{\prime \prime}(x)+y^{\prime}(x)+\frac{1}{2} y(x)=1, y(0)=y^{\prime}(0)=$ 1. Using the superposition principle, the general solution to this linear nonhomegeneous equation can be obtained as $y(x)=y_{h}(x)+y_{p}(x)$, where $y_{h}(x)$ is the general of the homogeneous equation and $y_{p}(x)$ is a particular solution of the equation.
i. Solution of the homegeneous equation. The characteristic polynomial is given by $P(D)=D^{2}+D+\frac{1}{2}$ and has two complex roots, $-\frac{1}{2} \pm \frac{1}{2} i$. Hence we have

$$
y_{h}(x)=e^{-\frac{x}{2}}\left(c_{1} \cos \frac{x}{2}+c_{2} \sin \frac{x}{2}\right) .
$$

ii. Particular solution of the equation. Since the right hand side is a constant, we shall try a particular solution of the form $y_{p}(x)=k$, which leads to $y_{p}(x)=2$.
iii. The general solution is then given by

$$
y(x)=2+e^{-\frac{x}{2}}\left(c_{1} \cos \frac{x}{2}+c_{2} \sin \frac{x}{2}\right) .
$$

iv. Finally, the initial conditions must be imposed

$$
\left\{\begin{array} { r }
{ y (0) = 1 } \\
{ y ^ { \prime } (0) = 1 }
\end{array} \Leftrightarrow \left\{\begin{array} { r }
{ 2 + c _ { 1 } = 1 } \\
{ - \frac { 1 } { 2 } c _ { 1 } + \frac { 1 } { 2 } c _ { 2 } = 1 }
\end{array} \Leftrightarrow \left\{\begin{array}{r}
c_{1}=-1 \\
c_{2}=1
\end{array}\right.\right.\right.
$$

yielding the particular solution

$$
y(x)=2+e^{-\frac{x}{2}}\left(-\cos \frac{x}{2}+\sin \frac{x}{2}\right) .
$$

The long run behavior of the equilibrium price can be determined computing the limit

$$
\lim _{x \rightarrow+\infty} y(x)=\lim _{x \rightarrow+\infty}\left[2+e^{-\frac{x}{2}}\left(-\cos \frac{x}{2}+\sin \frac{x}{2}\right)\right]=2
$$

(b) Show that if $a=0$ and $b>0$, the equilibrium price is a periodic function of x.

Solution: If $a=0$ and $b>0$ the characteristic polynomial, $P(D)=D^{2}+b$ has two complex roots given by $\pm \sqrt{b} i$. The general solution is in this case given by (see previous calculations)

$$
y(x)=\frac{c}{b}+c_{1} \cos (\sqrt{b} x)+c_{2} \sin (\sqrt{b} x)
$$

which is a periodic function (with period $\frac{2 \pi}{\sqrt{b}}$).
4. Suppose that the total income in a closed economy, denoted by Y_{t}, follows the difference equation $Y_{t}=2 Y_{t-1}-Y_{t-2}+G$, where G is a known constant.
(a) Set $Y_{0}=Y_{1}=10, G=2$ and determine the total income Y_{t}, for any $t \geq 2$.

Solution: This is a linear second order difference equation with constant coefficients, whose characteristic polynomial is $p(\lambda)=\lambda^{2}-2 \lambda+1=(\lambda-1)^{2}$. This polynomial a a real root $(\lambda=1)$ with multiplicity 2 , so the general solution to the homogeneous equation is given by $Y_{t}^{h}=\left(c_{1} t+c_{2}\right) 1^{t}=c_{1} t+c_{2}$. On the other hand, we must look for a particular solution of the form $y_{t}^{*}=k t^{2}$ (polynomials of degree 0 or 1 will not work as they are solutions to the ho-
mogeneous equation), which leads to the general solution $Y_{t}=c_{1} t+c_{2}+t^{2}$. Finally, using the initial conditions, we can compute the constants c_{1}, c_{2}

$$
\left\{\begin{array} { l }
{ Y _ { 0 } = 1 0 } \\
{ Y _ { 1 } = 1 0 }
\end{array} \Leftrightarrow \left\{\begin{array} { r }
{ c _ { 2 } = 1 0 } \\
{ c _ { 1 } + c _ { 2 } + 1 = 1 0 }
\end{array} \Leftrightarrow \left\{\begin{array}{r}
c_{2}=10 \\
c_{1}=-1
\end{array}\right.\right.\right.
$$

obtaining the particular solution $Y_{t}=t^{2}-t+10$.
(b) What should be the value of G for the total income to be linear in t ?

Solution: For general G, using the same procedure as above, the particular solution is given by $Y_{t}^{*}=\frac{G}{2} t^{2}$. Since the particular solution is the only nonlinear component of the solution, setting $G=0$ makes the solution linear in t.

Mathematics II

Undergraduate Degrees in Economics and Management
Regular period, January 5th, 2016

Part I

1. Classify the quadratic form $Q(x, y, z)=4 x^{2}+4 x y+2 y^{2}-2 y z+2 z^{2}$. Is there any vector $(a, b, c) \in \mathbb{R}^{3}$ such that $Q(a, b, c)=0$? And such that $Q(a, b, c)<0$? Justify.

Solution: The quadratic form is given by $Q(x, y, z)=(x, y, z)^{T} A(x, y, z)$, where

$$
A=\left(\begin{array}{ccc}
4 & 2 & 0 \\
2 & 2 & -1 \\
0 & -1 & 2
\end{array}\right)
$$

The determinants of the principal minors are $\Delta_{1}=4>0, \Delta_{2}=4>0, \Delta_{3}=4>0$. Since all these numbers are positive, the matrix is positive definite and so is the quadratic form. Taking $(a, b, c)=(0,0,0)$, we do have $Q(a, b, c)=0$. Q being positive definite means that $Q(a, b, c)>0, \forall(a, b, c) \neq(0,0,0)$ and so there is no vector (a, b, c) such that $Q(a, b, c)<0$.
2. Consider the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ defined by $f(x, y)=\ln (y-|x|)+\sqrt{1-x^{2}-y^{2}}$
(a) Determine the domain of f, D_{f}, analytically and represent it graphically.

Solution:

$$
D_{f}=\left\{(x y) \in \mathbb{R}^{2}: y-|x|>0 \wedge 1-x^{2}-y^{2} \geq 0\right\}=\left\{(x, y) \in \mathbb{R}^{2}: y>|x| \wedge x^{2}+y^{2} \leq 1\right\}
$$

(b) Determine the interior and the boundary of D_{f}. Decide if D_{f} is open and if D_{f} is compact. Is Weierstrass's theorem applicable to f in D_{f} ? Is f bounded from below in D_{f} ? Justify.

Solution:

$$
\begin{aligned}
\operatorname{Int}\left(D_{f}\right) & =\left\{(x, y) \in \mathbb{R}^{2}: y>|x| \wedge x^{2}+y^{2}<1\right\} \\
\operatorname{Bdy}\left(D_{f}\right) & =\left\{(x, y) \in \mathbb{R}^{2}: y=|x| \wedge x^{2}+y^{2}=1\right\} \cup\left\{(x, y) \in \mathbb{R}^{2}: y \geq|x| \wedge x^{2}+y^{2}=1\right\} \\
\overline{D_{f}} & =\operatorname{Int}\left(D_{f}\right) \cup \operatorname{Bdy}\left(D_{f}\right)=\left\{(x, y) \in \mathbb{R}^{2}: y \geq|x| \wedge x^{2}+y^{2} \leq 1\right\}
\end{aligned}
$$

Since $D_{f} \neq \operatorname{Int}\left(D_{f}\right)$, the set is not open and since $D_{f} \neq \overline{D_{f}}$ the set is not closed and therefore not compact. Weierstrass's theorem is not applicable to f on D_{f} because D_{f} is not compact. Function f is not bounded from below on D_{f} because for example

$$
\lim _{y \rightarrow 0^{+}} f(0, y)=\lim _{y \rightarrow 0^{+}}\left(\ln y+\sqrt{1-y^{2}}\right)=-\infty
$$

which shows that f can take arbitrarily large negative values on D_{f}.
3. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be given by

$$
f(x, y)=\left\{\begin{array}{cl}
\frac{y^{2} \sqrt{|x|}}{x^{2}+y^{2}} & ,(x, y) \neq(0,0) \\
0 & , x=y=0
\end{array} .\right.
$$

(a) Compute the directional limits at $(0,0)$.

Solution:

$$
\lim _{\substack{(x, y) \rightarrow(0,0) \\ y=m x}} f(x, y)=\lim _{x \rightarrow 0} \frac{(m x)^{2} \sqrt{|x|}}{x^{2}+(m x)^{2}}=\lim _{x \rightarrow 0} \frac{m^{2} \sqrt{|x|}}{1+m^{2}}=0 .
$$

(b) Show that f is continuous in \mathbb{R}^{2}.

Solution: If $(x, y) \neq(0,0)$ the function is obviously continuous (quotient of continuous functions with nonzero denominator). If f is also continuous in $(0,0)$, it will be continuous over \mathbb{R}^{2}. From (a) we know that all directional limits at $(0,0)$ are zero as so the only possible candidate to limit is zero. Also, since

$$
0 \leq\left|\frac{y^{2} \sqrt{|x|}}{x^{2}+y^{2}}-0\right| \leq \frac{\left(x^{2}+y^{2}\right) \sqrt{|x|}}{x^{2}+y^{2}}=\sqrt{|x|} \rightarrow 0 \quad(\operatorname{as}(x, y) \rightarrow(0,0))
$$

we can establish that $\lim _{(x, y) \rightarrow(0,0)} f(x, y)=0=f(0,0)$, which allows us to conclude that f is continuous at $(0,0)$ and therefore (as discussed above) over \mathbb{R}^{2}.
(c) Compute the directional derivatives at $(0,0)$.

Solution:

$$
\begin{aligned}
& \frac{\partial f}{\partial(u, v)}(0,0)=\lim _{t \rightarrow 0} \frac{f(0+u t, 0+v t)-f(0,0)}{t}=\lim _{t \rightarrow 0} \frac{v^{2} t^{2} \sqrt{|u t|}}{t\left((u t)^{2}+(v t)^{2}\right)} \\
& =\lim _{t \rightarrow 0} \frac{v^{2} \sqrt{|u|}}{u^{2}+v^{2}} \frac{\sqrt{|t|}}{t}= \begin{cases}\infty, & v \neq 0 \\
0, & v=0\end{cases}
\end{aligned}
$$

4. Suppose that the income (Y) is a function of capital and labor, $Y=K^{1 / 2} L^{1 / 2}$, and that both capital and labor are functions of time (t). Use the chain rule to compute $Y^{\prime}(t)$, considering $K=t, L=t^{2}$.

Solution:

$$
Y^{\prime}(t)=\frac{\partial Y}{\partial K} \cdot \frac{d K}{d t}+\frac{\partial Y}{\partial L} \cdot \frac{d L}{d t}=\frac{L^{1 / 2}}{2 K^{1 / 2}} \cdot 1+\frac{K^{1 / 2}}{2 L^{1 / 2}} \cdot 2 t=\frac{t}{2 \sqrt{t}}+\frac{2 t \sqrt{t}}{2 t}=\frac{3}{2} \sqrt{t}
$$

5. Compute the second order Taylor polynomial of $f(x, y)=y^{2} e^{x}$ around $(0,0)$ and use it to estimate $f(0.1,0.1)$

Solution: The second order Taylor polynomial is given by

$$
\begin{aligned}
p_{2}(x, y) & =f(0,0)+\frac{\partial f}{\partial x}(0,0) x+\frac{\partial f}{\partial y}(0,0) y+\frac{1}{2!}\left(\frac{\partial^{2} f}{\partial x^{2}}(0,0) x^{2}+2 \frac{\partial^{2} f}{\partial x \partial y}(0,0) x y+\frac{\partial^{2} f}{\partial y^{2}}(0,0) y^{2}\right) \\
& =\frac{1}{2!} 2 y^{2}=y^{2}
\end{aligned}
$$

We can therefore consider the estimate $f(0.1,0.1) \approx p_{2}(0.1,0.1)=0.1^{2}=0.01$.

