Appeal Exam - Theoretical Part (40 minutes)

This exam consists of two parts. This is Part 1 - Theoretical (8 marks). This answer sheet will be collected 40 minutes after the beginning of the examination. During the duration of the exam, no clarifications will be provided. GOOD LUCK!

Name: \qquad no

Each of the following 5 groups of multiple-choice questions is worth 10 points (1 mark). Each question answered correctly is worth 2.5 points; each wrong answer is worth -2.5 points. The grade in each of the 5 groups varies between a minimum of 0 and a maximum of 10 points.

Indicate whether the following statements are true (T) or false (F) by marking the corresponding box with a cross (X)

1. Let $A_{i}(i=1,2,3)$ be a partition of the sample space S, events $B, C \subset S$ with positive probability.

$P(B \mid C)=P(C \mid B) * P(B) /\left[P\left(C \mid A_{1}\right) P\left(A_{1}\right)+P\left(C \mid A_{1}{ }^{\prime}\right) P\left(A_{1}{ }^{\prime}\right)\right]$	\mathbf{T}	
$A_{1} \cup A_{2} \cup A_{3}=S ; A_{i} \cap A_{j}=\emptyset \quad i \neq j i, j=1,2,3$		
$P\left(A_{1} \mid A_{3}\right)=0$		
A_{1}, A_{2}, A_{3} are independent events		

2. Let X be a random variable with cumulative distribution function $F_{X}(x)$.

Let X be a discrete random variable, then $\forall h \in \mathbb{R} \cdot h>0, F(x+h)-F(x)<0$.		
Let X be a continuous random variable and a random variable $Y=\psi(X) . Y$ can be a discrete random variable.		
If X is a mixed random variable, there is at least one point of discontinuity of $F_{X}(x)$ with positive probability.		
If $Y=2 X+1$, then $\operatorname{Var}(Y)=4 \operatorname{Var}(X)+1$		

3. Let (X, Y) be a two-dimensional random variable with cumulative distribution function $F_{X, Y}(x, y)$.

If $\operatorname{Cov}(X, Y)=0$, then X, Y are independent random variables.	\mathbf{T}	\mathbf{F}
If X, Y are independent random variables, then $M_{X+Y}(s)=M_{X}(s) \times M_{Y}(s)$		
Let (X, Y) be discrete with joint probability function $f_{(X, Y)}(x, y)$, then		
$P(X \leq x \mid Y \leq y)=F_{X, Y}(x, y) / F_{Y}(y)$		
Let (X, Y) be continuous then $f_{(X)}(x)=\int_{-\infty}^{+\infty} f_{(X, Y)}(x, y) d x$		

4. Let X be a random variable:

Consider a Poisson process with intensity λ in an interval Δt. The time that elapses until the $3^{\text {rd }}$ occurrence has a Gamma distribution with parameters $(3, \lambda / \Delta \mathrm{t})$.		
If $X \sim N\left(\mu, \sigma^{2}\right) \Rightarrow P(X>\mu)=0.5$ for any values of μ, σ^{2}.		
If the random variable X follows a uniform distribution in the interval $(0, a)$, then its median equals $a / 2$.		
Let $X \sim B i(n, \theta), n-X \sim B i(n, 1-\theta)$.		

5. Let $\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ be a random sample of size $n>2$ selected from a population X with unknown parameters.

$\operatorname{Cov}\left(X_{i}, X_{j}\right)=0 \quad i \neq j$.	\mathbf{T}	\mathbf{F}
$\left(X_{1}+X_{n}\right) / \sigma$ is a statistic.		
If $T \sim t_{(n)}$, then $P(T<a)<0.5 \quad(a<0)$.		
$P\left(X_{i} \leq x\right)=F_{X}(x) \quad(i=1, \cdots, n)$		

Each of the following questions is worth 15 points and should be answered in the space provided. Justify all your steps.

6. Let $A, B \in S$ be events with positive probabilities. Using the postulates of the measure of probability and the property that if $A \subset B \Rightarrow P(A) \leq P(B)$, prove that $P(A) \leq 1$.
7. Prove, using the definition of second moment about the mean that $\operatorname{Var}(X)=E\left(X^{2}\right)-\mu_{X}^{2}$. Justify every step. [15]

Attention: For each of the multiple-choice questions, each correct answer is worth 10 points, each wrong answer is worth -2.5 points.

Name: \qquad №: \qquad

Espaço reservado para a classificação

1.a) (10)
2 a)(15)
3.a) (10)
4 a) (10)
T:
1.b) (20)
2 b)(15)
3.b) (20)
4 b) (20)
P:
\qquad

1. At a certain region, 60% of all families spend their holidays at the seaside and 42% of these families have at least two children, 32% spend their holidays at the countryside and 18% of these have two or more children. All other families spend their holidays abroad and 5% of them have at least two children.
a) The Silva family has three children. How probable is it that they spend holidays abroad?
b) In a group of 20 of the families in this region, compute the probability that more than half of them don't spend their holidays at the seaside.
0.8403 \qquad
0.24470.1275 \square 0.8829
2. Let (X, Y) be a two dimensional continuous random variable with joint probability density function given by:

$$
f_{X, Y}(x, y)=\frac{3}{8} x^{3} \sqrt{y} \quad 0<x<2,0<y<1
$$

a) Are X, Y independent random variables?
b) Compute $E\left(X \left\lvert\, Y=\frac{1}{2}\right.\right)$. Justify your answer thoroughly.
3. It is known that the duration (in minutes) of advertising programs of a television channel is a random variable with uniform distribution in the interval (10,20). On a day are issued 40 of these advertising programs.
a) Compute the probability that one of these advertising programs lasts more than 12 minutes.
0.8 \qquad 0.2
0.1
0.9
\qquad
b) If 30 of these programs are randomly selected, determine the probability that the difference, in absolute value, between the sample mean and the population mean is lower than 1 minute.
4. Plains arrive at a certain airport following a Poisson process with mean rate of 6 per hour.
a) What is the probability of a 10 -minute period have less than two arrivals?
0.36790.7358 \qquad 0.9197 \qquad 0. 1839
b) What is the probability that the time between the third and sixth consecutive arrivals do not exceed 10 minutes?

