

STATISTICS I - 2nd Year Management Science BSc - 1st semester - 15/01/2014

Época Normal – Theoretical Part (40 minutes)

This exam consists of two parts. This is Part 1 - Theoretical (8 marks). This answer sheet will be collected 40 minutes after the beginning of the examination. During the duration of the exam, no clarifications will be provided. **GOOD LUCK!**

be provided. GOOD LOCK!		
Name:non		
Each of the following 5 groups of multiple-choice questions is worth 10 points (1 m answered correctly is worth 2.5 points; each wrong answer is worth -2.5 points. The gragroups varies between a minimum of 0 and a maximum of 10 points.		
Indicate whether the following statements are true (T) or false (F) by ticking the corresponding box	with a	cros s (X
Let A_i ($i = 1,2,3$), B and C events of a sample space S with positive probability.		
т	F	
If A_1 , A_2 and A_3 , are mutually independent events with positive probability, then they are a partition of the sample space S.		
Let B and C be mutually exclusive events, then $P(B-C)=P(B)$.		
Let B and C be independent events then, $P(\overline{B \cup C}) = P(\overline{B}).P(\overline{C})$		
If event $A \cup B$ occured then we know that event B occured as well.		
2. Let X be a random variable with cumulative distribution function $F_X(x)$.	Т	
Let X be a continuous random variable, then $\forall x \in \mathbb{R}, F(x+0) - F(x) = 0$.		
Let $Y = \varphi(X)$ be a function of X . If X is a continuous random variable, then Y can only be a continuous random variable.		
If $F_X(x)$ is differentiable at x , then we have that $F_X'(x) \ge 0$		
Let X be a mixed random variable and \mathbf{b} a discontinuity point of $F(x)$, then $P(X \le b) > P(X < b)$		
3. Let (X,Y) be a two-dimensional random variable.	Т	F
Let (X,Y) be a continuous random vector, and $Cov(X,Y) \neq 0$, then $E[X Y] \neq E(X)$.		
If X and Y are independent random variables then $M_{X+Y}(t) = M_X(t) \times M_Y(t)$		
Let (X,Y) be a discrete random variable with joint probability function $f_{(X,Y)}(x,y)$, then		
$P(Y \le a) = \sum_{y \le a} \sum_{x \in D_X} f_{(X,Y)}(x,y) a \in D_Y.$		
Let X be a random variable with $E(X) = \mu$; $Var(X) = \sigma^2$ and $Y = (3X - 2)/\sigma$, then $Var(Y) = 9$.		

4. Let *X* be a random variable:

	Т	F
If the number of events that occur in a minute follows a Poisson distribution with mean λ , then the time, in minutes, between consecutive events follows a Gamma with mean $1/\lambda$.		
If $X \sim N(1, \sigma^2) \Rightarrow Y = 1 - X \sim N(0, \sigma^2)$.		
If $X \sim U(0, 1)$, then $P(X > 3) = 1$		
If $X \sim B(n, \theta) \Rightarrow Y = n - X \sim B(n - x, \theta)$.		

5. Let $(X_1, X_2, ..., X_n)$ be a random sample of size n>2 selected from a population X with unknown parameters.

	 <u> </u>
$(X_{(n)} - X_{(1)})/\sigma$ is a statistic	
The larger the sample size, n , the smaller the $Var[\bar{X}]$	
If $T \sim t_{(n)}$, then $P(T < a) < 0.5$ $(a < 0)$	
$P(X_1 > x, X_2 > x) = [P(X > x)]^2$ for any value of x	

Each of the following questions is worth 15 points and should be answered in the space provided. Justify all your steps.

6. Let $A,B,C\in \Omega$ with positive probabilities be mutually independent events. Prove that $P(A-B|C)=P(A)P(\bar{B})$. [Cotação: 15].

7. Let
$$X \sim Po(\lambda)$$
, prove that $E(X) = \frac{P(X=1)}{P(X=0)}$ and $Var(X) = 2 \cdot \frac{P(X=2)}{P(X=1)}$. [Cotação: 15]

STATISTICS I - 2nd Year Management Science BSc - 1st semester - 15/01/2014

Época Normal – Theoretical Part (40 minutes)

This exam consists of two parts. This is Part 1 - Theoretical (8 marks). This answer sheet will be collected 40 minutes after the beginning of the examination. During the duration of the exam, no clarifications will be provided. **GOOD LUCK!**

Name:non		_
Each of the following 5 groups of multiple-choice questions is worth 10 points (1 manswered correctly is worth 2.5 points; each wrong answer is worth -2.5 points. The graygroups varies between a minimum of 0 and a maximum of 10 points.		
Indicate whether the following statements are true (T) or false (F) by ticking the corresponding box	with a	cros s
. Let A_i ($i=1,2,3$), B and C events of a sample space S with positive probability.	Т	F
If A_1 , A_2 and A_3 , are mutually exclusive events with positive probability, then they are a partition of the sample space S.		
Let B and C be mutually exclusive events, then $P(B-C) < P(B)$		
Let B and C be independent events then, $P(\overline{B \cup C}) \neq P(\overline{B}).P(\overline{C})$		
If event $A \cup B$ occured then we know that event B occured as well.		
2. Let X be a random variable with cumulative distribution function $F_X(x)$.	Т	F
Let <i>X</i> be a discrete random variable, then $\forall x \in \mathbb{R}$, $F(x+0) - F(x) = 0$.		
Let $Y = \varphi(X)$ be a function of X . If X is a mixed random variable, then Y can be discrete random variable.		
If $F_X(x)$ is differentiable at x , then we have that $F_X'(x) \ge 0$		
Let X be a mixed random variable and \mathbf{b} a point where $F(x)$, is continuous, then $P(X \le b) > P(X < b)$		
3. Let (X,Y) be a two-dimensional random variable.	Т	F
Let (X,Y) be a discrete random vector and and $Cov(X,Y) \neq 0$, then $E[X y_i]$ varies with y_i .		
If X and Y are independent random variables then $M_{X+Y}(t) = M_X(t) + M_Y(t)$		
Let (X,Y) be a continuous random variable with joint probability density function $f_{(X,Y)}(x,y)$, then $P(X \le a) = \int_{-\infty}^{a} \int_{-\infty}^{+\infty} f_{(X,Y)}(x,y) dy dx$ $a \in D_X$		
Let <i>X</i> be a random variable with $E(X) = \mu$; $Var(X) = \sigma^2$ and $Y = (3X - 2)/\sigma$, then $Var(Y) \neq 9$.		

Turn please \rightarrow

4. Let *X* be a random variable:

	T	F
If the number of events that occur in a minute follows a Poisson distribution with mean λ , then the mean time, in minutes, between events follows a Gamma with mean λ .		
If $X \sim N(\mu, \sigma^2) \Rightarrow Y = -X \sim N(-\mu, \sigma^2)$.		
If $X \sim U(0,1)$, then $P(X < 3) = 1$		
If $X \sim B(n, \theta) \Rightarrow Y = n - X \sim B(n, \theta)$.		

5. Let $(X_1, X_2, ..., X_n)$ be a random sample of size n>2 selected from a population X with finite mean.

	I	F
If $T \sim t_{(n)}$, then $P(T < a) < 0.5$ $(a > 0)$		
When $n \to \infty$, $Var[\bar{X}] \to 0$.		
(X_1, X_2, \cdots, X_n) is a statistic.		
$P(X_1 > x, X_2 > x) = P(X > x)$ for any value of x		

Each of the following questions is worth 15 points and should be answered in the space provided. Justify all your steps.

6. Let $A, B, C \subset \Omega$ with positive probabilities be mutually independent.

Prove that
$$P(A - B|C) = P(A)P(\bar{B})$$
. [Cotação: 15]

7. Let
$$X \sim Po(\lambda)$$
, **prove that** $E(X) = \frac{P(X=1)}{P(X=0)}$ and $Var(X) = 2.\frac{P(X=2)}{P(X=1)}$. [Cotação: 15]

STATISTICS I - 2nd Year Management Science BSc - 1st semester – 15/01/2014 E N – Practical Part (80 minutes)

This is Part 2: 12 marks. The answers to the multiple-choice questions should be given by signalling with an **X** the corresponding square. The other questions should be answered in the provided space.

Attention: For	each	of the	multiple-choice	questions,	each	correct	answer	is	worth	10	points,	each	wrong
answer is wor	th -2.5	points.											

NIO.

0,0744

	Espaço	reservado para	a classificação		
a) (10) 1	a)(20) 2	a)(10) 3	a)(10) 4		
b) (20)	b)(20)	b)(20)	b)(10)	P-	
biotecnologic pr	firm that deals oducts. It is known if an employee	own that 30% of	its employees	are nanotecno	ology experts.

0,8990

a) In a random sample of 16 employees compute the probability that at least half of them being

nanotecnology experts.

0,0257

0,9513

2. Let (X,Y) be a two dimensional random variable with joint probability density function given by

$$f(x,y) = kx^2y \ (0 < x < 1; \ 0 < y < 1)$$

a) Prove that k = 6 and compute the probability that P(X < 0.5)

b) Find the expected value for Y when X = 0.6. What can you say about the independence between X and Y?

3.	an		uration (in minutes) of advertisements in a television chanel is a random variable following iform distribution in the interval (1,1.5). In a day 36 of these news services are randomly ed.					
	a)	Compute the probal	bility that one of the	e news services lasts more	than 1.2 minutes?			
		0,4 🔲	0,6 🗌	0,2 🗆	0,8 🗌			
	b)	Find the probability 1.2 minutes?	that the mean du	ration of the advertisements	s, in the sample, be less than			
4.		ne number of planes oer hour.	that land in a certa	ain airport follows a Poissor	n process with a mean rate of			
	a)	Find the probability	that in a 10 minute	es interval less than 2 plane	s land at that airport.			
	(0.9197 🔲	0.1839	0.3679	0.7358 🗌			
	b)	Compute the probaminutes?	ability that the time	e between two consecutive	e landings do not excede 5			
		0.3935	1.0000	0.6065	0.0000			