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1. INTRODUCTION

∙ The most common application of binary response models is when we

are interested in “explaining” a binary outcome in terms of some

explanatory variables. Thus, we are interested in a conditional

probability.

∙ A less common application is when we have a linear model of an

underlying quantitative variable, but the data collection scheme censors

the data. For example, we have a linear model for willingness to pay for

a project or product. However, because it is difficult to elicit WTP,

each individual may be presented with a cost of the project; we then

only observe whether they are in favor of the project at that cost.
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∙We treat data censoring problems later. For now, we focus on the first

situation. So, y is a binary (zero-one) variable. For example,

y  employed or y  arrested. Given a set of (exogenous) covariates x,

we are interested in

Py  1|x  px,

which is called the response probability. It is the probability of a

“success,” that is, y  1.

∙ As in regression, we are interested in the partial effects of the xj on

px. For continuous xj, these are usually

∂px
∂xj

.
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∙ For discrete xj, look at changes in the response probability (usually

holding other variables fixed). For example, if xK  train (job training

indicator) and y is an employment indicator,

px1, . . . ,xK−1, 1 − px1, . . . ,xK−1, 0

is the effect of job training on the employment probability, at given

values for the other covariates.

∙ In nonlinear models generally, and binary response models

specifically, it is often useful to have a single number to summarize the

relationship between Py  1|x and xj. In a linear model that is simply

the coefficient.
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∙ Generally, we might report an estimated average partial effect (APE).

The APE for a continuous xj is

Ex
∂px
∂xj

,

which means we average the partial effect across the population

distribution of x. This is a weighted average of the partial effects at

each outcome x.

∙ Suppose xK is a binary variable. Then its APE is

ExK pxK, 1 − pxK, 0

where xK is the 1  K vector with xK excluded.
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∙ Another partial effect that has been reported in empirical work is the

partial effect at the average (PEA). For a continous variable xj,

∂px
∂xj

.

∙ In nonlinear models, the APE and PEA can be very different: the

expected value does not pass through nonlinear functions.

∙ Because x might not even represent a population unit – for example,

if x includes discrete variables, such as dummy variables – the PEA

might not be especially interesting.
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∙ Some simple, useful facts about Bernoulli (zero-one) random

variables are

Ey|x  Py  1|x  px
Vary|x  px1 − px

∙ So a binary variable has natural heteroskedasticity except in the

special case where px does not depend on x.

∙ Unlike variables that take on more than two values, there is a

necessary link between the mean and the variance. It is not possible for

Ey|x  px while Vary|x ≠ px1 − px. (If, say, y is a takes

values in 0,1, 2, . . ., Vary|x need not be related to Ey|x, even

though that is true for popular distributions such as the Poisson.)
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2. THE LINEAR PROBABILITY MODEL

∙ The linear probability model (LPM) models the response probability

as a function linear in parameters. Absorbing an intercept into x, if we

take the model literally we are assuming

Py  1|x  1  2x2 . . .KxK ≡ x.

Because this is also Ey|x, we can use OLS to consistently estimate .

In fact, if the conditional mean is truly x, the OLS estimator is

unbiased.
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∙ Because Vary|x  x1 − x – a rare case where we know the

functional form of heteroskedasticity – inference for OLS should be

made robust to heteroskedasticity. As we know, this is easy to do.

∙ Because y is binary, we must rely on large-sample properties for

inference; clearly normality of Dy|x does not hold.

∙ The LPM is always a good starting point when y is the variable we

hope to explain. The estimated coefficients give direct estimates of the

effects of each xj on the response probability. (Of course, as with any

regression framework, we can include various functional forms in x,

such as quadratics, interactions, and dummy variables.)
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∙ The LPM is simple to estimate and interpret. The often cited

drawbacks of the LPM include

(1) Nothing guarantees the OLS fitted values, ŷi  xi̂, are in the

unit interval. As these are estimates of the pxi, one might worry about

estimated probabilites above one or negative. (In practice, this is a

minor issue.)

(2) While we can use various functional forms in x, it is difficult to

impose, in a simple way, diminishing effects of the xj on the px. For

example, if j  0, increasing xj in increases px  x by j, no

matter the values of xj or the other elements of x. Logically, the effect

must diminish at some point.
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(3) Heteroskedasticity. This has asymptotic efficiency implications

if we assume that px  x. That is, in principle we can improve

efficiency by weighted least squares, but xi̂ not strict between zero

and one for all i causes problems because the efficient weights are

supposed to be 1/xi̂1 − xi̂.

∙WLS hardly seems worth it because we can use the usual

heteroskedasticity-robust inference for OLS without worrying about

adjusting the fitted values.
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∙ As a practical matter, it makes more sense to think of the LPM as the

best linear approximation (in a mean squared error sense) to the true

response probability, px. That is,

y  x  u
Ex′u  0

is all we are willing to assume. If so, then Eu2|x generally depends on

px in addition to x, but the heteroskedasticity-robust variance matrix

estimator is still valid (because it is valid for heteroskedasticity of

unknown form).
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∙ A carefully chosen linear model can yield good estimates of the APEs

defined earlier. In other words, the LPM often yields good estimates of

average effects.

∙ A leading reason for going from the LPM to nonlinear models of px

is to allow the partial effects to vary across different values of x.

∙When we view the LPM as a linear projection, weighted least squares

– even if all fitted values are in 0,1 – is not even consistent for the

parameters of the linear projection Ly|x  x. (The parameters

identified by WLS are necessarily less interesting than those in the

linear projection, but they are different.)
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3. INDEX MODELS: PROBIT AND LOGIT

∙ A general index model has the form

Py  1|x  Gx

for some G : R → 0,1. That is, 0  G  1. In most cases, G is

actually a cumulative distribution function for a continuous random

variable with density g. Then, G is strictly increasing, and the

estimates are easier to interpret.

∙ The leading cases are Gz  z (probit) and

Gz  expz/1  expz (logit).
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∙MLE is straightforward. The general log likelihood for random draw i

is

ℓi  1 − yi log1 − Gxi  yi logGxi.

∙ Asymptotic variance has the same form as for probit:

∑
i1

N
gxi̂2xi′xi

Gxi̂1 − Gxi̂

−1

,

where

gz  z for probit
gz  expz/1  expz2 for logit
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∙ Testing multiple hypotheses about  (we drop the “o” subscript for

simplicity) – usually joint exclusion restrictions – is most easily done

with the Wald and LR statistics. The former is commonly used in

canned packages (in Stata, it is computed with the “test” command),

and the LR statistic is easily obtained because the value of the log

likelihood is reported routinely.

∙ The score statistics is convenient for testing the standard index

models against more complicated alternatives (below).
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Estimating Partial Effects

∙More interesting is: What do we do with the estimates? Let xj be

continuous. Then

∂px
∂xj

 jgx

and, because gz  0 (assume it is a continuous density), j gives the

direction of the partial effect. But its magnitude depends on gx.

∙ For probit, the largest value of the scale factor is about . 4  g0. For

logit, it is . 25.
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∙ For two continous covariates, the ratio of the coefficients give the

ratio of the partial effects, independent of x.

∂px/∂xj
∂px/∂xh


jgx
hgx

 j/h.

∙ No simple relationship exists for discrete variables or changes.

∙ In any case, we would like the magnitude of the effect.
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∙ Two common summary measures are the estimated PEAs and APEs.

The estimated PEA for a continuous variable is

PEAj  ̂jgx̄̂

∙ As discussed earlier, putting in averages for discrete covariates might

not be especially interesting.

∙When x includes nonlinear functions, such as age2, probably makes

more sense to use age2 rather than average agei2.

∙ Delta method or bootstrapping can be used to get a standard error for

PEAj.
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∙ The APE has more appeal, as we are averaging partial effects for

actual units:

APEj  ̂j N−1∑
i1

N

gxi̂

∙ To use the delta method, must account for randomness in xi, too.

Bootstrap makes that easy.

∙Whether we use the PEA or APE, the scale factor multiplying ̂j is

below one, and sometimes well below one.
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∙ It makes no sense to compare magnitudes of coefficients across

probit, logit, LPM. Comparing APEs is preferred.

∙ In particular, if ̂ j is the linear regression coefficient on xj from

estimating an LPM, it can be compared with APEj (provided no other

function of xj appears in the regressors).
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∙ Suppose xK is a binary variable. Then its APE is estimated as

APEK  N−1∑
i1

N

GxiK̂K  ̂K − GxiK̂K,

where xiK is xi but without xiK.

∙ The APE has a nice counterfactual interpretation that is especially

useful in policy analysis. Called the average treatment effect (ATE) in

the treatment effect literature with a binary outcome. (The “treatment,”

xK, is binary.)

∙ Can average the individual treatment effects across subgroups, too, or

insert fixed values for some of the other covariates.
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∙ Stata, with its “margins” (marginal effects) command can report at

PEA or APE. For a discrete xK, the estimated PEA is

PEAK  Gx̄K̂K  ̂K − Gx̄K̂K

Again, this might correspond to a weird population unit, or might not

be representative of the population.

∙ To obtain standard errors of APEs and PEAs, we can use the delta

method or bootstrap.

∙ Stata uses the delta method to obtain standard errors.
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∙ Complicated functional forms are, in principle, easily handled within

the index structure. For example, suppose

Py  1|z  G0  1z1  2z1
2  3 logz2  4z3 ≡ Gx

Then

∂Py  1|z
∂z1

 1  22z1gx

∂Py  1|z
∂z2

 3/z2gx

∂ logPy  1|z
∂ log z2

 3gx/Gx
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∙ The signs of the coefficients are informative, but the partial effects

are somewhat complicated. Need to evaluate them at interesting values

or average across the distribution of x similar to the usual APE

calculation.

∙ For example, the average elasticity of Py  1|z with respect to z2 is

̂3 N−1∑
i1

N

gxi̂/Gxi̂ .
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Goodness of Fit

∙ In addition to reporting coefficients, standard errors, partial effects,

and their standard errors, some additional goodness-of-fit measures are

sometimes reported.

∙ Define, for each i, a binary predictor

ỹi  1 if Gxi̂ ≥. 5
 0 if Gxi̂ . 5

∙We make a correct prediction if yi  0 and ỹi  0 or ỹi  1 and

yi  1. Let N0 be the number of observations with yi  0 and N1 the

number with yi  1, so that N  N0  N1.
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∙We can compute the percent correctly predicted for each of the

outcomes, and the overall percent correctly predicted. If N00 is the

number of observations with yi  0 and ỹi  0 and N11 is the number

of observations with ỹi  1 and yi  1, then the proportions correctly

predicted are

q0 
N00
N0

, q1  N11
N1

.

∙ If one of q0 or q1 seems “too small,” the prediction threshold can be

chosen to be different from .5.
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∙ For example, some suggest using the fraction of “successes,” ȳ, as the

threshold. With random sampling, ȳ is a consistent estimator of the

unconditional probability of success, Pyi  1.

∙ So, the idea is to predict one if the estimated conditional probability

of success exceeds the unconditional probability. (Of course, changing

the threshold increases the proportion correctly predicted for one

outcome but generally decreases the proportion for the other outcome.)

∙ The overall proportion correctly predicted is

q  N00  N11
N  N0

N q0  N1
N q1,

which is a weighted average of the two.
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∙Whether we use an R-squared or the percent correctly predicted to

summarize goodness of fit, it is not necessary to have a “good” fit in

order for the estimated partial effects to be useful. For example, we

might be able to get a good estimate of the average effect of job

training on the probability of employment even though we cannot

predict with much accuracy whether a particular person in an at-risk

group becomes employed.
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∙ Because the Kullback-Leibler information criterion is maximized for

the true density, the values of the log likelihoods can be used to choose

among different nonnested models. In practice, it might be difficult to

choose between, say, logit and probit. (Often the differences are

practically unimportant, although they can be when fitted values at the

extreme tails are important.)
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Specification Issues and Testing

∙ There is much confusion about specification issues in probit, logit,

and other models, because sometimes inappropriate parallels are made

with linear models.

∙ Probit is easiest to discuss because analytical results are available.

Omitted Variable Independent of Covariates

∙ Consider first the problem of an omitted variable independent of x,

call it c:

Py  1|x,c  x  c
c|x ~ Normal0,c2

where x includes unity so Ec  0 is without loss of generality.
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∙Write the underlying latent variable as y∗  x  c  e, c  e|x ~

Normal0,c2  1. So

Py  1|x  x/1  c21/2.

∙ It follows immediately that probit of yi on xi consistently estimates

c ≡ /1  c21/2.

∙ That c is attenuated toward zero has been called “attenuation bias.”

This would not happen in a linear model. Question: Is it truly a

“problem”?
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∙ Answer: Not really. The scaled coefficients give directions of effects

and relative effects just as well as the original parameters.

∙ For magnitudes, the j index the PEAs at the average value of c,

Ec  0:

∂Py|x,c  0
∂xj

 jx.

So the PEAs at c  0 (or any other value of c) are not identified.

∙ But the APE is identified. Can show that

Ec
∂Py|x,c
∂xj

 cjxc
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∙ So, in fact, the scaled coefficients – which we consistently estimate –

index a quantity that is of significant interest.

∙More generally, in any model, if c is independent of x, just estimating

Py  1|x consistently estimates the APEs (as a function of x). But, of

course, we could not estimate the heterogeneity distribution.

∙ Of course, if c is correlated with x, a much different story (later).

34



Heteroskedasticity in the Latent Variable Model

∙ Again suppose y is the variable of interest, and now we allow

heteroskedasticity in the error e in

y  1x  e  0.

∙ Suppose we assume

e|x ~ Normal0, exp2x1,

where x1 is a subset of x (and does not include a constant). So

homoskedasticity is   0 and then e has unit variance.
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∙ Clearly the introduction of heteroskedasticity in e changes the

response probability, Py  1|x. In fact,

Py  1|x  Pe  −x|x  Pexp−x1e  −exp−x1x|x
 1 − −exp−x1x exp−x1x.

∙ Estimation by Bernoulli MLE, as before.

∙ Now, the derivatives and changes in Py  1|x are much more

complicated, and need not have the same sign as the relevant

coefficient.

∙ If we view Py  1|x  exp−x1x as just a way to generalize

functional form, partial effects should be computed.
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∙ Of course, it may be sufficient to include covariates in a flexible way

in probit and logit.

∙ After estimation of, say, probit with squares and interactions, it is

legitimate to compare log likelihood with the heteroskedastic probit log

likelihood.

∙ Generally, heteroskedastic probit and probit with flexible polynomials

are nonnested. Can use Vuong’s (1989, Econometrica) model selection

test.
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∙ If we truly believe the index structure with e heteroskedastic, there is

a different way to proceed. Define the average structural function as a

function of x:

ASFx  Ee1x  e  0  1 − F−x

where F is the unconditional distribution of e.
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∙ Let xi1 denote the random quantity. Then we can use the law of

iterated expectations to show

ASFx  Exi1exp−xi1x

and a consistent estimator is

ASFx  N−1∑
i1

N

exp−xi1̂x̂.
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∙ The estimated average partial effect, for a continuous xj, is

APEjx  ̂j N−1∑
i1

N

exp−xi1̂exp−xi1̂x̂

which is the same sign as ̂j because the term in  is strictly positive.

∙ Of course, ignoring heteroskedasticity in e does generally lead to

inconsistent estimators of the j, but that is largely beside the point.

The important question is: how far off are estimated partial effects?
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∙ Possible point of confusion: using the “robust” option with probit

does not mean the probit estimators of  somehow robust to

heteroskedasticity in the latent error. In fact,  will be inconsistently

estimated (but the MLE is still of value, providing the “best”

approximation).

∙ Using “robust” means that a sandwich estimator is used for the

asymptotic variance of the quasi-MLE (that is, the usual probit

estimator).
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∙ Remember, allowing heteroskedasticity in e with y  1x  e  0

changes Py  1|x, which completely describes Dy|x. This is not like

other regression applications where we can have Ey|x  x and

separately talk about heteroskedasticity in Vary|x.
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∙ Testing the probit model against a heteroskedastic alternative is a

good functional form test. The score test is convenient because it only

requires estimation of the probit model. A variable addition test is

convenient, too. After the initial probit to get the estimated linear

indices, xi̂, do probit of

yi1 on xi, xi̂
2xi1

and use a joint test Wald test on xi̂
2xi1. The degrees-of-freedom in

the 2 distribution equals the dimension of xi1 ⊆ xi.
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∙ Another functional form test is like the RESET from regression. For

example, after probit, do an expanded probit of

yi on xi, xi̂
2, xi̂

3

and test the last two terms for joint significance using a Wald test.

(Some think it is best to add xi̂
4, but the expanded test need not have

more power.)

∙ If you want to proceed with the heteroskedastic probit model, the

command is “hetprob” in Stata.
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Nonnormality in the Latent Variable Model

∙ Again, consider

y  1x  e  0

where e is independent of x but not normally distributed. What if we

apply probit? Not surprisingly, the probit MLE is not consistent for  if

e is not normal. But the partial effects are often very close, at least over

the range of x where we can have some confidence in the estimated

partial effects. (For example, logit and probit can give similar partial

effects except in the extreme tails of the distribution.)

∙ The key is that we should focus on partial effects and not just

parameters.
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The Linear Probability Model, Revisited

∙ Now write an index model with the “intercept” shown explicitly,

Py  1|x  G  x

where x is a continuous random vector. Define the APE for xj as

jEg  x.

∙ Let  and  be the linear projection parameters,

Ly|1,x    x
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∙ Can show that if x is multivariate normal then

 j  jEg  x, j  1, . . . ,K.

In other words, estimating an LPM consistently estimates the APEs.

∙Multivariate normality is restrictive, but suggests that OLS on the

LPM might get close to the APEs more generally.

∙ Of course, we miss out on some of the richness of nonlinear binary

response models by focusing only on the APEs.
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4. ENDOGENOUS EXPLANATORY VARIABLES

∙ For nonlinear binary response models, the nature of the endogenous

explanatory variable(s) plays a role in estimation. In principle, one can

use joint maximum likelihood. But specifying the joint distribution can

be tricky, and the methods generally require the distributional

assumptions to hold for consistency.

∙ In some cases, control function (CF) methods are available. CF

methods are useful for testing, too.

∙ Sometimes plug-in methods produce consistent estimators of scaled

coefficients, but in many cases they do not. With random samples, CF

methods are usually preferred to plugging in fitted values.
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∙ Because of the limitations of nonlinear models, some have proposed

using linear models and applying standard IV estimation methods.

Recall the linear model

y1  1y2  z11  u1

Ly2|z  z2  z121  z222

with 22 ≠ 0. We can apply this with y1 binary as an approximation.

No special restrictions are needed on y2 to apply 2SLS. y2 can be

continuous, binary, count, and so on.

∙ Some simulations show that the average partial effects can be

estimated pretty well by 2SLS.
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Continuous EEV

∙ If we want to allow nonconstant partial effects, we need to turn to

nonlinear models.

∙With a single EEV (for simplicity), consider the model

y1  11y2  z11  u1  0
u1|z ~ Normal0,1

where z is the vector of all endogenous variables. Analysis goes

through if we replace z1,y2 with any known function x1 ≡ g1z1,y2.

∙ The parameters 1,1 index the average structural function, and so

they index the APEs, too.
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∙ The Rivers-Vuong (1988) approach is to make a

homoskedastic-normal assumption on the reduced form for y2,

y2  z2  v2  z121  z222  v2, 22 ≠ 0
v2|z ~ Normal0,2

2

∙ Can relax normality in two-step methods. In fact, sufficient is

u1  1v2  e1

e1|v2,z ~Normal0,1 − 1
22

2
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∙ The CF approach is a two-step method. Write

y1  11y2  z11  1v2  e1  0

so that

Py1  1|y2,z  1y2  z11  1v2,

where each coefficient is multiplied by 1 − 1
2−1/2 and

1  12  Corrv2,u1. The scaled coefficients are identified

because we effectively observe v2  y2 − z2.
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∙ The RV two-step approach is

(i) OLS of y2 on z, to obtain the residuals, v̂2.

(ii) Probit of y1 on z1,y2, v̂2 to estimate the scaled coefficients. A

simple t test on v̂2 is valid to test H0 : 1  0.

∙ The original coefficients, which appear in the partial effects, are

easily obtained from the set of two-step estimates:

̂1  ̂1/1  ̂1
2 ̂2

21/2
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∙ Notice that the two-step estimates are larger than the unscaled

coefficients.

∙ Bootstrapping is convenient for standard errors; also for APEs, such

as

̂1̂1y2  z1̂1

∙ The APE for y2 across the entire population is then estimated as

̂1 N−1∑
i1

N

̂1yi2  zi1̂1
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∙ Alternatively, we average out the reduced form residuals using the

scaled coefficients:

ASFz1,y2  N−1∑
i1

N

x1̂1  ̂1v̂i2

and take derivatives or changes with respect to the elements y2,z1,

even if x1 is nonlinear functions of them. This formulation is useful for

more complicated models.
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∙ If instead of adding RF residuals we replace y2 with ŷ2, the two-step

procedure consistently estimates a different set of scaled parameters in

the basic model. With random sampling, it has little to offer over the

CF, and does not work if, say, y2
2 or y2z appear in the model.
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∙ If we make the stronger assumption

u1,v2|z ~ BivariateNormal

with 1  Corru1,v2, then we can proceed with MLE based on

fy1,y2|z  fy1|y2,zfy2|z.

∙ The distribution fy2|z is straightforward because it is homoskedastic

normal with a linear conditional mean.
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∙ For fy1|y2,z we have, for example,

Py1  1|y2,z   1y2  z11  1/2y2 − z2
1 − 1

21/2

and then Py1  0|y2,z is immediate. Then, all parameters –

1,1,1,2,2 are estimated jointly by MLE conditional on z.

∙ The Stata command is “ivprobit.” The same sorts of goodness-of-fit

measures and partial effects are available, of course. For APEs, still

might want to bootstrap the standard errors, confidence intervals.
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Binary EEV

∙What if y2 is not continuous? No generally useful two-step methods

are available when discreteness in y2 is important. The CF approach

above – and even more recent nonparametric approaches by Blundell

and Powell – hinges on being able to write

y2  g2z  v2

where

v2 is independent of z.
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∙ If, say, y2 is binary, this representation does not exist. Generally, the

natural choice for g2z is Ey2|z. But when y2 is discrete,

v2  y − Ey2|z usually depends on z in higher moments, such as the

variance.

∙When y2 is binary, the support of v2 conditional on z is just the two

points −g2z, 1 − g2z, and so v2 and z are clearly not independent.
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∙ Somewhat radical suggestion: First, standardize y2 as

r2 
y2 − Ey2|z
sdy2|z ,

so that Er2|z  0, Varr2|z  1. Then, just assume that

Du1|y2,z  Du1|r2

that is, Du1|y2,z depends on y2,z only through the standardized

error r2.
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∙ Could use standardized residuals r̂i2  yi2 − Êyi2|zi/sdyi2|zi in a

control function approach.

∙ This is “radical” because it does not follow from standard

assumptions, such as joint normality of u1,v2.

∙ Some methods exist for estimating parameters up to an uknown (but

common) scale, but they often require special assumptions and do not

deliver magnitudes of effect.
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∙ Generally available approach: MLE. Assume y1,y2 are generated as

y1  11y2  z11  u1  0
y2  1z2  v2  0,

where u1,v2 is independent of z and

u1

v2
~ Normal

0
0

,
1 1

1 1
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∙ Distribution Dy2|z is straightforward: probit.

∙ Dy1|y2,z is more complicated, but tractable. For example,

Py1  1|y2  1,z  1
z2


−z2


1y2  z11  1v2/1 − 1

21/2

 v2dv2

∙ The other three conditional probabilities are similar. Combine these

with the probit for Dy2|z to obtain the MLE (conditional on z).
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∙ In Stata, can get “biprobit” to estimate this model. Get all parameter

estimates directly.

∙Much harder is to allow true simultaneity between y1 and y2. In fact,

the model does not make logical sense for all values of parameters.

Most applications are not truly simultaneous in nature.

∙ Because we are working with Dy1|y2,z, it is straightforward to

replace the linear function of y2,z with other functions, such as

interactions between y2 and elements of z.
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∙ You should not try to emulate “two stage least squares” as follows.

(1) Run probit of yi2 on zi and obtain the fitted probabilities, ̂i2. (2)

Run probit of yi1 on ̂i2, zi1. The coefficients are usually much larger

than other coefficients because ̂i2 has a smaller range than yi2.

∙ As far as we know, this “forbidden regression” estimates nothing

interesting, although APEs have not been studied (I think).
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∙ The problem is trying to take the expected value through the indicator

function: If

y1  11y2  z11  u1  0

does it follow that

Py1  1|z  1z2  z11?

∙ No. To see why, write y2  z2  r2. Then

Py1  1|z  P1z2  z11  1r2  u1  0|z.

But 1r2  u1 is not independent of z and is clearly not normally

distributed.
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5. PANEL DATA MODELS

Pooled Methods
∙ Useful to start with methods that do not explicitly introduce

unobserved heterogeneity. Assume a balanced panel,

xit,yit : t  1, . . . ,T and N cross section observations.

∙ An index model for Pyit  1|xit is

Pyit  1|xit  Gxit, t  1, . . . ,T,

where xit generally includes a constant, time dummies, explanatory

variables that do not change across i, and those that do.

∙ xit can contain lagged dependent variables and lags of other variables.
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∙ Pooled (partial) MLE is very attractive, as it is simple and require no

further modeling. For each i, t, the log likelihood is

ℓit  1 − yit log1 − Gxit  yit logGxit

∙ Consistency follows from general pooled MLE results. Generally, we

need a sandwich etimator to account for serial correlation.
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∙ For each t, the APE is estimated as

N−1∑
i1

N

gxit̂ ̂j

and these can be further averaged across t if desired to get a single scale

factor.
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∙With small T and large N (our setting), apply the “panel bootstrap,”

where cross section units are resampled. That is, we sample from the

integers 1,2, . . . ,N and keep all time periods for each unit drawn. We

do not resample time periods within cross section units.

∙ If the model is “dynamically complete” in the sense that

Pyit  1|xit,yi,t−1,xi,t−1, . . . ,yi1,xi1  Pyit  1|xit

then we can used the usual standard errors reported with the pooled

MLE. In addition, all of the standard tests, include the “likelihood

ratio” test, are valid.
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∙ As usual, this condition is unlikely to hold unless xit contains one or

more lagged dependent variables.

∙ How might we test for dynamic completeness? Lots of possibilities,

but here is one. Compute residuals as ûit  yit − Gxit̂, and then

estimate the probit or logit “model” of yit on xit,ûi,t−1,

t  2, . . . ,T, i  1, . . . ,N and use the usual t statistic on ûi,t−1.

∙ Dynamic models can be useful for prediction and controlling for

endogeneity of policy interventions – just as in linear regression.
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Models with Heterogeneity and Strictly Exogenous
Regressors
∙ It does not hurt to start with a linear model

Pyit  1|xit,ci  xit  ci, t  1, . . . ,T

and also assume the strict exogeneity assumption,

Pyit  1|xi1,xi2, . . . ,xiT,ci  Pyit  1|xit,ci, t  1, . . . ,T
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∙ Assuming the elements of xit are time-varying (for at least some

individuals),  can be consistently estimated by the usual fixed effects

estimator applied to a linear model:

yit  xit  ci  uit,Euit|xi,ci  0, t  1, . . . ,T.

∙We should not take the LPM literal, because we must have

0 ≤ xit  ci ≤ 1, all xit

which puts strange restrictions on the heterogeneity distribution.
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∙ But FE estimation of the linear model does not restrict Dci|xi. Easy

to make inference robust to serial correlation in uit and

heteroskedasticity.

∙ The FE coefficients can give reasonable estimates of average partial

effects. In particular, they can be compared with APEs from nonlinear

models
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∙ Unobserved effects logit and probit models are popular nonlinear

models. The probit model is given as

Pyit  1|xit,ci  xit  ci, t  1, . . . ,T.

∙ Logit replaces  with .

∙ Before introducing any additional assumptions, we can ask: What are

the quantities of interest for most purposes? Usually, partial effects. For

a continuous xtj,

∂Pyt  1|xt,c
∂xtj

 jxt  c.

∙ Depends on unobserved c, but sign is given by j.

76



∙ Can look at discrete changes:

xt
1  c − xt

0  c

Again, this depends on c.

∙ For any two continuous covariates, the ratio of coefficients, j/h, is

identical to the ratio of partial effects (and the ratio does not depend on

the covariates or unobserved heterogeneity, ci).
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∙ But we often want magnitudes of the partial effects. These depend not

only on the value of the covariates, say xt, but also on the value of the

unobserved heterogeneity.

∙ Questions: (i) Assuming we can estimate , what should we do about

the unobservable c? (ii) If we can only estimate  up to a common

scale, can we still learn something useful about magnitudes of partial

effects? (iii) What kinds of assumptions do we need to estimate partial

effects?
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∙ Helpful to have a general setup. Let xit,yit : t  1, . . . ,T be a

random draw from the cross section. Suppose we are interested in

Eyit|xit,ci  mtxit,ci,

where ci can be a vector of unobserved heterogeneity.

∙ Partial effects: if xtj is continuous, then

jxt,c ≡
∂mtxt,c
∂xtj

,

or discrete changes.
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∙ How do we account for unobserved ci? If we know enough about the

distribution of ci we can insert meaningful values for c. For example, if

c  Eci, then we can compute the partial effect at the average

(PEA),

PEAjxt  jxt,c.

Of course, we need to estimate the function mt and c. If we can

estimate the distribution of ci, or features in addition to its mean, we

can insert different quantiles, or a certain number of standard deviations

from the mean.
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∙ Alternatively, we can obtain the average partial effect (APE) (or

population average effect) by averaging across the distribution of ci:

APExt  Ecijxt,ci.

∙ The APE is closely related to the notion of the average structural

function (ASF) (Blundell and Powell (2003)). The ASF is defined as a

function of xt:

ASFxt  Ecimtxt,ci.

∙ Passing the derivative through the expectation in the ASF gives an

APE.
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∙ How do APEs relate to parameters? Index model:

mtxt,c  Gxt  c,

where G is differentiable. Then

jxt,c  jgxt  c,

where g is the derivative of G.
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∙ The APE as a function of xt “integrates out” ci:

APExt  jEcigxt  ci

Even if G is known, magnitude of effects cannot be estimated

without making assumptions about the distribution of ci.

∙ Important: Definitions of partial effects do not depend on whether xit
is correlated with ci. Of course, whether we can estimate the APEs, and

how, certainly does.
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Exogeneity Assumptions

∙ As in linear case, cannot get by with just specifying a model for the

contemporaneous conditional distribution, Dyit|xit,ci.

∙ The most useful definition of strict exogeneity for nonlinear panel

data models is

Dyit|xi1, . . . ,xiT,ci  Dyit|xit,ci.

Chamberlain (1984) labeled (10) strict exogeneity conditional on the

unobserved effects ci. Conditional mean version:

Eyit|xi1, . . . ,xiT,ci  Eyit|xit,ci.
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∙ The sequential exogeneity assumption is

Dyit|xi1, . . . ,xit,ci  Dyit|xit,ci.

Unfortunately, it is much more difficult to allow sequential exogeneity

in in nonlinear models. (Most progress for lagged dependent variables

or specific functional forms, such as exponential.)

∙ Neither strict nor sequential exogeneity allows for contemporaneous

endogeneity of one or more elements of xit, where, say, xitj is correlated

with unobserved, time-varying unobservables that affect yit.
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Conditional Independence

∙ In linear models, serial dependence of idiosyncratic shocks is easily

dealt with, either by “cluster robust” inference or Generalized Least

Squares extensions of Fixed Effects and First Differencing. With

strictly exogenous covariates, serial correlation never results in

inconsistent estimation, even if improperly modeled. The situation is

different with most nonlinear models estimated by MLE.

∙ Conditional independence (CI) (under strict exogeneity):

Dyi1, . . . ,yiT|xi,ci 
t1

T

Dyit|xit,ci.
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∙ In a parametric context, the CI assumption reduces our task to

specifying a model for Dyit|xit,ci, and then determining how to treat

the unobserved heterogeneity, ci.

∙ In random effects and correlated random frameworks (next section),

CI plays a critical role in being able to estimate the “structural”

parameters and the parameters in the distribution of ci (and therefore, in

estimating PEAs). In a broad class of popular models, CI plays no

essential role in estimating APEs.
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Assumptions about the Unobserved Heterogeneity

Random Effects

∙ Generally stated, the key RE assumption is

Dci|xi1, . . . ,xiT  Dci.

and then the unconditional distribution of ci is modeled. This is very

restrictive. It implies that all APEs can be obtained by just estimating

Eyit|xit  xt.
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Correlated Random Effects

A CRE framework allows dependence between ci and xi, but restricted

in some way. In a parametric setting, we specify a distribution for

Dci|xi1, . . . ,xiT, as in Chamberlain (1980,1982), and much work

since. Distributional assumptions that lead to simple estimation –

homoskedastic normal with a linear conditional mean — can be

restrictive.
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∙ Possible to drop parametric assumptions with

Dci|xi  Dci|x̄i,

without restricting Dci|x̄i.

∙We will use parametric assumptions for Dci|x̄i, such as normality

(other possibilities exist), but some general arguments do not rely on a

specific form for Dci|x̄i.
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∙ In particular, we can show that the APEs are identified very

generally. By the LIE, we can always write

ASFxt  Ecimtxt,ci  ExiEmtxt,ci|xi
≡ Exirtxt, x̄i

where

rtxt, x̄i ≡ Emtxt,ci|x̄i.

∙ Notice how xt acts as a fixed argument; we will insert values later.

91



∙ Importantly, under strict exogeneity conditional conditional on ci and

the assumption Dci|xi  Dci|x̄i, we have

Eyit|xi  EEyit|xi,ci|xi  Emtxit,ci|xi  mtxit,cdFc|xi

 mtxit,cdFc|x̄i  rtxit, x̄i.

∙ Because Eyit|xi depends only on xit, x̄i, we must have

Eyit|xit, x̄i  rtxit, x̄i.
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∙ Therefore, once we have consistently estimated rt, , a consistent

estimator of the average structural function is

ASFxt  N−1∑
i1

N

r̂txt, x̄i.

∙We will obtain r̂t,  from parametric models, but flexible

nonparametric approaches can be used because the mean function

Eyit|xit, x̄i is identified generally.
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Fixed Effects

∙ The label “fixed effects” is used in different ways by different

researchers. One view: ci, i  1, . . . ,N are parameters to be estimated.

Usually leads to an “incidental parameters problem” unless T is “large.”

∙ Second meaning of “fixed effects”: Dci|xi is unrestricted and we

look for objective functions that do not depend on ci but still identify

the population parameters. Leads to “conditional MLE” if we can find

“sufficient statistics” s i such that

Dyi1, . . . ,yiT|xi,ci, s i  Dyi1, . . . ,yiT|xi, s i.
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∙ Conditional Independence is usually maintained in the approach

based on finding sufficient statistics.

∙ Key point: PEAs and APEs are generally unidentified by methods

that use conditioning to eliminate ci, essentially by construction.

95



Correlated Random Effects Probit

∙ Specify the model:

Pyit  1|xit,ci  xit  ci, t  1, . . . ,T.

∙ Strict exogeneity conditional on ci:

Pyit  1|xi1, . . . ,xiT,ci  Pyit  1|xit,ci, t  1, . . . ,T.

∙ Conditional independence (where we condition on xi  xi1, . . . ,xiT

and ci :

Dyi1, . . . ,yiT|xi,ci  Dyi1|xi,ciDyiT|xi,ci
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∙Model for Dci|xi (Mundlak special case of Chamberlain approach):

ci    x̄i  ai, ai|xi ~Normal0,a2.

∙ Can obtain the first three assumptions from a latent variable model:

yit  1xit  ci  uit  0
uit|xit,ci ~ Normal0,1

Duit|xi,ci  Duit|xit,ci
uit : t  1, . . . ,T independent across t
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∙ Can include time dummies in xit but omit from x̄i. Can also include

time-constant elements, say zi:

ci    x̄i  zi  ai

(Up to you to intepret 

∙ If   0, get the traditional random effects probit model. Adding x̄i

allows a specific form of correlation between ci and xi1, . . . ,xiT.
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∙MLE (conditional on xi) is relatively straightforward but it can be

computationally demanding. It is based on the joint distribution

Dyi1, . . . ,yiT|xi. For simplicity, omit zi.

ℓi,,,a2  log 
−



t1

T

fyit|xit,c; hc|x̄i;,,a2dc

∙ Here, fyt|xt,c;  1 − xt  c1−ytxt  cyt and

hc|x̄i;,,a2 is the normal distributio with mean   x̄i and

variance a2.
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∙ Requires numerical integration, but is programmed in lots of

packages.

∙ All parameters, including are identified; inference is standard.

∙ In Stata, “xtprobit” with an “re” qualifier. Need to generate and

include the time averages.

∙ Generally, including a set of time dummies is a good idea, and time

constant variables can be included directly.

∙ Simple to compute a Wald test of whether the time averages are

needed. H0 :   0.
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egen x1bar  mean(x1), by(id)

egen x2bar  mean(x2), by(id)

egen xKbar  mean(xK), by(id)

xtprobit y d2 ... dTx1 x2 ... xK x1bar ... xKbar

z1 ... zJ, re

test x1bar x2bar ... xKbar
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∙ Can estimate features of the unconditional distribution of ci.

∙ For example, ci    x̄i  ai and so

c  Eci    Ex̄i

A consistent estimator of c is

̂c  ̂  x̄̂

where x̄ is the sample average of x̄i:

x̄  N−1∑
i1

N

x̄i  NT−1∑
i1

N

∑
t1

T

xit
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∙We also have

c2   ′Varx̄i  a2,

and so

̂c2 ≡ ̂
′ N−1∑

i1

N

x̄i − x̄′x̄i − x̄ ̂  ̂a2

Can evaluate PEs at, say, the estimated mean value, say ̂c, or look at

̂c  k̂c for various k.
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∙ The APEs are gotten, as usual, from the ASF:

ASFxt  Ecixt  ci  E x̄iExt  ci|x̄i
 E x̄iExt    x̄i  ai|x̄i
 E x̄ixt    x̄i/1  a21/2

≡ E x̄ixta  a  x̄ia

where, for example, a  /1  a21/2 are scaled coefficients.
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∙ Because we have consistent estimators of all parameters, we can

estimate ASFxt consistently as

ASFxt  N−1∑
i1

N

xt̂a  ̂a  x̄i̂a

where, for example, ̂a  ̂/1  ̂a21/2.

∙ Note where the averaging out occurs: across the sample of x̄i.

∙ Take derivatives and changes with respect to xt. Can then average out

across xit to get a single APE.

∙ Conditional independence is very strong, and the usual RE estimator

not known to be robust to its violation (unlike RE in linear model).
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∙ If we focus on APEs, can just use a pooled method because

Pyit  1|xi  Pxit    x̄i  ai  uit  0|xi
 Pai  uit  −xit    x̄i|xi
 xita  a  x̄ia.

∙ To estimate a,a, and a, just used pooled probit with x̄i as an

additional set of explanatory variables. Cannot identify  and a2

separately, but do not need to for APEs.

∙ Pooled probit inefficient. Can use GMM or “generalized estimating

equations” (essentially, multivariate nonlinear least squares) to enhance

efficiency without sacrificing consistency.
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∙ Using either the full random effects assumptions or pooled probit, it is

easy to test the strict exogeneity assumption conditional on ci, provided

T ≥ 3. Let wit be a subset of xit that possibly is not strictly exogenous.

Then, along with time dummies, xit, x̄i, and zi (time-constant

variables), include wi,t1 and test joint significance. Lose the last time

period.
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∙What is dubbed “fixed effects” probit is an inconsistent method (for

fixed T) that treats ci as N parameters to estimate. Suffers from

incidental parameters problem.

∙ Some recent work shows that perhaps the APEs are well estimated

without “too much” heterogeneity if T is not “too small.” Also, some

corrections to the bias caused have been offered and studied.
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Fixed Effects Logit

∙ If we replace the probit function by the logit function and maintain

conditional independence, we can estimate  without restricting

Dci|xi. Often called “fixed effects logit,” but it is really a conditional

MLE were we condition on ni,xi, where

ni ∑
r1

T

yir

is the total number of successes for unit i.

∙ Can show Dyi1, . . . ,yiT|ni,xi,ci does not depend on ci, but does

depend on , provided there is time variation in xit.
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∙ Generally, ni  0 and ni  T observations are uninformative. So,

when T  2, only ni  1 observations contain information on :

Pyi2  1|ni  1,xi  xi2 − xi1
Pyi1  1|ni  1,xi  1 − xi2 − xi1

Let wi  1 − yi1yi2. Then Dwi|Δxi follows a standard logit model,

where Δxi  xi2 − xi1.

∙ Generally, not known to be consistent without condition

independence. So it does not strictly relax assumptions for CRE probit

when the latter is estimated using pooled probit, or some other robust

method, such as GEE.
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∙ PEAs and APEs not identified by FE logit (because the distribution of

ci is unspecified).

∙ In Stata, “xtlogit” with “fe” option.

xtlogit y d2 ... dT x2 ... xK, fe

∙ There is a CRE version of logit, but it is computationally hard and

more difficult to work (no closed forms for APEs, for example) than

CRE probit.

∙ Can show with T  2 that, if treat ci as parameters to estimate along

with , the plim of the estimator is 2.
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Dynamic Models
∙ Difficult to specify and estimate models with heterogeneity if we do

not assume strict exogeneity. Completely specified dynamic models

can be estimated under certain assumptions.

∙ A linear model, estimated using the Arellano and Bond approach (and

extensions), is a good starting point. Coefficients can be compared with

partial effects from nonlinear models.
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∙ Here we study a simple dynamic model: There is one lag of the

dependent variable and all other explanatory variables are strictly

exogenous:

Pyit  1|zi,yi,t−1, . . . ,yi0,ci  Pyit  1|zit,yi,t−1,ci,
t  1, . . . ,T.

This also assumes that we have the dynamics correctly specified.
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∙Why is this specification of interest? Allows us to assess the relative

important of “state dependence” – that is, whether being in a certain

state last period affects the probability of being in that state this period

– and unobserved heterogeneity. For example, if we control for

different attributes in ci, is welfare participation persistent? How

persistent? Just seeing correlation over time, even conditional on zit,

does not tell us that the previous state matters; we must also control for

ci.
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∙We study the dynamic probit model primarily for computational

reasons; logit is more difficult:

Pyit  1|zit,yi,t−1,ci  zit  yi,t−1  ci,

which, as we will see, allows us to estimate the parameters and APEs

very easily (under a distributional assumption for the heterogeneity).

∙ Treating the ci as parameters to estimate causes inconsistency in 

and . Somewhat open question is how it affects bias in APEs. It is

computationally intensive.
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∙ Several different approaches to handling the “initial conditions”

problem. (i) Treat the ci as parameters to estimate (incidental

parameters problem and computationally intensive). (ii) Try to estimate

the parameters  and  without specifying conditional or unconditional

distributions for ci (available in some special cases). Generally, cannot

estimate partial effects.). (iii) Approximate Dyi0|ci,zi and then model

Dci|zi. Leads to Dyi0,yi1, . . . ,yiT|ziand MLE conditional on zi. (iv)

Model Dci|yi0,zi. Leads to Dyi1, . . . ,yiT|yi0,zi and MLE conditional

on yi0,zi. Wooldridge (2005b, Journal of Applied Econometrics)

shows this can be computationally simple for popular models.
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∙ Using the last approach for the probit model, a simple analysis is

obtained from

ci|zi,yi0  Normal  0yi0  zi,a2

Then

Pyit  1|zi,yi,t−1, . . . ,yi0,ai 
zit  yi,t−1    0yi0  zi  ai,

where ai ≡ ci −  − 0yi0 − zi. This allows us to characterize

Dyi1, . . . ,yiT|zi,yi0 after “integrating out” ci.
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∙ Turns out that we can use standard random effects probit software,

where the explanatory variables in time t are 1,zit,yi,t−1,yi0,zi in time

period t. Easily get the average partial effects, too:

ASFzt,yt−1  N−1∑
i1

N

zt̂a  ̂ayt−1  ̂a  ̂a0yi0  zi̂a

and take differences or derivatives with respect to elements of zt,yt−1.

As before, the coefficients are multiplied by 1  ̂a2−1/2.
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∙ Let xi0 ≡ yi0,zi. Then the first two moments of ci are easily

estimated:

̂c  ̂  ̂0ȳ0  z̄̂

̂c2  ̂
′ N−1∑

i1

N

xi0 − x̄0′xi0 − x̄0 ̂  ̂a2

where ̂  ̂0, ̂ ′′.

119



6. MULTIVARIATE PROBIT

∙ Sometimes we have two or more binary responses to model. Call

them yg, g  1, . . . ,G, each a binary response. No restriction such as

y1  y2 . . .yG  1. In other words, any combination of zeros and

ones is possible.

∙ Example: G  2, y1 indicates when a worker has employer-sponsored

health insurance, y2 indicates having an employer-sponsored pension

plan.
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∙ The marginal distributions (but conditional on x, as always) are

assumed to follow probits:

Pyg  1|x  xgg,g  1, . . . ,G.

∙Multivariate probit is like seemingly unrelated regressions for binary

response. Can be obtained from

yi1∗  xi11  ei1
yi2∗  xi22  ei2



yiG∗  xiGG  eiG,

with ei|xi ~ Normal0, with unit variances.
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∙ Can be computationally hard with large G. Stata has the bivariate

version programmed (“biprobit”).

∙ Important difference with the linear case: if the joint distribution

underlying multivariate probit is incorrect, but the probit marginals are

correct, the joint MLE is (evidently) inconsistent. In the linear case,

yig  xigg  uig, g  1, . . . ,G,

if every equation is correctly specified in the sense that Exi′uig  0 for

all g, the FGLS estimator is consistent even if, say, Euiui′|xi is

heteroskedastic.
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∙ And, of course, if Py1  1|x  x11 is correct but the probit

model for equation two is incorrect, the joint procedure has no

robustness properties.

∙ The reason to use multivariate probit is to enhance efficiency; how

much it does is an empirical issue.

∙ Unlike in the linear case, there are no algebraic equivalences from

having the same covariates in every equation.
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7. EXAMPLES
LPM, Probit, and Logit with Exogenous Explanatory Variables

∙Married women’s labor force participation, using data from Mroz

(1987)

∙ Dependent variable is inlf, “in the labor force.”
. use mroz

. tab inlf

1 if in |
lab frce, |

1975 | Freq. Percent Cum.
-----------------------------------------------

0 | 325 43.16 43.16
1 | 428 56.84 100.00

-----------------------------------------------
Total | 753 100.00

124



. sum nwifeinc educ exper expersq age kidslt6 kidsge6

Variable | Obs Mean Std. Dev. Min Max
---------------------------------------------------------------------

nwifeinc | 753 20.12896 11.6348 -.0290575 96
educ | 753 12.28685 2.280246 5 17

exper | 753 10.63081 8.06913 0 45
expersq | 753 178.0385 249.6308 0 2025

age | 753 42.53785 8.072574 30 60
---------------------------------------------------------------------

kidslt6 | 753 .2377158 .523959 0 3
kidsge6 | 753 1.353254 1.319874 0 8
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. * Estimate LPM by OLS.

. reg inlf nwifeinc educ exper expersq age kidslt6 kidsge6, robust

Linear regression Number of obs  753
F( 7, 745)  62.48
Prob  F  0.0000
R-squared  0.2642
Root MSE  .42713

------------------------------------------------------------------------------
| Robust

inlf | Coef. Std. Err. t P|t| [95% Conf. Interval]
-----------------------------------------------------------------------------

nwifeinc | -.0034052 .0015249 -2.23 0.026 -.0063988 -.0004115
educ | .0379953 .007266 5.23 0.000 .023731 .0522596

exper | .0394924 .00581 6.80 0.000 .0280864 .0508983
expersq | -.0005963 .00019 -3.14 0.002 -.0009693 -.0002233

age | -.0160908 .002399 -6.71 0.000 -.0208004 -.0113812
kidslt6 | -.2618105 .0317832 -8.24 0.000 -.3242058 -.1994152
kidsge6 | .0130122 .0135329 0.96 0.337 -.013555 .0395795

_cons | .5855192 .1522599 3.85 0.000 .2866098 .8844287
------------------------------------------------------------------------------
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. probit inlf nwifeinc educ exper expersq age kidslt6 kidsge6

Probit regression Number of obs  753
LR chi2(7)  227.14
Prob  chi2  0.0000

Log likelihood  -401.30219 Pseudo R2  0.2206

------------------------------------------------------------------------------
inlf | Coef. Std. Err. z P|z| [95% Conf. Interval]

-----------------------------------------------------------------------------
nwifeinc | -.0120237 .0048398 -2.48 0.013 -.0215096 -.0025378

educ | .1309047 .0252542 5.18 0.000 .0814074 .180402
exper | .1233476 .0187164 6.59 0.000 .0866641 .1600311

expersq | -.0018871 .0006 -3.15 0.002 -.003063 -.0007111
age | -.0528527 .0084772 -6.23 0.000 -.0694678 -.0362376

kidslt6 | -.8683285 .1185223 -7.33 0.000 -1.100628 -.636029
kidsge6 | .036005 .0434768 0.83 0.408 -.049208 .1212179

_cons | .2700768 .508593 0.53 0.595 -.7267473 1.266901
------------------------------------------------------------------------------
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. * Compute partial effects at the averages.

. mfx

Marginal effects after probit
y  Pr(inlf) (predict)

 .58154201
------------------------------------------------------------------------------
variable | dy/dx Std. Err. z P|z| [ 95% C.I. ] X
-----------------------------------------------------------------------------
nwifeinc | -.0046962 .00189 -2.48 0.013 -.008401 -.000991 20.129

educ | .0511287 .00986 5.19 0.000 .031805 .070452 12.2869
exper | .0481771 .00733 6.57 0.000 .033815 .062539 10.6308

expersq | -.0007371 .00023 -3.14 0.002 -.001197 -.000277 178.039
age | -.0206432 .00331 -6.24 0.000 -.027127 -.01416 42.5378

kidslt6 | -.3391514 .04636 -7.32 0.000 -.430012 -.248291 .237716
kidsge6 | .0140628 .01699 0.83 0.408 -.019228 .047353 1.35325

------------------------------------------------------------------------------
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. * Now the APEs. Not meaningful for the experience variables.

. margeff

Average partial effects after probit
y  Pr(inlf)

------------------------------------------------------------------------------
variable | Coef. Std. Err. z P|z| [95% Conf. Interval]

-----------------------------------------------------------------------------
nwifeinc | -.0036162 .0014414 -2.51 0.012 -.0064413 -.0007911

educ | .0393088 .0071877 5.47 0.000 .0252212 .0533964
exper | .037046 .005131 7.22 0.000 .0269893 .0471026

expersq | -.0005675 .0001771 -3.20 0.001 -.0009146 -.0002204
age | -.0158917 .0023569 -6.74 0.000 -.020511 -.0112723

kidslt6 | -.2441788 .0258995 -9.43 0.000 -.2949409 -.1934167
kidsge6 | .0108274 .0130538 0.83 0.407 -.0147576 .0364124

------------------------------------------------------------------------------
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. logit inlf nwifeinc educ exper expersq age kidslt6 kidsge6

Logistic regression Number of obs  753
LR chi2(7)  226.22
Prob  chi2  0.0000

Log likelihood  -401.76515 Pseudo R2  0.2197

------------------------------------------------------------------------------
inlf | Coef. Std. Err. z P|z| [95% Conf. Interval]

-----------------------------------------------------------------------------
nwifeinc | -.0213452 .0084214 -2.53 0.011 -.0378509 -.0048394

educ | .2211704 .0434396 5.09 0.000 .1360303 .3063105
exper | .2058695 .0320569 6.42 0.000 .1430391 .2686999

expersq | -.0031541 .0010161 -3.10 0.002 -.0051456 -.0011626
age | -.0880244 .014573 -6.04 0.000 -.116587 -.0594618

kidslt6 | -1.443354 .2035849 -7.09 0.000 -1.842373 -1.044335
kidsge6 | .0601122 .0747897 0.80 0.422 -.086473 .2066974

_cons | .4254524 .8603696 0.49 0.621 -1.260841 2.111746
------------------------------------------------------------------------------
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. margeff

Average partial effects after logit
y  Pr(inlf)

------------------------------------------------------------------------------
variable | Coef. Std. Err. z P|z| [95% Conf. Interval]

-----------------------------------------------------------------------------
nwifeinc | -.0038118 .0014824 -2.57 0.010 -.0067172 -.0009064

educ | .0394323 .0072593 5.43 0.000 .0252044 .0536602
exper | .0367123 .0051289 7.16 0.000 .0266598 .0467648

expersq | -.0005633 .0001774 -3.18 0.001 -.0009109 -.0002156
age | -.0157153 .0023789 -6.61 0.000 -.0203779 -.0110527

kidslt6 | -.240805 .0259425 -9.28 0.000 -.2916515 -.1899585
kidsge6 | .0107335 .0133282 0.81 0.421 -.0153893 .0368564

------------------------------------------------------------------------------
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Other Sources of Income Endogenous
. ivreg inlf educ exper expersq age kidslt6 kidsge6 (nwifeinc  huseduc)

Instrumental variables (2SLS) regression

Source | SS df MS Number of obs  753
------------------------------------------- F( 7, 745)  36.41

Model | 42.5996438 7 6.08566339 Prob  F  0.0000
Residual | 142.128112 745 .190775989 R-squared  0.2306

------------------------------------------- Adj R-squared  0.2234
Total | 184.727756 752 .245648611 Root MSE  .43678

------------------------------------------------------------------------------
inlf | Coef. Std. Err. t P|t| [95% Conf. Interval]

-----------------------------------------------------------------------------
nwifeinc | -.0118549 .0057181 -2.07 0.038 -.0230804 -.0006294

educ | .0516295 .0116751 4.42 0.000 .0287096 .0745495
exper | .0370652 .0060138 6.16 0.000 .0252592 .0488713

expersq | -.0006144 .0001893 -3.25 0.001 -.0009861 -.0002428
age | -.0133932 .0030927 -4.33 0.000 -.0194645 -.0073218

kidslt6 | -.2527052 .0347755 -7.27 0.000 -.3209749 -.1844356
kidsge6 | .0168261 .0137223 1.23 0.221 -.0101129 .0437651

_cons | .4950353 .1683877 2.94 0.003 .1644645 .8256062
------------------------------------------------------------------------------
Instrumented: nwifeinc
Instruments: educ exper expersq age kidslt6 kidsge6 huseduc
------------------------------------------------------------------------------
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. * Now Rivers-Vuong. Need first-stage residuals.

. reg nwifeinc huseduc educ exper expersq age kidslt6 kidsge6

Source | SS df MS Number of obs  753
------------------------------------------- F( 7, 745)  27.13

Model | 20676.7705 7 2953.82436 Prob  F  0.0000
Residual | 81120.3451 745 108.886369 R-squared  0.2031

------------------------------------------- Adj R-squared  0.1956
Total | 101797.116 752 135.368505 Root MSE  10.435

------------------------------------------------------------------------------
nwifeinc | Coef. Std. Err. t P|t| [95% Conf. Interval]

-----------------------------------------------------------------------------
huseduc | 1.178155 .1609449 7.32 0.000 .8621956 1.494115

educ | .6746951 .2136829 3.16 0.002 .2552029 1.094187
exper | -.3129877 .1382549 -2.26 0.024 -.5844034 -.0415721

expersq | -.0004776 .0045196 -0.11 0.916 -.0093501 .008395
age | .3401521 .0597084 5.70 0.000 .2229354 .4573687

kidslt6 | .8262719 .8183785 1.01 0.313 -.7803305 2.432874
kidsge6 | .4355289 .3219888 1.35 0.177 -.1965845 1.067642

_cons | -14.72048 3.787326 -3.89 0.000 -22.15559 -7.285383
------------------------------------------------------------------------------

. predict v2hat, resid
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. probit inlf nwifeinc educ exper expersq age kidslt6 kidsge6 v2hat

Probit regression Number of obs  753
LR chi2(8)  229.14
Prob  chi2  0.0000

Log likelihood  -400.30301 Pseudo R2  0.2225

------------------------------------------------------------------------------
inlf | Coef. Std. Err. z P|z| [95% Conf. Interval]

-----------------------------------------------------------------------------
nwifeinc | -.0368641 .0182706 -2.02 0.044 -.0726738 -.0010543

educ | .1702153 .0376718 4.52 0.000 .0963798 .2440507
exper | .1163123 .0193312 6.02 0.000 .0784239 .1542007

expersq | -.0019459 .0006009 -3.24 0.001 -.0031235 -.0007682
age | -.044953 .0101367 -4.43 0.000 -.0648206 -.0250855

kidslt6 | -.8444363 .1198154 -7.05 0.000 -1.07927 -.6096025
kidsge6 | .0477905 .0443204 1.08 0.281 -.0390758 .1346568

v2hat | .0267093 .0189352 1.41 0.158 -.0104031 .0638217
_cons | .0171187 .5392914 0.03 0.975 -1.039873 1.07411

------------------------------------------------------------------------------

. * Some evidence of endogeneity; p-value  .158.
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. * Can still use the margeff option:

. margeff

Average partial effects after probit
y  Pr(inlf)

------------------------------------------------------------------------------
variable | Coef. Std. Err. z P|z| [95% Conf. Interval]

-----------------------------------------------------------------------------
nwifeinc | -.0110576 .0054418 -2.03 0.042 -.0217234 -.0003918

educ | .0509234 .0107908 4.72 0.000 .0297738 .072073
exper | .0348459 .0053706 6.49 0.000 .0243198 .0453721

expersq | -.0005837 .0001766 -3.30 0.001 -.0009299 -.0002375
age | -.0134815 .0029258 -4.61 0.000 -.019216 -.007747

kidslt6 | -.2377707 .0266742 -8.91 0.000 -.2900512 -.1854903
kidsge6 | .0143321 .0132573 1.08 0.280 -.0116518 .040316

v2hat | .0080116 .00566 1.42 0.157 -.0030817 .019105
------------------------------------------------------------------------------

. * Note how close the APEs are to the linear IV estimates.
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Binary Endogenous Variable

∙ Binary endogenous explanatory variable is a dummy for having more

than two children. Population is women with at least two children.

∙ Start with Linear IV. The binary variable samesex is the IV for

morekids.
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. reg morekids samesex nonmomi educ age agesq black hispan, robust

Linear regression Number of obs  31857
F( 7, 31849)  398.53
Prob  F  0.0000
R-squared  0.0717
Root MSE  .48174

------------------------------------------------------------------------------
| Robust

morekids | Coef. Std. Err. t P|t| [95% Conf. Interval]
-----------------------------------------------------------------------------

samesex | .0549983 .005398 10.19 0.000 .044418 .0655786
nonmomi | -.0010177 .00014 -7.27 0.000 -.0012921 -.0007432

educ | -.0337452 .0008836 -38.19 0.000 -.0354772 -.0320133
age | .0439758 .0113819 3.86 0.000 .0216668 .0662848

agesq | -.0003719 .0001958 -1.90 0.058 -.0007556 .0000119
black | -.0102972 .0343039 -0.30 0.764 -.0775342 .0569399

hispan | -.0257407 .0343662 -0.75 0.454 -.0930998 .0416183
_cons | -.0875206 .1668783 -0.52 0.600 -.4146085 .2395673

------------------------------------------------------------------------------
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. ivreg worked nonmomi educ age agesq black hispan (morekids  samesex), robust

Instrumental variables (2SLS) regression Number of obs  31857
F( 7, 31849)  374.59
Prob  F  0.0000
R-squared  0.0737
Root MSE  .47347

------------------------------------------------------------------------------
| Robust

worked | Coef. Std. Err. t P|t| [95% Conf. Interval]
-----------------------------------------------------------------------------

morekids | -.200832 .0964728 -2.08 0.037 -.3899224 -.0117417
nonmomi | -.00126 .0001698 -7.42 0.000 -.0015928 -.0009271

educ | .0175522 .0033777 5.20 0.000 .0109318 .0241726
age | .0603517 .012166 4.96 0.000 .0365059 .0841974

agesq | -.0008178 .0001989 -4.11 0.000 -.0012076 -.0004281
black | .0168118 .0351723 0.48 0.633 -.0521271 .0857508

hispan | -.1308112 .0352456 -3.71 0.000 -.199894 -.0617284
_cons | -.454969 .1678432 -2.71 0.007 -.783948 -.1259899

------------------------------------------------------------------------------
Instrumented: morekids
Instruments: nonmomi educ age agesq black hispan samesex
------------------------------------------------------------------------------

. * So morekids has a large effect on labor force participation and is

. * marginally statistically significant.
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. biprobit (worked  morekids nonmomi educ age agesq black hispan)
(morekids  samesex nonmomi educ age agesq black hispan)

Seemingly unrelated bivariate probit Number of obs  31857
Wald chi2(14)  5124.29

Log likelihood  -41106.422 Prob  chi2  0.0000

------------------------------------------------------------------------------
| Coef. Std. Err. z P|z| [95% Conf. Interval]

-----------------------------------------------------------------------------
worked |

morekids | -.7025719 .204014 -3.44 0.001 -1.102432 -.3027119
nonmomi | -.0034903 .000395 -8.84 0.000 -.0042645 -.0027161

educ | .0405621 .0085385 4.75 0.000 .0238271 .0572972
age | .1632256 .0312412 5.22 0.000 .1019939 .2244573

agesq | -.0021524 .0005277 -4.08 0.000 -.0031867 -.001118
black | .0367322 .0909997 0.40 0.686 -.1416239 .2150883

hispan | -.3614826 .0912096 -3.96 0.000 -.5402502 -.182715
_cons | -2.475317 .4496294 -5.51 0.000 -3.356575 -1.59406

-----------------------------------------------------------------------------
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morekids |
samesex | .1446566 .0144319 10.02 0.000 .1163705 .1729427
nonmomi | -.0027063 .0003685 -7.34 0.000 -.0034285 -.0019841

educ | -.0907148 .0024968 -36.33 0.000 -.0956083 -.0858212
age | .1190243 .0307613 3.87 0.000 .0587333 .1793154

agesq | -.001028 .0005284 -1.95 0.052 -.0020636 7.54e-06
black | -.0277804 .0921479 -0.30 0.763 -.208387 .1528263

hispan | -.0690523 .0922843 -0.75 0.454 -.2499262 .1118217
_cons | -1.572557 .4514335 -3.48 0.000 -2.457351 -.6877639

-----------------------------------------------------------------------------
/athrho | .2599507 .1396201 1.86 0.063 -.0136996 .533601

-----------------------------------------------------------------------------
rho | .2542495 .1305946 -.0136987 .4881289

------------------------------------------------------------------------------
Likelihood-ratio test of rho0: chi2(1)  3.33969 Prob  chi2  0.0676
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. * Compute APE of morekids:

. predict xdh, xb

. gen xd0  xdh - _b[morekids]*morekids

. gen xd1  xd0  _b[morekids]

. gen pe1  norm(xd1) - norm(xd0)

. sum pe1

Variable | Obs Mean Std. Dev. Min Max
---------------------------------------------------------------------

pe1 | 31857 -.2559131 .0208093 -.2746262 -.1606505

. * The APE, -.26, is somewhat larger than the IV estimate, -.20.
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. * Now use the forbidden method of inserting fitted probit values from

. * a first-stage probit.

. probit morekids samesex nonmomi educ age agesq black hispan

Probit regression Number of obs  31857
LR chi2(7)  2372.91
Prob  chi2  0.0000

Log likelihood  -20889.981 Pseudo R2  0.0537

------------------------------------------------------------------------------
morekids | Coef. Std. Err. z P|z| [95% Conf. Interval]

-----------------------------------------------------------------------------
samesex | .1460784 .0143653 10.17 0.000 .1179229 .1742339
nonmomi | -.0026941 .0003681 -7.32 0.000 -.0034155 -.0019726

educ | -.0905486 .002495 -36.29 0.000 -.0954388 -.0856584
age | .1189666 .0307773 3.87 0.000 .0586441 .1792891

agesq | -.0010266 .0005286 -1.94 0.052 -.0020627 9.40e-06
black | -.0270085 .092 -0.29 0.769 -.2073252 .1533081

hispan | -.0683493 .0921359 -0.74 0.458 -.2489323 .1122337
_cons | -1.576492 .4516805 -3.49 0.000 -2.461769 -.6912142

------------------------------------------------------------------------------

. predict PHI2hat
(option pr assumed; Pr(morekids))
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. probit worked PHI2hat nonmomi educ age agesq black hispan

Probit regression Number of obs  31857
LR chi2(7)  2310.07
Prob  chi2  0.0000

Log likelihood  -20410.056 Pseudo R2  0.0536

------------------------------------------------------------------------------
worked | Coef. Std. Err. z P|z| [95% Conf. Interval]

-----------------------------------------------------------------------------
PHI2hat | -.8426923 .2554568 -3.30 0.001 -1.343378 -.3420062
nonmomi | -.0036757 .00045 -8.17 0.000 -.0045576 -.0027938

educ | .0368082 .0088861 4.14 0.000 .0193919 .0542246
age | .1693934 .0327489 5.17 0.000 .1052067 .23358

agesq | -.0022009 .0005374 -4.10 0.000 -.0032541 -.0011476
black | .037665 .0915228 0.41 0.681 -.1417163 .2170463

hispan | -.3651419 .0919233 -3.97 0.000 -.5453083 -.1849755
_cons | -2.495462 .4504235 -5.54 0.000 -3.378276 -1.612649

------------------------------------------------------------------------------

. * The coefficient on PHI2hat is quite a bit larger in magnitude than the

. * bivariate MLE.
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Static Panel Data Model

∙Married Women’s Labor Force Participation, LFP.DTA
. use lfp

. des lfp kids hinc

storage display value
variable name type format label variable label
-----------------------------------------------------------------------------------------
lfp byte %9.0g 1 if in labor force
kids byte %9.0g number children  18
hinc float %9.0g husband’s monthly income, $

. tab period

1 through |
5, each 4 |

months long | Freq. Percent Cum.
-----------------------------------------------

1 | 5,663 20.00 20.00
2 | 5,663 20.00 40.00
3 | 5,663 20.00 60.00
4 | 5,663 20.00 80.00
5 | 5,663 20.00 100.00

-----------------------------------------------
Total | 28,315 100.00

. egen kidsbar  mean(kids), by(id)

. egen lhincbar  mean(lhinc), by(id)
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. * Linear model by FE:

. xtreg lfp kids lhinc per2-per5, fe cluster(id)

Fixed-effects (within) regression Number of obs  28315
Group variable (i): id Number of groups  5663

(Std. Err. adjusted for 5663 clusters in id)
------------------------------------------------------------------------------

| Robust
lfp | Coef. Std. Err. t P|t| [95% Conf. Interval]

-----------------------------------------------------------------------------
kids | -.0388976 .0091682 -4.24 0.000 -.0568708 -.0209244

lhinc | -.0089439 .0045947 -1.95 0.052 -.0179513 .0000635
per2 | -.0042799 .003401 -1.26 0.208 -.0109472 .0023875
per3 | -.0108953 .0041859 -2.60 0.009 -.0191012 -.0026894
per4 | -.0123002 .0044918 -2.74 0.006 -.0211058 -.0034945
per5 | -.0176797 .0048541 -3.64 0.000 -.0271957 -.0081637

_cons | .8090216 .0375234 21.56 0.000 .7354614 .8825818
-----------------------------------------------------------------------------

sigma_u | .42247488
sigma_e | .21363541

rho | .79636335 (fraction of variance due to u_i)
------------------------------------------------------------------------------
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. * Fixed Effects Logit:

. xtlogit lfp kids lhinc per2-per5, fe
note: multiple positive outcomes within groups encountered.
note: 4608 groups (23040 obs) dropped because of all positive or

all negative outcomes.

Conditional fixed-effects logistic regression Number of obs  5275
Group variable: id Number of groups  1055

Obs per group: min  5
avg  5.0
max  5

LR chi2(6)  57.27
Log likelihood  -2003.4184 Prob  chi2  0.0000

------------------------------------------------------------------------------
lfp | Coef. Std. Err. z P|z| [95% Conf. Interval]

-----------------------------------------------------------------------------
kids | -.6438386 .1247828 -5.16 0.000 -.8884084 -.3992688

lhinc | -.1842911 .0826019 -2.23 0.026 -.3461878 -.0223943
per2 | -.0928039 .0889937 -1.04 0.297 -.2672283 .0816205
per3 | -.2247989 .0887976 -2.53 0.011 -.398839 -.0507587
per4 | -.2479323 .0888953 -2.79 0.005 -.422164 -.0737006
per5 | -.3563745 .0888354 -4.01 0.000 -.5304886 -.1822604

------------------------------------------------------------------------------

. di 644/184
3.5

. di 389/89
4.3707865
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. * CRE probit:

. xtprobit lfp kids lhinc kidsbar lhincbar educ black age agesq per2-per5, re

Random-effects probit regression Number of obs  28315
Group variable (i): id Number of groups  5663

Wald chi2(12)  824.11
Log likelihood  -8990.0898 Prob  chi2  0.0000

------------------------------------------------------------------------------
lfp | Coef. Std. Err. z P|z| [95% Conf. Interval]

-----------------------------------------------------------------------------
kids | -.3174051 .06203 -5.12 0.000 -.4389816 -.1958287

lhinc | -.0777949 .0414033 -1.88 0.060 -.1589439 .0033541
kidsbar | -.2098409 .0708676 -2.96 0.003 -.3487389 -.0709429

lhincbar | -.6463674 .0792719 -8.15 0.000 -.8017374 -.4909974
educ | .221596 .0147891 14.98 0.000 .1926099 .2505821

black | .5226558 .1502331 3.48 0.001 .2282042 .8171073
age | .4036543 .0287538 14.04 0.000 .3472979 .4600107

agesq | -.0054898 .0003536 -15.52 0.000 -.0061829 -.0047966
per2 | -.034359 .0438562 -0.78 0.433 -.1203156 .0515976
per3 | -.0954482 .0439688 -2.17 0.030 -.1816253 -.009271
per4 | -.1046944 .0439108 -2.38 0.017 -.1907581 -.0186308
per5 | -.1559446 .0435241 -3.58 0.000 -.2412502 -.0706389

_cons | -2.080352 .6567295 -3.17 0.002 -3.367518 -.7931854
-----------------------------------------------------------------------------

/lnsig2u | 1.73677 .0266277 1.684581 1.78896
-----------------------------------------------------------------------------

sigma_u | 2.383059 .0317277 2.321679 2.446063
rho | .8502764 .0033899 .8435102 .8567997

------------------------------------------------------------------------------
Likelihood-ratio test of rho0: chibar2(01)  1.5e04 Prob  chibar2  0.000
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. predict xdhat, xb

. gen xdhata  xdhat/sqrt(1  2.383059^2)

. di 1/sqrt(1  2.383059^2)

.38694144

. * Scaled coefficients to compare with pooled probit:

. di (1/sqrt(1  2.383059^2))*_b[kids]
-.1228172

. di (1/sqrt(1  2.383059^2))*_b[lhinc]
-.03010209
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. probit lfp kids lhinc kidsbar lhincbar educ black age agesq per2-per5,
cluster(id)

Probit regression Number of obs  28315
Wald chi2(12)  538.09
Prob  chi2  0.0000

Log pseudolikelihood  -16516.436 Pseudo R2  0.0673

(Std. Err. adjusted for 5663 clusters in id)
------------------------------------------------------------------------------

| Robust
lfp | Coef. Std. Err. z P|z| [95% Conf. Interval]

-----------------------------------------------------------------------------
kids | -.1173749 .0269743 -4.35 0.000 -.1702435 -.0645064

lhinc | -.0288098 .014344 -2.01 0.045 -.0569234 -.0006961
kidsbar | -.0856913 .0311857 -2.75 0.006 -.146814 -.0245685

lhincbar | -.2501781 .0352907 -7.09 0.000 -.3193466 -.1810097
educ | .0841338 .0067302 12.50 0.000 .0709428 .0973248

black | .2030668 .0663945 3.06 0.002 .0729359 .3331976
age | .1516424 .0124831 12.15 0.000 .127176 .1761089

agesq | -.0020672 .0001553 -13.31 0.000 -.0023717 -.0017628
per2 | -.0135701 .0103752 -1.31 0.191 -.0339051 .0067648
per3 | -.0331991 .0127197 -2.61 0.009 -.0581293 -.008269
per4 | -.0390317 .0136244 -2.86 0.004 -.0657351 -.0123284
per5 | -.0552425 .0146067 -3.78 0.000 -.0838711 -.0266139

_cons | -.7260562 .2836985 -2.56 0.010 -1.282095 -.1700173
------------------------------------------------------------------------------
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. drop xdhat xdhata

. predict xdhat, xb

. gen scale  normden(xdhat)

. sum scale

Variable | Obs Mean Std. Dev. Min Max
---------------------------------------------------------------------

scale | 28315 .3310079 .057301 .0694435 .3989423

. di .331*(-.117375)
-.03885113

. di .331*(-.02881)
-.00953611
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. margeff

Average marginal effects on Prob(lfp1) after probit

------------------------------------------------------------------------------
lfp | Coef. Std. Err. z P|z| [95% Conf. Interval]

-----------------------------------------------------------------------------
kids | -.038852 .0089243 -4.35 0.000 -.0563433 -.0213608

lhinc | -.0095363 .0047482 -2.01 0.045 -.0188426 -.00023
kidsbar | -.0283645 .0102895 -2.76 0.006 -.0485315 -.0081974

lhincbar | -.0828109 .0115471 -7.17 0.000 -.1054428 -.060179
educ | .027849 .0021588 12.90 0.000 .0236178 .0320801

black | .0643443 .0200207 3.21 0.001 .0251043 .1035842
age | .0501948 .0039822 12.60 0.000 .0423898 .0579998

agesq | -.0006843 .0000493 -13.88 0.000 -.0007809 -.0005876
per2 | -.0044999 .0034482 -1.30 0.192 -.0112583 .0022585
per3 | -.0110375 .0042512 -2.60 0.009 -.0193698 -.0027052
per4 | -.0129865 .0045606 -2.85 0.004 -.0219252 -.0040479
per5 | -.0184197 .0049076 -3.75 0.000 -.0280385 -.008801

------------------------------------------------------------------------------
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. probit lfp kids lhinc educ black age agesq per2-per5, cluster(id)

Probit regression Number of obs  28315
Wald chi2(10)  537.36
Prob  chi2  0.0000

Log pseudolikelihood  -16556.671 Pseudo R2  0.0651

(Std. Err. adjusted for 5663 clusters in id)
------------------------------------------------------------------------------

| Robust
lfp | Coef. Std. Err. z P|z| [95% Conf. Interval]

-----------------------------------------------------------------------------
kids | -.1989144 .0153153 -12.99 0.000 -.2289319 -.1688969

lhinc | -.2110739 .0242901 -8.69 0.000 -.2586816 -.1634661
educ | .0796863 .0065453 12.17 0.000 .0668577 .0925149

black | .2209396 .0659041 3.35 0.001 .09177 .3501093
age | .1449159 .0122179 11.86 0.000 .1209693 .1688624

agesq | -.0019912 .0001522 -13.08 0.000 -.0022895 -.0016928
per2 | -.0124245 .0104551 -1.19 0.235 -.0329162 .0080672
per3 | -.0325178 .0127431 -2.55 0.011 -.0574938 -.0075418
per4 | -.046097 .0136286 -3.38 0.001 -.0728087 -.0193853
per5 | -.0577767 .014632 -3.95 0.000 -.0864548 -.0290985

_cons | -1.064449 .261872 -4.06 0.000 -1.577709 -.5511895
------------------------------------------------------------------------------
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. margeff

Average marginal effects on Prob(lfp1) after probit

------------------------------------------------------------------------------
lfp | Coef. Std. Err. z P|z| [95% Conf. Interval]

-----------------------------------------------------------------------------
kids | -.0660184 .0049233 -13.41 0.000 -.0756678 -.056369

lhinc | -.070054 .0079819 -8.78 0.000 -.0856981 -.0544099
educ | .0264473 .0021119 12.52 0.000 .0223082 .0305865

black | .0698835 .0197251 3.54 0.000 .031223 .108544
age | .0480966 .0039216 12.26 0.000 .0404105 .0557828

agesq | -.0006609 .0000486 -13.60 0.000 -.0007561 -.0005656
per2 | -.0041304 .0034828 -1.19 0.236 -.0109565 .0026957
per3 | -.010839 .0042694 -2.54 0.011 -.0192069 -.0024712
per4 | -.0153921 .0045809 -3.36 0.001 -.0243705 -.0064137
per5 | -.0193224 .0049309 -3.92 0.000 -.0289867 -.0096581

------------------------------------------------------------------------------

. * So, without accounting for heterogeneity through the time averages,

. * the effects are much larger.
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. do ex15_5_boot1

. version 9

. capture program drop probit_boot

. program probit_boot, rclass
1.

. probit lfp kids lhinc kidsbar lhincbar educ black age agesq per2-per5,
cluster(id)

2.
. predict xdhat, xb

3. gen scalenormden(xdhat)
4. gen pe1scale*_b[kids]
5. summarize pe1
6. return scalar ape1r(mean)
7. gen pe2scale*_b[lhinc]
8. summarize pe2
9. return scalar ape2r(mean)

10.
.
. drop xdhat scale pe1 pe2

11. end
.
. bootstrap r(ape1) r(ape2), reps(500) seed(123) cluster(id) idcluster

(newid): probit_boot
(running probit_boot on estimation sample)

Bootstrap replications (500)
------- 1 ------ 2 ------ 3 ------ 4 ------ 5
.................................................. 50

.................................................. 500

Bootstrap results Number of obs  28315
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Number of clusters  5663
Replications  500

command: probit_boot
_bs_1: r(ape1)
_bs_2: r(ape2)

------------------------------------------------------------------------------
| Observed Bootstrap Normal-based
| Coef. Std. Err. z P|z| [95% Conf. Interval]

-----------------------------------------------------------------------------
_bs_1 | -.038852 .0085179 -4.56 0.000 -.0555469 -.0221572
_bs_2 | -.0095363 .00482 -1.98 0.048 -.0189833 -.0000893

------------------------------------------------------------------------------

. program drop probit_boot

end of do-file

. do ex15_5_boot2

. capture program drop probit_boot

. program probit_boot, rclass
1.

. probit lfp kids lhinc educ black age agesq per2-per5, cluster(id)
2.

. predict xdhat, xb
3. gen scalenormden(xdhat)
4. gen pe1scale*_b[kids]
5. summarize pe1
6. return scalar ape1r(mean)
7. gen pe2scale*_b[lhinc]
8. summarize pe2
9. return scalar ape2r(mean)
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10.
.
. drop xdhat scale pe1 pe2

11. end

. bootstrap r(ape1) r(ape2), reps(500) seed(123) cluster(id) idcluster(newid):
probit_boot

(running probit_boot on estimation sample)

Bootstrap replications (500)
------- 1 ------ 2 ------ 3 ------ 4 ------ 5
.................................................. 50

.................................................. 500

Bootstrap results Number of obs  28315
Number of clusters  5663
Replications  500

command: probit_boot
_bs_1: r(ape1)
_bs_2: r(ape2)

------------------------------------------------------------------------------
| Observed Bootstrap Normal-based
| Coef. Std. Err. z P|z| [95% Conf. Interval]

-----------------------------------------------------------------------------
_bs_1 | -.0660184 .0047824 -13.80 0.000 -.0753916 -.0566451
_bs_2 | -.070054 .0078839 -8.89 0.000 -.0855061 -.0546019

------------------------------------------------------------------------------

. program drop probit_boot

end of do-file

159



160



Dynamic Model of Women’s LFP
. * Start with a linear model estimated by Arellano and Bond:

. xtabond lfp kids lhinc per3 per4 per5

Arellano-Bond dynamic panel-data estimation Number of obs  16989
Group variable: id Number of groups  5663
Time variable: period

Obs per group: min  3
avg  3
max  3

Number of instruments  12 Wald chi2(6)  378.77
Prob  chi2  0.0000

One-step results
------------------------------------------------------------------------------

lfp | Coef. Std. Err. z P|z| [95% Conf. Interval]
-----------------------------------------------------------------------------

lfp |
L1. | .3818295 .0201399 18.96 0.000 .3423559 .4213031

|
kids | -.0130903 .0091827 -1.43 0.154 -.031088 .0049075

lhinc | -.0058375 .0053704 -1.09 0.277 -.0163633 .0046882
per3 | -.0053284 .0039777 -1.34 0.180 -.0131245 .0024677
per4 | -.0038833 .0039916 -0.97 0.331 -.0117067 .00394
per5 | -.0090286 .0039853 -2.27 0.023 -.0168396 -.0012176

_cons | .4848731 .0458581 10.57 0.000 .394993 .5747533
------------------------------------------------------------------------------
Instruments for differenced equation

GMM-type: L(2/.).lfp
Standard: D.kids D.lhinc D.per3 D.per4 D.per5

Instruments for level equation
Standard: _cons
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. * Accounting for heterogeneity is important, even in the linear

. * approximation. Without heterogeneity, the estimated state dependence is

. * much higher:

. reg lfp l.lfp kids lhinc per3 per4 per5, robust

Linear regression Number of obs  22652
F( 6, 22645)  7938.78
Prob  F  0.0000
R-squared  0.7207
Root MSE  .24664

------------------------------------------------------------------------------
| Robust

lfp | Coef. Std. Err. t P|t| [95% Conf. Interval]
-----------------------------------------------------------------------------

lfp |
L1. | .8510015 .0039478 215.57 0.000 .8432637 .8587394

|
kids | -.0021431 .0014379 -1.49 0.136 -.0049615 .0006754

lhinc | -.0071892 .0025648 -2.80 0.005 -.0122164 -.0021619
per3 | -.0036044 .0047215 -0.76 0.445 -.0128588 .00565
per4 | .0010464 .0046287 0.23 0.821 -.0080262 .010119
per5 | -.0036555 .0045471 -0.80 0.421 -.0125681 .0052571

_cons | .157911 .0210127 7.52 0.000 .1167247 .1990972
---------------------------------------------------------------------------
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. * Generate variables needed for dynamic probit.

. sort id period

. gen lfp_1  lfp[_n-1] if period  1
(5663 missing values generated)

. * Put initial condition in periods 2-5:

. gen lfp1  lfp[_n-1] if per2
(22652 missing values generated)

. replace lfp1  lfp[_n-2] if per3
(5663 real changes made)

. replace lfp1  lfp[_n-3] if per4
(5663 real changes made)

. replace lfp1  lfp[_n-4] if per5
(5663 real changes made)

164



. * Put all kids variables in periods 2-5:

. gen kids2  kids if per2
(22652 missing values generated)

. replace kids2  kids[_n-1] if per3
(5663 real changes made)

. replace kids2  kids[_n-2] if per4
(5663 real changes made)

. replace kids2  kids[_n-3] if per5
(5663 real changes made)

. gen kids3  kids[_n1] if per2
(22652 missing values generated)

. replace kids3  kids if per3
(5663 real changes made)

. replace kids3  kids[_n-1] if per4
(5663 real changes made)

. replace kids3  kids[_n-2] if per5
(5663 real changes made)
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. gen kids4  kids[_n2] if per2
(22652 missing values generated)

. replace kids4  kids[_n1] if per3
(5663 real changes made)

. replace kids4  kids if per4
(5663 real changes made)

. replace kids4  kids[_n-1] if per5
(5663 real changes made)

. gen kids5  kids[_n3] if per2
(22652 missing values generated)

. replace kids5  kids[_n2] if per3
(5663 real changes made)

. replace kids5  kids[_n1] if per4
(5663 real changes made)

. replace kids5  kids if per5
(5663 real changes made)
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. * Put all lhinc variables in periods 2-5:

. gen lhinc2  lhinc if per2
(22652 missing values generated)

. replace lhinc2  lhinc[_n-1] if per3
(5663 real changes made)

. replace lhinc2  lhinc[_n-2] if per4
(5663 real changes made)

. replace lhinc2  lhinc[_n-3] if per5
(5663 real changes made)

. gen lhinc3  lhinc[_n1] if per2
(22652 missing values generated)

. replace lhinc3  lhinc if per3
(5663 real changes made)

. replace lhinc3  lhinc[_n-1] if per4
(5663 real changes made)

. replace lhinc3  lhinc[_n-2] if per5
(5663 real changes made)

167



. gen lhinc4  lhinc[_n2] if per2
(22652 missing values generated)

. replace lhinc4  lhinc[_n1] if per3
(5663 real changes made)

. replace lhinc4  lhinc if per4
(5663 real changes made)

. replace lhinc4  lhinc[_n-1] if per5
(5663 real changes made)

. gen lhinc5  lhinc[_n3] if per2
(22652 missing values generated)

. replace lhinc5  lhinc[_n2] if per3
(5663 real changes made)

. replace lhinc5  lhinc[_n1] if per4
(5663 real changes made)

. replace lhinc5  lhinc if per5
(5663 real changes made)

168



. * Now include initial condition, leads and lags, and other

. * time-constant variables in RE probit

.

. xtprobit lfp lfp_1 lfp1 kids kids2-kids5 lhinc lhinc2-lhinc5 educ
black age agesq per3-per5, re

Random-effects probit regression Number of obs  22652
Group variable (i): id Number of groups  5663

Random effects u_i ~Gaussian Obs per group: min  4
avg  4.0
max  4

Wald chi2(19)  4091.17
Log likelihood  -5028.9785 Prob  chi2  0.0000

------------------------------------------------------------------------------
lfp | Coef. Std. Err. z P|z| [95% Conf. Interval]

-----------------------------------------------------------------------------
lfp_1 | 1.541288 .066803 23.07 0.000 1.410357 1.67222

lfp1 | 2.530053 .1565322 16.16 0.000 2.223256 2.836851
kids | -.1455379 .0787386 -1.85 0.065 -.2998626 .0087868

kids2 | .3236282 .0968499 3.34 0.001 .133806 .5134504
kids3 | .1072842 .1235197 0.87 0.385 -.1348099 .3493784
kids4 | .01792 .1275595 0.14 0.888 -.2320921 .2679322
kids5 | -.3912412 .1058482 -3.70 0.000 -.5986998 -.1837825
lhinc | -.0748846 .0508406 -1.47 0.141 -.1745304 .0247612

lhinc2 | -.0232267 .0590167 -0.39 0.694 -.1388973 .0924438
lhinc3 | -.083386 .0626056 -1.33 0.183 -.2060908 .0393188
lhinc4 | -.0862979 .060961 -1.42 0.157 -.2057793 .0331835
lhinc5 | .0627793 .0592742 1.06 0.290 -.053396 .1789547

educ | .049906 .0100314 4.97 0.000 .0302447 .0695672
black | .1316009 .0982941 1.34 0.181 -.061052 .3242539

age | .1278946 .0193999 6.59 0.000 .0898715 .1659177

169



agesq | -.0016882 .00024 -7.03 0.000 -.0021586 -.0012177
per3 | -.0560723 .0458349 -1.22 0.221 -.1459071 .0337625
per4 | -.029532 .0463746 -0.64 0.524 -.1204245 .0613605
per5 | -.0784793 .0464923 -1.69 0.091 -.1696025 .012644

_cons | -2.946082 .4367068 -6.75 0.000 -3.802011 -2.090152
-----------------------------------------------------------------------------

/lnsig2u | .0982792 .1225532 -.1419206 .338479
-----------------------------------------------------------------------------

sigma_u | 1.050367 .0643629 .9314989 1.184404
rho | .52455 .0305644 .4645793 .583821

------------------------------------------------------------------------------
Likelihood-ratio test of rho0: chibar2(01)  160.73 Prob  chibar2  0.000
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. predict xdh, xb
(5663 missing values generated)

. gen xd0  xdh - _b[lfp_1]*lfp_1
(5663 missing values generated)

. gen xd1  xd0  _b[lfp_1]
(5663 missing values generated)

. gen xd0a  xd0/sqrt(1  (1.050367)^2)
(5663 missing values generated)

. gen xd1a  xd1/sqrt(1  (1.050367)^2)
(5663 missing values generated)

. gen PHI0  norm(xd0a)
(5663 missing values generated)

. gen PHI1  norm(xd1a)
(5663 missing values generated)

. gen pelfp_1  PHI1 - PHI0
(5663 missing values generated)
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. sum pelfp_1

Variable | Obs Mean Std. Dev. Min Max
---------------------------------------------------------------------

pelfp_1 | 22652 .2591284 .0551711 .0675151 .4047995

. * .259 is the average probability of being in the labor force in

. * period t, given participation in t-1. This is somewhat lower than

. * the linear model estimate, .382.\pagebreak

. * A nonlinear model without heterogeneity gives a much larger

. * estimate:
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. probit lfp lfp_1 kids lhinc educ black age agesq per3-per5

Probit regression Number of obs  22652
LR chi2(10)  17744.22
Prob  chi2  0.0000

Log likelihood  -5332.5289 Pseudo R2  0.6246

------------------------------------------------------------------------------
lfp | Coef. Std. Err. z P|z| [95% Conf. Interval]

-----------------------------------------------------------------------------
lfp_1 | 2.875679 .0269811 106.58 0.000 2.822797 2.928561

kids | -.060792 .012217 -4.98 0.000 -.0847368 -.0368472
lhinc | -.1143176 .0211668 -5.40 0.000 -.1558037 -.0728315

educ | .0291868 .0052362 5.57 0.000 .0189241 .0394495
black | .0792495 .0536694 1.48 0.140 -.0259406 .1844395

age | .084403 .0099983 8.44 0.000 .0648067 .1039993
agesq | -.0010991 .0001236 -8.90 0.000 -.0013413 -.000857

per3 | -.0340795 .0369385 -0.92 0.356 -.1064777 .0383187
per4 | .0022816 .0371729 0.06 0.951 -.0705759 .0751391
per5 | -.0304156 .0371518 -0.82 0.413 -.1032318 .0424006

_cons | -2.170796 .2219074 -9.78 0.000 -2.605727 -1.735866
------------------------------------------------------------------------------
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. predict xdph, xb
(5663 missing values generated)

. gen xdp0  xdph - _b[lfp_1]*lfp_1
(5663 missing values generated)

. gen xdp1  xdp0  _b[lfp_1]
(5663 missing values generated)

. gen PHI0p  norm(xdp0)
(5663 missing values generated)

. gen PHI1p  norm(xdp1)
(5663 missing values generated)

. gen pelfp_1p  PHI1p - PHI0p
(5663 missing values generated)
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. sum pelfp_1p

Variable | Obs Mean Std. Dev. Min Max
---------------------------------------------------------------------

pelfp_1p | 22652 .8373056 .012207 .6019558 .8495204

. * Without accounting for heterogeneity, the average state dependence

. * is much larger: .837 versus .259.

. * The .837 estimate is pretty close to the dynamic linear model without

. * heterogeneity, .851.
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