INSTITUTO SUPERIOR DE ECONOMIA E GESTÃO

ANÁLISE MATEMÁTICA II

Licenciatura MAEG

Época Normal – 4 de Junho de 2014

Duração: 2 horas

Ι

(2,5) Desenvolva em série de potências de x-3 a função $f(x) = \frac{1}{1-x}$, indicando o intervalo de convergência absoluta da série.

II

Considere a função $f: \Re^2 \to \Re$ definida por

$$f(x, y) = \frac{\sqrt{x - |x - y|}}{\log(x^2 + y^2)}.$$

- a) (1,5) Determine o domínio D_f da função f e represente-o graficamente.
- **b**) (1,0) Determine analiticamente a fronteira e o derivado de D_f .
- c) (0,5) Mostre que a sucessão $u_n = \left(\frac{1}{n}, \frac{1}{n}\right)_{n \in \mathbb{N}} \in D_f$ e o seu limite não pertence a D_f .
- **d)** (1,0) Com base na alínea anterior justifique se D_f pode ser um conjunto compacto.

III

- 1. **(1,0)** Estude a existência de prolongamento contínuo a \Re^2 da função $f(x,y) = 1 + xy \frac{x^2 y^2}{x^2 + y^2}$ e em caso afirmativo determine-o.
- 2. Considere a função $g: \mathbb{R}^2 \to \mathbb{R}$ definida por

$$g(x,y) = \begin{cases} x+y & \text{se } xy > 0\\ 0 & \text{se } xy \le 0 \end{cases}.$$

- **a)** (1,0) Calcule $\nabla g(0,0)$.
- **b)** (1,5) Calcule a derivada direccional $\frac{\partial g}{\partial u}(0,0)$, segundo qualquer vector não nulo $u \in \Re^2$.
- c) (2,0) Com base nas alíneas anteriores, que pode concluir quanto à diferenciabilidade da função g no ponto (0,0)? Justifique convenientemente.

IV

(2,0) Seja w(r,s) uma função real de classe C^1 em \Re^2 . Sejam r = y - x e s = y + x e F(x,y) = w(r(x,y),s(x,y)). Mostre que

$$\frac{\partial F}{\partial x} + \frac{\partial F}{\partial y} = 2 \frac{\partial w}{\partial s}.$$

V

(2,5) Discuta em função do parâmetro $\alpha \in \Re$ a existência de extremantes para a função

$$f(x, y) = x^4 + 2x^2y + \alpha x^2 + y^2$$
.

Considere a função $u: \Re^2 \to \Re$ definida por $u(x, y) = e^{(k-1)(x-y)} + x^2 - y^2$.

- a) (1,0) Determine os valores de $k \in \Re$ para os quais u é uma função harmónica.
- **b)** (1,5) Faça k = 1. Determine a função inteira

$$f(z) = f(x+iy) = u(x, y) + iv(x, y)$$

tal que f(0) = 0.

c) (1,0) Determine f'(1-i).

fim