BINARY RESPONSE MODELS

Econometric Analysis of Cross Section and Panel Data, 2e MIT Press Jeffrey M. Wooldridge

1

- 1. Introduction
- 2. Linear Probability Model
- 3. Index Models: Probit and Logit
- 4. Endogenous Explanatory Variables
- 5. Panel Data Models
- 6. Multivariate Probit

1. INTRODUCTION

• The most common application of binary response models is when we are interested in "explaining" a binary outcome in terms of some explanatory variables. Thus, we are interested in a conditional probability.

• A less common application is when we have a linear model of an underlying quantitative variable, but the data collection scheme censors the data. For example, we have a linear model for willingness to pay for a project or product. However, because it is difficult to elicit WTP, each individual may be presented with a cost of the project; we then only observe whether they are in favor of the project at that cost. • We treat data censoring problems later. For now, we focus on the first situation. So, y is a binary (zero-one) variable. For example,

y = employed or y = arrested. Given a set of (exogenous) covariates **x**, we are interested in

$$P(y=1|\mathbf{x})=p(\mathbf{x}),$$

which is called the *response probability*. It is the probability of a "success," that is, y = 1.

• As in regression, we are interested in the partial effects of the x_j on $p(\mathbf{x})$. For continuous x_j , these are usually

$$\frac{\partial p(\mathbf{x})}{\partial x_j}$$

• For discrete x_j , look at changes in the response probability (usually holding other variables fixed). For example, if $x_K = train$ (job training indicator) and y is an employment indicator,

$$p(x_1,\ldots,x_{K-1},1) - p(x_1,\ldots,x_{K-1},0)$$

is the effect of job training on the employment probability, at given values for the other covariates.

• In nonlinear models generally, and binary response models specifically, it is often useful to have a single number to summarize the relationship between $P(y = 1 | \mathbf{x})$ and x_j . In a linear model that is simply the coefficient.

• Generally, we might report an estimated *average partial effect (APE)*. The APE for a continuous *x_j* is

$$E_{\mathbf{x}}\left[\frac{\partial p(\mathbf{x})}{\partial x_j}\right],$$

which means we average the partial effect across the population distribution of \mathbf{x} . This is a weighted average of the partial effects at each outcome \mathbf{x} .

• Suppose x_K is a binary variable. Then its APE is

$$E_{\mathbf{x}_{(K)}}[p(\mathbf{x}_{(K)},1)-p(\mathbf{x}_{(K)},0)]$$

where $\mathbf{x}_{(K)}$ is the 1 × *K* vector with x_K excluded.

• Another partial effect that has been reported in empirical work is the *partial effect at the average (PEA)*. For a continous variable x_j ,

 $\frac{\partial p(\boldsymbol{\mu}_{\mathbf{x}})}{\partial x_i}.$

• In nonlinear models, the APE and PEA can be very different: the expected value does not pass through nonlinear functions.

• Because μ_x might not even represent a population unit – for example, if x includes discrete variables, such as dummy variables – the PEA might not be especially interesting.

• Some simple, useful facts about Bernoulli (zero-one) random variables are

$$E(y|\mathbf{x}) = P(y = 1|\mathbf{x}) = p(\mathbf{x})$$
$$Var(y|\mathbf{x}) = p(\mathbf{x})[1 - p(\mathbf{x})]$$

- So a binary variable has natural heteroskedasticity except in the special case where $p(\mathbf{x})$ does not depend on \mathbf{x} .
- Unlike variables that take on more than two values, there is a necessary link between the mean and the variance. It is not possible for $E(y|\mathbf{x}) = p(\mathbf{x})$ while $Var(y|\mathbf{x}) \neq p(\mathbf{x})[1 p(\mathbf{x})]$. (If, say, *y* is a takes values in $\{0, 1, 2, ...\}$, $Var(y|\mathbf{x})$ need not be related to $E(y|\mathbf{x})$, even though that is true for popular distributions such as the Poisson.)

2. THE LINEAR PROBABILITY MODEL

• The linear probability model (LPM) models the response probability as a function linear in parameters. Absorbing an intercept into **x**, if we take the model literally we are assuming

$$P(y = 1 | \mathbf{x}) = \beta_1 + \beta_2 x_2 + \ldots + \beta_K x_K \equiv \mathbf{x} \boldsymbol{\beta}.$$

Because this is also $E(y|\mathbf{x})$, we can use OLS to consistently estimate $\boldsymbol{\beta}$. In fact, if the conditional mean is truly $\mathbf{x}\boldsymbol{\beta}$, the OLS estimator is unbiased. • Because $Var(y|\mathbf{x}) = \mathbf{x}\beta(1 - \mathbf{x}\beta)$ – a rare case where we know the functional form of heteroskedasticity – inference for OLS should be made robust to heteroskedasticity. As we know, this is easy to do.

- Because y is binary, we must rely on large-sample properties for inference; clearly normality of $D(y|\mathbf{x})$ does not hold.
- The LPM is always a good starting point when y is the variable we hope to explain. The estimated coefficients give direct estimates of the effects of each x_j on the response probability. (Of course, as with any regression framework, we can include various functional forms in **x**, such as quadratics, interactions, and dummy variables.)

• The LPM is simple to estimate and interpret. The often cited drawbacks of the LPM include

(1) Nothing guarantees the OLS fitted values, $\hat{y}_i = \mathbf{x}_i \hat{\boldsymbol{\beta}}$, are in the unit interval. As these are estimates of the $p(\mathbf{x}_i)$, one might worry about estimated probabilites above one or negative. (In practice, this is a minor issue.)

(2) While we can use various functional forms in \mathbf{x} , it is difficult to impose, in a simple way, diminishing effects of the x_j on the $p(\mathbf{x})$. For example, if $\beta_j > 0$, increasing x_j in increases $p(\mathbf{x}) = \mathbf{x}\boldsymbol{\beta}$ by β_j , no matter the values of x_j or the other elements of \mathbf{x} . Logically, the effect must diminish at some point.

(3) Heteroskedasticity. This has asymptotic efficiency implications *if* we assume that $p(\mathbf{x}) = \mathbf{x}\boldsymbol{\beta}$. That is, in principle we can improve efficiency by weighted least squares, but $\mathbf{x}_i \hat{\boldsymbol{\beta}}$ not strict between zero and one for all *i* causes problems because the efficient weights are supposed to be $1/[\mathbf{x}_i \hat{\boldsymbol{\beta}}(1-\mathbf{x}_i \hat{\boldsymbol{\beta}})]$.

• WLS hardly seems worth it because we can use the usual heteroskedasticity-robust inference for OLS without worrying about adjusting the fitted values.

• As a practical matter, it makes more sense to think of the LPM as the best linear approximation (in a mean squared error sense) to the true response probability, $p(\mathbf{x})$. That is,

 $y = \mathbf{x}\mathbf{\beta} + u$ $E(\mathbf{x}'u) = \mathbf{0}$

is all we are willing to assume. If so, then $E(u^2|\mathbf{x})$ generally depends on $p(\mathbf{x})$ in addition to $\mathbf{x}\beta$, but the heteroskedasticity-robust variance matrix estimator is still valid (because it is valid for heteroskedasticity of unknown form).

• A carefully chosen linear model can yield good estimates of the APEs defined earlier. In other words, the LPM often yields good estimates of *average* effects.

• A leading reason for going from the LPM to nonlinear models of $p(\mathbf{x})$ is to allow the partial effects to vary across different values of \mathbf{x} .

• When we view the LPM as a linear projection, weighted least squares – even if all fitted values are in (0, 1) – is not even consistent for the parameters of the linear projection $L(y|\mathbf{x}) = \mathbf{x}\boldsymbol{\beta}$. (The parameters identified by WLS are necessarily less interesting than those in the linear projection, but they are different.)

3. INDEX MODELS: PROBIT AND LOGIT

• A general index model has the form

$$P(y = 1 | \mathbf{x}) = G(\mathbf{x}\boldsymbol{\beta})$$

for some $G : \mathbb{R} \to (0, 1)$. That is, $0 < G(\cdot) < 1$. In most cases, $G(\cdot)$ is actually a cumulative distribution function for a continuous random variable with density $g(\cdot)$. Then, $G(\cdot)$ is strictly increasing, and the estimates are easier to interpret.

• The leading cases are $G(z) = \Phi(z)$ (probit) and

 $G(z) = \exp(z)/[1 + \exp(z)] \text{ (logit).}$

• MLE is straightforward. The general log likelihood for random draw *i* is

$$\ell_i(\boldsymbol{\beta}) = (1 - y_i) \log[1 - G(\mathbf{x}_i \boldsymbol{\beta})] + y_i \log[G(\mathbf{x}_i \boldsymbol{\beta})].$$

• Asymptotic variance has the same form as for probit:

$$\left(\sum_{i=1}^{N} \frac{[g(\mathbf{x}_{i}\hat{\boldsymbol{\beta}})]^{2}\mathbf{x}_{i}'\mathbf{x}_{i}}{G(\mathbf{x}_{i}\hat{\boldsymbol{\beta}})[1-G(\mathbf{x}_{i}\hat{\boldsymbol{\beta}})]}\right)^{-1},$$

where

$$g(z) = \phi(z)$$
 for probit
 $g(z) = \exp(z)/[1 + \exp(z)]^2$ for logit

• Testing multiple hypotheses about β (we drop the "o" subscript for simplicity) – usually joint exclusion restrictions – is most easily done with the Wald and LR statistics. The former is commonly used in canned packages (in Stata, it is computed with the "test" command), and the LR statistic is easily obtained because the value of the log likelihood is reported routinely.

• The score statistics is convenient for testing the standard index models against more complicated alternatives (below).

Estimating Partial Effects

• More interesting is: What do we do with the estimates? Let x_j be continuous. Then

$$\frac{\partial p(\mathbf{x})}{\partial x_j} = \beta_j g(\mathbf{x} \boldsymbol{\beta})$$

and, because g(z) > 0 (assume it is a continuous density), β_j gives the direction of the partial effect. But its magnitude depends on $g(\mathbf{x}\beta)$.

• For probit, the largest value of the scale factor is about .4 = g(0). For logit, it is .25.

• For two continuous covariates, the ratio of the coefficients give the ratio of the partial effects, independent of **x**.

$$\frac{\partial p(\mathbf{x})/\partial x_j}{\partial p(\mathbf{x})/\partial x_h} = \frac{\beta_j g(\mathbf{x}\boldsymbol{\beta})}{\beta_h g(\mathbf{x}\boldsymbol{\beta})} = \beta_j/\beta_h.$$

- No simple relationship exists for discrete variables or changes.
- In any case, we would like the magnitude of the effect.

• Two common summary measures are the estimated PEAs and APEs. The estimated PEA for a continuous variable is

$$\widehat{PEA}_j = \hat{\beta}_j g(\mathbf{\bar{x}}\hat{\boldsymbol{\beta}})$$

- As discussed earlier, putting in averages for discrete covariates might not be especially interesting.
- When **x** includes nonlinear functions, such as age^2 , probably makes more sense to use $(\overline{age})^2$ rather than average age_i^2 .
- Delta method or bootstrapping can be used to get a standard error for

 \widehat{PEA}_j .

• The APE has more appeal, as we are averaging partial effects for actual units:

$$\widehat{APE}_{j} = \hat{\beta}_{j} \left[N^{-1} \sum_{i=1}^{N} g(\mathbf{x}_{i} \hat{\boldsymbol{\beta}}) \right]$$

- To use the delta method, must account for randomness in x_i, too.
 Bootstrap makes that easy.
- Whether we use the PEA or APE, the scale factor multiplying $\hat{\beta}_j$ is below one, and sometimes well below one.

- It makes no sense to compare magnitudes of coefficients across probit, logit, LPM. Comparing APEs is preferred.
- In particular, if $\hat{\gamma}_j$ is the linear regression coefficient on x_j from estimating an LPM, it can be compared with \widehat{APE}_j (provided no other function of x_j appears in the regressors).

• Suppose x_K is a binary variable. Then its APE is estimated as

$$\widehat{APE}_{K} = N^{-1} \sum_{i=1}^{N} [G(\mathbf{x}_{i(K)} \hat{\boldsymbol{\beta}}_{(K)} + \hat{\boldsymbol{\beta}}_{K}) - G(\mathbf{x}_{i(K)} \hat{\boldsymbol{\beta}}_{(K)})],$$

where $\mathbf{x}_{i(K)}$ is \mathbf{x}_i but without x_{iK} .

- The APE has a nice counterfactual interpretation that is especially useful in policy analysis. Called the *average treatment effect (ATE)* in the treatment effect literature with a binary outcome. (The "treatment," x_K , is binary.)
- Can average the individual treatment effects across subgroups, too, or insert fixed values for some of the other covariates.

• Stata, with its "margins" (marginal effects) command can report at PEA or APE. For a discrete x_K , the estimated PEA is

$$\widehat{PEA}_{K} = G(\mathbf{\bar{x}}_{(K)}\mathbf{\hat{\beta}}_{(K)} + \mathbf{\hat{\beta}}_{K}) - G(\mathbf{\bar{x}}_{(K)}\mathbf{\hat{\beta}}_{(K)})$$

Again, this might correspond to a weird population unit, or might not be representative of the population.

- To obtain standard errors of APEs and PEAs, we can use the delta method or bootstrap.
- Stata uses the delta method to obtain standard errors.

• Complicated functional forms are, in principle, easily handled within the index structure. For example, suppose

$$P(y = 1|\mathbf{z}) = G[\beta_0 + \beta_1 z_1 + \beta_2 z_1^2 + \beta_3 \log(z_2) + \beta_4 z_3] \equiv G(\mathbf{x}\boldsymbol{\beta})$$

Then

$$\frac{\partial P(y=1|\mathbf{z})}{\partial z_1} = (\beta_1 + 2\beta_2 z_1)g(\mathbf{x}\boldsymbol{\beta})$$
$$\frac{\partial P(y=1|\mathbf{z})}{\partial z_2} = (\beta_3/z_2)g(\mathbf{x}\boldsymbol{\beta})$$
$$\frac{\partial \log P(y=1|\mathbf{z})}{\partial \log z_2} = \beta_3 g(\mathbf{x}\boldsymbol{\beta})/G(\mathbf{x}\boldsymbol{\beta})$$

- The signs of the coefficients are informative, but the partial effects are somewhat complicated. Need to evaluate them at interesting values or average across the distribution of **x** similar to the usual APE calculation.
- For example, the average elasticity of $P(y = 1 | \mathbf{z})$ with respect to z_2 is

$$\hat{\boldsymbol{\beta}}_3 \left[N^{-1} \sum_{i=1}^N g(\mathbf{x}_i \hat{\boldsymbol{\beta}}) / G(\mathbf{x}_i \hat{\boldsymbol{\beta}}) \right].$$

Goodness of Fit

• In addition to reporting coefficients, standard errors, partial effects, and their standard errors, some additional goodness-of-fit measures are sometimes reported.

• Define, for each *i*, a binary predictor

$$\tilde{y}_i = 1 \text{ if } G(\mathbf{x}_i \hat{\boldsymbol{\beta}}) \ge 5$$

$$= 0 \text{ if } G(\mathbf{x}_i \hat{\boldsymbol{\beta}}) < 5$$

• We make a correct prediction if $y_i = 0$ and $\tilde{y}_i = 0$ or $\tilde{y}_i = 1$ and

 $y_i = 1$. Let N_0 be the number of observations with $y_i = 0$ and N_1 the number with $y_i = 1$, so that $N = N_0 + N_1$.

• We can compute the percent correctly predicted for each of the outcomes, and the overall percent correctly predicted. If N_{00} is the number of observations with $y_i = 0$ and $\tilde{y}_i = 0$ and N_{11} is the number of observations with $\tilde{y}_i = 1$ and $y_i = 1$, then the proportions correctly predicted are

$$q_0 = \frac{N_{00}}{N_0}, q_1 = \frac{N_{11}}{N_1}.$$

• If one of q_0 or q_1 seems "too small," the prediction threshold can be chosen to be different from . 5.

- For example, some suggest using the fraction of "successes," \bar{y} , as the threshold. With random sampling, \bar{y} is a consistent estimator of the unconditional probability of success, $P(y_i = 1)$.
- So, the idea is to predict one if the estimated conditional probability of success exceeds the unconditional probability. (Of course, changing the threshold increases the proportion correctly predicted for one outcome but generally decreases the proportion for the other outcome.)
- The overall proportion correctly predicted is

$$q = \frac{(N_{00} + N_{11})}{N} = \left(\frac{N_0}{N}\right)q_0 + \left(\frac{N_1}{N}\right)q_1,$$

which is a weighted average of the two.

• Whether we use an *R*-squared or the percent correctly predicted to summarize goodness of fit, it is not necessary to have a "good" fit in order for the estimated partial effects to be useful. For example, we might be able to get a good estimate of the average effect of job training on the probability of employment even though we cannot predict with much accuracy whether a particular person in an at-risk group becomes employed.

• Because the Kullback-Leibler information criterion is maximized for the true density, the values of the log likelihoods can be used to choose among different nonnested models. In practice, it might be difficult to choose between, say, logit and probit. (Often the differences are practically unimportant, although they can be when fitted values at the extreme tails are important.)

Specification Issues and Testing

- There is much confusion about specification issues in probit, logit, and other models, because sometimes inappropriate parallels are made with linear models.
- Probit is easiest to discuss because analytical results are available. *Omitted Variable Independent of Covariates*
- Consider first the problem of an omitted variable independent of **x**, call it *c*:

$$P(y = 1 | \mathbf{x}, c) = \Phi(\mathbf{x}\boldsymbol{\beta} + c)$$
$$c | \mathbf{x} \sim Normal(0, \sigma_c^2)$$

where **x** includes unity so E(c) = 0 is without loss of generality.

• Write the underlying latent variable as $y^* = \mathbf{x}\mathbf{\beta} + c + e$, $(c + e)|\mathbf{x} \sim Normal(0, \sigma_c^2 + 1)$. So

$$P(y = 1 | \mathbf{x}) = \Phi[\mathbf{x}\beta/(1 + \sigma_c^2)^{1/2}].$$

- It follows immediately that probit of y_i on \mathbf{x}_i consistently estimates $\boldsymbol{\beta}_c \equiv \boldsymbol{\beta}/(1 + \sigma_c^2)^{1/2}$.
- That β_c is attenuated toward zero has been called "attenuation bias." This would not happen in a linear model. Question: Is it truly a "problem"?

- Answer: Not really. The scaled coefficients give directions of effects and relative effects just as well as the original parameters.
- For magnitudes, the β_j index the PEAs at the average value of c, E(c) = 0:

$$\frac{\partial P(y|\mathbf{x},c=0)}{\partial x_j} = \beta_j \phi(\mathbf{x}\boldsymbol{\beta}).$$

So the PEAs at c = 0 (or any other value of c) are not identified.

• But the APE is identified. Can show that

$$E_c \left[\frac{\partial P(y|\mathbf{x},c)}{\partial x_j} \right] = \beta_{cj} \phi(\mathbf{x}\boldsymbol{\beta}_c)$$

• So, in fact, the scaled coefficients – which we consistently estimate – index a quantity that is of significant interest.

• More generally, in any model, if *c* is independent of **x**, just estimating $P(y = 1 | \mathbf{x})$ consistently estimates the APEs (as a function of **x**). But, of course, we could not estimate the heterogeneity distribution.

• Of course, if *c* is correlated with **x**, a much different story (later).

Heteroskedasticity in the Latent Variable Model

• Again suppose *y* is the variable of interest, and now we allow heteroskedasticity in the error *e* in

$$y = 1[\mathbf{x}\boldsymbol{\beta} + e > 0].$$

• Suppose we assume

$$e|\mathbf{x} \sim Normal(0, \exp(2\mathbf{x}_1 \boldsymbol{\delta})),$$

where \mathbf{x}_1 is a subset of \mathbf{x} (and does not include a constant). So homoskedasticity is $\boldsymbol{\delta} = 0$ and then *e* has unit variance.

• Clearly the introduction of heteroskedasticity in *e* changes the response probability, $P(y = 1 | \mathbf{x})$. In fact,

$$P(y = 1|\mathbf{x}) = P(e > -\mathbf{x}\boldsymbol{\beta}|\mathbf{x}) = P[\exp(-\mathbf{x}_1\boldsymbol{\delta})e > -\exp(-\mathbf{x}_1\boldsymbol{\delta})\mathbf{x}\boldsymbol{\beta}|\mathbf{x}]$$

= 1 - \Phi[-\exp(-\mathbf{x}_1\bolds)\mathbf{x}\bolds] = \Phi[\exp(-\mathbf{x}_1\bolds)\mathbf{x}\bolds].

- Estimation by Bernoulli MLE, as before.
- Now, the derivatives and changes in $P(y = 1 | \mathbf{x})$ are much more complicated, and need not have the same sign as the relevant coefficient.
- If we view $P(y = 1 | \mathbf{x}) = \Phi[\exp(-\mathbf{x}_1 \delta) \mathbf{x} \beta]$ as just a way to generalize functional form, partial effects should be computed.
- Of course, it may be sufficient to include covariates in a flexible way in probit and logit.
- After estimation of, say, probit with squares and interactions, it is legitimate to compare log likelihood with the heteroskedastic probit log likelihood.
- Generally, heteroskedastic probit and probit with flexible polynomials are nonnested. Can use Vuong's (1989, *Econometrica*) model selection test.

• If we truly believe the index structure with *e* heteroskedastic, there is a different way to proceed. Define the *average structural function* as a function of **x**:

$$ASF(\mathbf{x}) = E_e\{\mathbf{1}[\mathbf{x}\boldsymbol{\beta} + e > 0]\} = \mathbf{1} - F(-\mathbf{x}\boldsymbol{\beta})$$

where $F(\cdot)$ is the unconditional distribution of e.

• Let \mathbf{x}_{i1} denote the random quantity. Then we can use the law of iterated expectations to show

$$ASF(\mathbf{x}) = E_{\mathbf{x}_{i1}} \{ \Phi[\exp(-\mathbf{x}_{i1}\mathbf{\delta})\mathbf{x}\mathbf{\beta}] \}$$

and a consistent estimator is

$$\widehat{ASF}(\mathbf{x}) = N^{-1} \sum_{i=1}^{N} \Phi[\exp(-\mathbf{x}_{i1}\mathbf{\hat{\delta}})\mathbf{x}\mathbf{\hat{\beta}}].$$

• The estimated average partial effect, for a continuous x_j , is

$$\widehat{APE_j}(\mathbf{x}) = \hat{\beta}_j \left\{ N^{-1} \sum_{i=1}^N \exp(-\mathbf{x}_{i1} \hat{\mathbf{\delta}}) \phi[\exp(-\mathbf{x}_{i1} \hat{\mathbf{\delta}}) \mathbf{x} \hat{\boldsymbol{\beta}}] \right\}$$

which is the same sign as $\hat{\beta}_j$ because the term in $\{\cdot\}$ is strictly positive.

• Of course, ignoring heteroskedasticity in *e* does generally lead to inconsistent estimators of the β_j , but that is largely beside the point. The important question is: how far off are estimated partial effects?

• Possible point of confusion: using the "robust" option with probit does not mean the probit estimators of β somehow robust to heteroskedasticity in the latent error. In fact, β will be inconsistently estimated (but the MLE is still of value, providing the "best" approximation).

• Using "robust" means that a sandwich estimator is used for the asymptotic variance of the quasi-MLE (that is, the usual probit estimator).

• Remember, allowing heteroskedasticity in *e* with $y = 1[\mathbf{x}\boldsymbol{\beta} + e > 0]$ changes $P(y = 1|\mathbf{x})$, which completely describes $D(y|\mathbf{x})$. This is not like other regression applications where we can have $E(y|\mathbf{x}) = \mathbf{x}\boldsymbol{\beta}$ and separately talk about heteroskedasticity in $Var(y|\mathbf{x})$. • Testing the probit model against a heteroskedastic alternative is a good functional form test. The score test is convenient because it only requires estimation of the probit model. A variable addition test is convenient, too. After the initial probit to get the estimated linear indices, $\mathbf{x}_i \hat{\boldsymbol{\beta}}$, do probit of

$$y_{i1}$$
 on \mathbf{x}_i , $(\mathbf{x}_i \hat{\boldsymbol{\beta}})^2 \mathbf{x}_{i1}$

and use a joint test Wald test on $(\mathbf{x}_i \hat{\boldsymbol{\beta}})^2 \mathbf{x}_{i1}$. The degrees-of-freedom in the χ^2 distribution equals the dimension of $\mathbf{x}_{i1} \subseteq \mathbf{x}_i$.

• Another functional form test is like the RESET from regression. For example, after probit, do an expanded probit of

$$y_i$$
 on \mathbf{x}_i , $(\mathbf{x}_i \hat{\boldsymbol{\beta}})^2$, $(\mathbf{x}_i \hat{\boldsymbol{\beta}})^3$

and test the last two terms for joint significance using a Wald test. (Some think it is best to add $(\mathbf{x}_i \hat{\boldsymbol{\beta}})^4$, but the expanded test need not have more power.)

• If you want to proceed with the heteroskedastic probit model, the command is "hetprob" in Stata.

Nonnormality in the Latent Variable Model

• Again, consider

$$y = 1[\mathbf{x}\boldsymbol{\beta} + e > 0]$$

where *e* is independent of **x** but not normally distributed. What if we apply probit? Not surprisingly, the probit MLE is not consistent for β if *e* is not normal. But the partial effects are often very close, at least over the range of **x** where we can have some confidence in the estimated partial effects. (For example, logit and probit can give similar partial effects except in the extreme tails of the distribution.)

• The key is that we should focus on partial effects and not just parameters.

The Linear Probability Model, Revisited

• Now write an index model with the "intercept" shown explicitly,

$$P(y = 1 | \mathbf{x}) = G(\alpha + \mathbf{x}\boldsymbol{\beta})$$

where **x** is a continuous random vector. Define the APE for x_j as

 $\beta_j E[g(\alpha + \mathbf{x}\beta)].$

• Let η and γ be the linear projection parameters,

 $L(y|1, \mathbf{x}) = \eta + \mathbf{x} \boldsymbol{\gamma}$

• Can show that if **x** is multivariate normal then

$$\gamma_j = \beta_j E[g(\alpha + \mathbf{x}\beta)], j = 1, \dots, K.$$

In other words, estimating an LPM consistently estimates the APEs.

- Multivariate normality is restrictive, but suggests that OLS on the LPM might get close to the APEs more generally.
- Of course, we miss out on some of the richness of nonlinear binary response models by focusing only on the APEs.

4. ENDOGENOUS EXPLANATORY VARIABLES

• For nonlinear binary response models, the nature of the endogenous explanatory variable(s) plays a role in estimation. In principle, one can use joint maximum likelihood. But specifying the joint distribution can be tricky, and the methods generally require the distributional assumptions to hold for consistency.

- In some cases, control function (CF) methods are available. CF methods are useful for testing, too.
- Sometimes plug-in methods produce consistent estimators of scaled coefficients, but in many cases they do not. With random samples, CF methods are usually preferred to plugging in fitted values.

• Because of the limitations of nonlinear models, some have proposed using linear models and applying standard IV estimation methods. Recall the linear model

$$y_1 = \alpha_1 y_2 + \mathbf{z}_1 \boldsymbol{\delta}_1 + u_1$$
$$L(y_2 | \mathbf{z}) = \mathbf{z} \boldsymbol{\delta}_2 = \mathbf{z}_1 \boldsymbol{\delta}_{21} + \mathbf{z}_2 \boldsymbol{\delta}_{22}$$

with $\delta_{22} \neq 0$. We can apply this with y_1 binary as an approximation. No special restrictions are needed on y_2 to apply 2SLS. y_2 can be continuous, binary, count, and so on.

• Some simulations show that the average partial effects can be estimated pretty well by 2SLS.

Continuous EEV

• If we want to allow nonconstant partial effects, we need to turn to nonlinear models.

• With a single EEV (for simplicity), consider the model

$$y_1 = 1[\alpha_1 y_2 + \mathbf{z}_1 \boldsymbol{\delta}_1 + u_1 > 0]$$
$$u_1 | \mathbf{z} \sim Normal(0, 1)$$

where **z** is the vector of all endogenous variables. Analysis goes through if we replace (\mathbf{z}_1, y_2) with any known function $\mathbf{x}_1 \equiv \mathbf{g}_1(\mathbf{z}_1, y_2)$.

• The parameters (α_1, δ_1) index the average structural function, and so they index the APEs, too.

• The Rivers-Vuong (1988) approach is to make a homoskedastic-normal assumption on the reduced form for y_2 ,

$$y_2 = \mathbf{z}\boldsymbol{\delta}_2 + v_2 = \mathbf{z}_1\boldsymbol{\delta}_{21} + \mathbf{z}_2\boldsymbol{\delta}_{22} + v_2, \ \boldsymbol{\delta}_{22} \neq \mathbf{0}$$
$$v_2|\mathbf{z} \sim Normal(0, \tau_2^2)$$

• Can relax normality in two-step methods. In fact, sufficient is

$$u_1 = \theta_1 v_2 + e_1$$

$$e_1 | v_2, \mathbf{z} \sim Normal(0, 1 - \theta_1^2 \tau_2^2)$$

• The CF approach is a two-step method. Write

$$y_1 = 1[\alpha_1 y_2 + \mathbf{z}_1 \mathbf{\delta}_1 + \theta_1 v_2 + e_1 > 0]$$

so that

$$P(y_1 = 1|y_2, \mathbf{z}) = \Phi(\alpha_{\rho 1}y_2 + \mathbf{z}_1\boldsymbol{\delta}_{\rho 1} + \theta_{\rho 1}v_2),$$

where each coefficient is multiplied by $(1 - \rho_1^2)^{-1/2}$ and

 $\rho_1 = \theta_1 \tau_2 = Corr(v_2, u_1)$. The scaled coefficients are identified because we effectively observe $v_2 = y_2 - \mathbf{z} \delta_2$.

• The RV two-step approach is

(i) OLS of y_2 on **z**, to obtain the residuals, \hat{v}_2 .

(ii) Probit of y_1 on $\mathbf{z}_1, y_2, \hat{v}_2$ to estimate the scaled coefficients. A simple *t* test on \hat{v}_2 is valid to test $H_0 : \theta_1 = 0$.

• The original coefficients, which appear in the partial effects, are easily obtained from the set of two-step estimates:

$$\hat{\boldsymbol{\beta}}_{1} = \hat{\boldsymbol{\beta}}_{\rho 1} / (1 + \hat{\theta}_{\rho 1}^{2} \hat{\tau}_{2}^{2})^{1/2}$$

- Notice that the two-step estimates are larger than the unscaled coefficients.
- Bootstrapping is convenient for standard errors; also for APEs, such as

$$\hat{\alpha}_1 \phi(\hat{\alpha}_1 y_2 + \mathbf{z}_1 \hat{\mathbf{\delta}}_1)$$

• The APE for y_2 across the entire population is then estimated as

$$\hat{\alpha}_1 \left[N^{-1} \sum_{i=1}^N \phi(\hat{\alpha}_1 y_{i2} + \mathbf{z}_{i1} \hat{\boldsymbol{\delta}}_1) \right]$$

• Alternatively, we average out the reduced form residuals using the scaled coefficients:

$$\widehat{ASF}(\mathbf{z}_1, y_2) = N^{-1} \sum_{i=1}^{N} \Phi(\mathbf{x}_1 \hat{\boldsymbol{\beta}}_{\rho 1} + \hat{\boldsymbol{\theta}}_{\rho 1} \hat{\boldsymbol{v}}_{i2})$$

and take derivatives or changes with respect to the elements (y_2, \mathbf{z}_1) , even if \mathbf{x}_1 is nonlinear functions of them. This formulation is useful for more complicated models. • If instead of adding RF residuals we replace y_2 with \hat{y}_2 , the two-step procedure consistently estimates a different set of scaled parameters in the basic model. With random sampling, it has little to offer over the CF, and does not work if, say, y_2^2 or $y_2\mathbf{z}$ appear in the model.

• If we make the stronger assumption

 $(u_1, v_2) | \mathbf{z} \sim BivariateNormal$

with $\rho_1 = Corr(u_1, v_2)$, then we can proceed with MLE based on $f(y_1, y_2 | \mathbf{z}) = f(y_1 | y_2, \mathbf{z}) f(y_2 | \mathbf{z}).$

• The distribution $f(y_2|\mathbf{z})$ is straightforward because it is homoskedastic normal with a linear conditional mean.

• For $f(y_1|y_2, \mathbf{z})$ we have, for example,

$$P(y_1 = 1 | y_2, \mathbf{z}) = \Phi \left[\frac{\alpha_1 y_2 + \mathbf{z}_1 \boldsymbol{\delta}_1 + (\rho_1 / \tau_2) (y_2 - \mathbf{z} \boldsymbol{\delta}_2)}{(1 - \rho_1^2)^{1/2}} \right]$$

and then $P(y_1 = 0 | y_2, \mathbf{z})$ is immediate. Then, all parameters – $\alpha_1, \delta_1, \rho_1, \delta_2, \tau_2$ are estimated jointly by MLE conditional on \mathbf{z} .

• The Stata command is "ivprobit." The same sorts of goodness-of-fit measures and partial effects are available, of course. For APEs, still might want to bootstrap the standard errors, confidence intervals.

Binary EEV

• What if y_2 is not continuous? No generally useful two-step methods are available when discreteness in y_2 is important. The CF approach above – and even more recent nonparametric approaches by Blundell and Powell – hinges on being able to write

$$y_2 = g_2(\mathbf{z}) + v_2$$

where

 v_2 is independent of **z**.

• If, say, y_2 is binary, this representation does not exist. Generally, the natural choice for $g_2(\mathbf{z})$ is $E(y_2|\mathbf{z})$. But when y_2 is discrete, $v_2 = y - E(y_2|\mathbf{z})$ usually depends on \mathbf{z} in higher moments, such as the variance.

• When y_2 is binary, the support of v_2 conditional on \mathbf{z} is just the two points $\{-g_2(\mathbf{z}), 1 - g_2(\mathbf{z})\}$, and so v_2 and \mathbf{z} are clearly not independent. • Somewhat radical suggestion: First, standardize y_2 as

$$r_2 = \frac{\left[y_2 - E(y_2|\mathbf{z})\right]}{sd(y_2|\mathbf{z})},$$

so that $E(r_2|\mathbf{z}) = 0$, $Var(r_2|\mathbf{z}) = 1$. Then, just assume that

$$D(u_1|y_2,\mathbf{z}) = D(u_1|r_2)$$

that is, $D(u_1|y_2, \mathbf{z})$ depends on (y_2, \mathbf{z}) only through the standardized error r_2 .

- Could use standardized residuals $\hat{r}_{i2} = [y_{i2} \hat{E}(y_{i2}|\mathbf{z}_i)]/\hat{sd}(y_{i2}|\mathbf{z}_i)$ in a control function approach.
- This is "radical" because it does not follow from standard assumptions, such as joint normality of (u_1, v_2) .
- Some methods exist for estimating parameters up to an uknown (but common) scale, but they often require special assumptions and do not deliver magnitudes of effect.

• Generally available approach: MLE. Assume (y_1, y_2) are generated as

$$y_1 = 1[\alpha_1 y_2 + \mathbf{z}_1 \mathbf{\delta}_1 + u_1 > 0]$$

$$y_2 = 1[\mathbf{z}\mathbf{\delta}_2 + v_2 > 0],$$

where (u_1, v_2) is independent of **z** and

$$\left(\begin{array}{c} u_1 \\ v_2 \end{array}\right) \sim Normal \left[\left(\begin{array}{c} 0 \\ 0 \end{array}\right), \left(\begin{array}{c} 1 & \rho_1 \\ \rho_1 & 1 \end{array}\right) \right]$$

- Distribution $D(y_2|\mathbf{z})$ is straightforward: probit.
- $D(y_1|y_2, \mathbf{z})$ is more complicated, but tractable. For example,

$$P(y_1 = 1 | y_2 = 1, \mathbf{z}) = \frac{1}{\Phi(\mathbf{z}\boldsymbol{\delta}_2)} \int_{-\mathbf{z}\boldsymbol{\delta}_2}^{\infty} \Phi[(\alpha_1 y_2 + \mathbf{z}_1 \boldsymbol{\delta}_1 + \rho_1 \boldsymbol{v}_2)/(1 - \rho_1^2)^{1/2}] \cdot \phi(\boldsymbol{v}_2) d\boldsymbol{v}_2$$

• The other three conditional probabilities are similar. Combine these with the probit for $D(y_2|\mathbf{z})$ to obtain the MLE (conditional on \mathbf{z}).

• In Stata, can get "biprobit" to estimate this model. Get all parameter estimates directly.

- Much harder is to allow true simultaneity between y₁ and y₂. In fact, the model does not make logical sense for all values of parameters.
 Most applications are not truly simultaneous in nature.
- Because we are working with $D(y_1|y_2, \mathbf{z})$, it is straightforward to replace the linear function of (y_2, \mathbf{z}) with other functions, such as interactions between y_2 and elements of \mathbf{z} .

• You should **not** try to emulate "two stage least squares" as follows. (1) Run probit of y_{i2} on \mathbf{z}_i and obtain the fitted probabilities, $\hat{\Phi}_{i2}$. (2) Run probit of y_{i1} on $\hat{\Phi}_{i2}$, \mathbf{z}_{i1} . The coefficients are usually much larger than other coefficients because $\hat{\Phi}_{i2}$ has a smaller range than y_{i2} .

• As far as we know, this "forbidden regression" estimates nothing interesting, although APEs have not been studied (I think).

• The problem is trying to take the expected value through the indicator function: If

$$y_1 = 1[\alpha_1 y_2 + \mathbf{z}_1 \mathbf{\delta}_1 + u_1 > 0]$$

does it follow that

$$P(y_1 = 1 | \mathbf{z}) = \Phi[\alpha_1 \Phi(\mathbf{z} \boldsymbol{\delta}_2) + \mathbf{z}_1 \boldsymbol{\delta}_1]?$$

• No. To see why, write $y_2 = \Phi(\mathbf{z}\boldsymbol{\delta}_2) + r_2$. Then

$$P(y_1 = 1 | \mathbf{z}) = P[\alpha_1 \Phi(\mathbf{z} \boldsymbol{\delta}_2) + \mathbf{z}_1 \boldsymbol{\delta}_1 + \alpha_1 r_2 + u_1 > 0 | \mathbf{z}].$$

But $\alpha_1 r_2 + u_1$ is not independent of **z** and is clearly not normally distributed.

5. PANEL DATA MODELS

Pooled Methods

• Useful to start with methods that do not explicitly introduce unobserved heterogeneity. Assume a balanced panel,

 $\{(\mathbf{x}_{it}, y_{it}) : t = 1, ..., T\}$ and *N* cross section observations.

• An index model for $P(y_{it} = 1 | \mathbf{x}_{it})$ is

$$P(y_{it} = 1 | \mathbf{x}_{it}) = G(\mathbf{x}_{it} \boldsymbol{\beta}), t = 1, \dots, T,$$

where \mathbf{x}_{it} generally includes a constant, time dummies, explanatory variables that do not change across *i*, and those that do.

• \mathbf{x}_{it} can contain lagged dependent variables and lags of other variables.

• Pooled (partial) MLE is very attractive, as it is simple and require no further modeling. For each (i, t), the log likelihood is

$$\ell_{it}(\boldsymbol{\beta}) = (1 - y_{it}) \log[1 - G(\mathbf{x}_{it}\boldsymbol{\beta})] + y_{it} \log[G(\mathbf{x}_{it}\boldsymbol{\beta})]$$

• Consistency follows from general pooled MLE results. Generally, we need a sandwich etimator to account for serial correlation.

• For each *t*, the APE is estimated as

$$\left[N^{-1}\sum_{i=1}^{N}g(\mathbf{x}_{it}\mathbf{\hat{\beta}})\right]\hat{\beta}_{j}$$

and these can be further averaged across *t* if desired to get a single scale factor.

• With small *T* and large *N* (our setting), apply the "panel bootstrap," where cross section units are resampled. That is, we sample from the integers $\{1, 2, ..., N\}$ and keep all time periods for each unit drawn. We do not resample time periods within cross section units.

• If the model is "dynamically complete" in the sense that

$$P(y_{it} = 1 | \mathbf{x}_{it}, y_{i,t-1}, \mathbf{x}_{i,t-1}, \dots, y_{i1}, \mathbf{x}_{i1}) = P(y_{it} = 1 | \mathbf{x}_{it})$$

then we can used the usual standard errors reported with the pooled MLE. In addition, all of the standard tests, include the "likelihood ratio" test, are valid.

- As usual, this condition is unlikely to hold unless \mathbf{x}_{it} contains one or more lagged dependent variables.
- How might we test for dynamic completeness? Lots of possibilities, but here is one. Compute residuals as $\hat{u}_{it} = y_{it} - G(\mathbf{x}_{it}\hat{\boldsymbol{\beta}})$, and then estimate the probit or logit "model" of y_{it} on \mathbf{x}_{it} , $\hat{u}_{i,t-1}$,

 $t = 2, \ldots, T, i = 1, \ldots, N$ and use the usual *t* statistic on $\hat{u}_{i,t-1}$.

• Dynamic models can be useful for prediction and controlling for endogeneity of policy interventions – just as in linear regression.
Models with Heterogeneity and Strictly Exogenous Regressors

• It does not hurt to start with a linear model

$$P(y_{it} = 1 | \mathbf{x}_{it}, c_i) = \mathbf{x}_{it} \mathbf{\beta} + c_i, t = 1, \dots, T$$

and also assume the strict exogeneity assumption,

$$P(y_{it} = 1 | \mathbf{x}_{i1}, \mathbf{x}_{i2}, \dots, \mathbf{x}_{iT}, c_i) = P(y_{it} = 1 | \mathbf{x}_{it}, c_i), t = 1, \dots, T$$

• Assuming the elements of \mathbf{x}_{it} are time-varying (for at least some individuals), $\boldsymbol{\beta}$ can be consistently estimated by the usual fixed effects estimator applied to a linear model:

$$y_{it} = \mathbf{x}_{it}\mathbf{\beta} + c_i + u_{it}, E(u_{it}|\mathbf{x}_i, c_i) = 0, t = 1, \dots, T.$$

• We should not take the LPM literal, because we must have

$$0 \leq \mathbf{x}_{it} \mathbf{\beta} + c_i \leq 1$$
, all \mathbf{x}_{it}

which puts strange restrictions on the heterogeneity distribution.

- But FE estimation of the linear model does not restrict $D(c_i | \mathbf{x}_i)$. Easy to make inference robust to serial correlation in u_{it} and heteroskedasticity.
- The FE coefficients can give reasonable estimates of average partial effects. In particular, they can be compared with APEs from nonlinear models

• Unobserved effects logit and probit models are popular nonlinear models. The probit model is given as

$$P(y_{it} = 1 | \mathbf{x}_{it}, c_i) = \Phi(\mathbf{x}_{it}\boldsymbol{\beta} + c_i), \ t = 1, \dots, T.$$

- Logit replaces $\Phi(\cdot)$ with $\Lambda(\cdot)$.
- Before introducing any additional assumptions, we can ask: What are the quantities of interest for most purposes? Usually, partial effects. For a continuous x_{tj} ,

$$\frac{\partial P(y_t = 1 | \mathbf{x}_t, c)}{\partial x_{tj}} = \beta_j \phi(\mathbf{x}_t \boldsymbol{\beta} + c).$$

• Depends on unobserved c, but sign is given by β_j .

• Can look at discrete changes:

$$\Phi(\mathbf{x}_t^{(1)}\boldsymbol{\beta}+c)-\Phi(\mathbf{x}_t^{(0)}\boldsymbol{\beta}+c)$$

Again, this depends on *c*.

• For any two continuous covariates, the ratio of coefficients, β_j/β_h , is identical to the ratio of partial effects (and the ratio does not depend on the covariates or unobserved heterogeneity, c_i).

• But we often want magnitudes of the partial effects. These depend not only on the value of the covariates, say \mathbf{x}_t , but also on the value of the unobserved heterogeneity.

• Questions: (i) Assuming we can estimate β , what should we do about the unobservable *c*? (ii) If we can only estimate β up to a common scale, can we still learn something useful about magnitudes of partial effects? (iii) What kinds of assumptions do we need to estimate partial effects? • Helpful to have a general setup. Let $\{(\mathbf{x}_{it}, y_{it}) : t = 1, ..., T\}$ be a random draw from the cross section. Suppose we are interested in

$$E(y_{it}|\mathbf{x}_{it},\mathbf{c}_i) = m_t(\mathbf{x}_{it},\mathbf{c}_i),$$

where \mathbf{c}_i can be a vector of unobserved heterogeneity.

• Partial effects: if x_{tj} is continuous, then

$$\theta_j(\mathbf{x}_t, \mathbf{c}) \equiv \frac{\partial m_t(\mathbf{x}_t, \mathbf{c})}{\partial x_{tj}},$$

or discrete changes.

• How do we account for unobserved \mathbf{c}_i ? If we know enough about the distribution of \mathbf{c}_i we can insert meaningful values for \mathbf{c} . For example, if $\boldsymbol{\mu}_{\mathbf{c}} = E(\mathbf{c}_i)$, then we can compute the *partial effect at the average* (*PEA*),

$$PEA_j(\mathbf{x}_t) = \theta_j(\mathbf{x}_t, \boldsymbol{\mu}_c).$$

Of course, we need to estimate the function m_t and μ_c . If we can estimate the distribution of c_i , or features in addition to its mean, we can insert different quantiles, or a certain number of standard deviations from the mean. • Alternatively, we can obtain the *average partial effect* (APE) (or *population average effect*) by averaging across the distribution of \mathbf{c}_i :

$$APE(\mathbf{x}_t) = E_{\mathbf{c}_i}[\theta_j(\mathbf{x}_t,\mathbf{c}_i)].$$

• The APE is closely related to the notion of the *average structural function (ASF)* (Blundell and Powell (2003)). The ASF is defined as a function of \mathbf{x}_t :

$$ASF(\mathbf{x}_t) = E_{\mathbf{c}_i}[m_t(\mathbf{x}_t, \mathbf{c}_i)].$$

• Passing the derivative through the expectation in the ASF gives an APE.

• How do APEs relate to parameters? Index model:

$$m_t(\mathbf{x}_t,c) = G(\mathbf{x}_t\boldsymbol{\beta}+c),$$

where $G(\cdot)$ is differentiable. Then

$$\theta_j(\mathbf{x}_t,c) = \beta_j g(\mathbf{x}_t \boldsymbol{\beta} + c),$$

where $g(\cdot)$ is the derivative of $G(\cdot)$.

• The APE as a function of \mathbf{x}_t "integrates out" c_i :

$$APE(\mathbf{x}_t) = \beta_j E_{c_i}[g(\mathbf{x}_t \boldsymbol{\beta} + c_i)]$$

Even if $G(\cdot)$ is known, magnitude of effects cannot be estimated without making assumptions about the distribution of c_i .

• Important: Definitions of partial effects do not depend on whether \mathbf{x}_{it} is correlated with \mathbf{c}_i . Of course, whether we can estimate the APEs, and how, certainly does.

Exogeneity Assumptions

- As in linear case, cannot get by with just specifying a model for the contemporaneous conditional distribution, $D(\mathbf{y}_{it}|\mathbf{x}_{it}, \mathbf{c}_i)$.
- The most useful definition of strict exogeneity for nonlinear panel data models is

$$D(\mathbf{y}_{it}|\mathbf{x}_{i1},\ldots,\mathbf{x}_{iT},\mathbf{c}_i) = D(\mathbf{y}_{it}|\mathbf{x}_{it},\mathbf{c}_i).$$

Chamberlain (1984) labeled (10) *strict exogeneity conditional on the unobserved effects* \mathbf{c}_i . Conditional mean version:

$$E(y_{it}|\mathbf{x}_{i1},\ldots,\mathbf{x}_{iT},\mathbf{c}_i)=E(y_{it}|\mathbf{x}_{it},\mathbf{c}_i).$$

• The sequential exogeneity assumption is

$$D(\mathbf{y}_{it}|\mathbf{x}_{i1},\ldots,\mathbf{x}_{it},\mathbf{c}_i) = D(\mathbf{y}_{it}|\mathbf{x}_{it},\mathbf{c}_i).$$

Unfortunately, it is much more difficult to allow sequential exogeneity in in nonlinear models. (Most progress for lagged dependent variables or specific functional forms, such as exponential.)

• Neither strict nor sequential exogeneity allows for contemporaneous endogeneity of one or more elements of \mathbf{x}_{it} , where, say, x_{itj} is correlated with unobserved, time-varying unobservables that affect \mathbf{y}_{it} .

Conditional Independence

• In linear models, serial dependence of idiosyncratic shocks is easily dealt with, either by "cluster robust" inference or Generalized Least Squares extensions of Fixed Effects and First Differencing. With strictly exogenous covariates, serial correlation never results in inconsistent estimation, even if improperly modeled. The situation is different with most nonlinear models estimated by MLE.

• *Conditional independence (CI)* (under strict exogeneity):

$$D(\mathbf{y}_{i1},\ldots,\mathbf{y}_{iT}|\mathbf{x}_i,\mathbf{c}_i) = \prod_{t=1}^T D(\mathbf{y}_{it}|\mathbf{x}_{it},\mathbf{c}_i).$$

• In a parametric context, the CI assumption reduces our task to specifying a model for $D(\mathbf{y}_{it}|\mathbf{x}_{it}, \mathbf{c}_i)$, and then determining how to treat the unobserved heterogeneity, \mathbf{c}_i .

In random effects and correlated random frameworks (next section),
CI plays a critical role in being able to estimate the "structural"
parameters and the parameters in the distribution of c_i (and therefore, in estimating PEAs). In a broad class of popular models, CI plays no
essential role in estimating APEs.

Assumptions about the Unobserved Heterogeneity

Random Effects

• Generally stated, the key RE assumption is

$$D(\mathbf{c}_i|\mathbf{x}_{i1},\ldots,\mathbf{x}_{iT})=D(\mathbf{c}_i).$$

and then the unconditional distribution of \mathbf{c}_i is modeled. This is very restrictive. It implies that all APEs can be obtained by just estimating $E(y_{it}|\mathbf{x}_{it} = \mathbf{x}_t)$.

Correlated Random Effects

A CRE framework allows dependence between \mathbf{c}_i and \mathbf{x}_i , but restricted in some way. In a parametric setting, we specify a distribution for $D(\mathbf{c}_i | \mathbf{x}_{i1}, \dots, \mathbf{x}_{iT})$, as in Chamberlain (1980,1982), and much work since. Distributional assumptions that lead to simple estimation – homoskedastic normal with a linear conditional mean — can be restrictive. • Possible to drop parametric assumptions with

$$D(\mathbf{c}_i|\mathbf{x}_i) = D(\mathbf{c}_i|\mathbf{\bar{x}}_i),$$

without restricting $D(\mathbf{c}_i | \mathbf{\bar{x}}_i)$.

• We will use parametric assumptions for $D(\mathbf{c}_i | \mathbf{\bar{x}}_i)$, such as normality (other possibilities exist), but some general arguments do not rely on a specific form for $D(\mathbf{c}_i | \mathbf{\bar{x}}_i)$. • In particular, we can show that the APEs are identified very generally. By the LIE, we can always write

$$ASF(\mathbf{x}_t) = E_{\mathbf{c}_i}[m_t(\mathbf{x}_t, \mathbf{c}_i)] = E_{\mathbf{x}_i}\{E[m_t(\mathbf{x}_t, \mathbf{c}_i)|\mathbf{x}_i]\}$$

$$\equiv E_{\mathbf{x}_i}[r_t(\mathbf{x}_t, \mathbf{\bar{x}}_i)]$$

where

$$r_t(\mathbf{x}_t, \mathbf{\bar{x}}_i) \equiv E[m_t(\mathbf{x}_t, \mathbf{c}_i) | \mathbf{\bar{x}}_i].$$

• Notice how \mathbf{x}_t acts as a fixed argument; we will insert values later.

• Importantly, under strict exogeneity conditional conditional on \mathbf{c}_i and the assumption $D(c_i | \mathbf{x}_i) = D(c_i | \mathbf{\bar{x}}_i)$, we have

$$E(y_{it}|\mathbf{x}_i) = E[E(y_{it}|\mathbf{x}_i, \mathbf{c}_i)|\mathbf{x}_i] = E[m_t(\mathbf{x}_{it}, \mathbf{c}_i)|\mathbf{x}_i] = \int m_t(\mathbf{x}_{it}, \mathbf{c})dF(\mathbf{c}|\mathbf{x}_i)$$
$$= \int m_t(\mathbf{x}_{it}, \mathbf{c})dF(\mathbf{c}|\mathbf{\bar{x}}_i) = r_t(\mathbf{x}_{it}, \mathbf{\bar{x}}_i).$$

• Because $E(y_{it}|\mathbf{x}_i)$ depends only on $(\mathbf{x}_{it}, \mathbf{\bar{x}}_i)$, we must have

$$E(y_{it}|\mathbf{x}_{it},\mathbf{\bar{x}}_i) = r_t(\mathbf{x}_{it},\mathbf{\bar{x}}_i).$$

• Therefore, once we have consistently estimated $r_t(\cdot, \cdot)$, a consistent estimator of the average structural function is

$$\widehat{ASF}(\mathbf{x}_t) = N^{-1} \sum_{i=1}^N \hat{r}_t(\mathbf{x}_t, \mathbf{\bar{x}}_i).$$

• We will obtain $\hat{r}_t(\cdot, \cdot)$ from parametric models, but flexible nonparametric approaches can be used because the mean function $E(y_{it}|\mathbf{x}_{it}, \mathbf{\bar{x}}_i)$ is identified generally.

Fixed Effects

The label "fixed effects" is used in different ways by different researchers. One view: c_i, i = 1,...,N are parameters to be estimated. Usually leads to an "incidental parameters problem" unless *T* is "large."
Second meaning of "fixed effects": D(c_i|x_i) is unrestricted and we look for objective functions that do not depend on c_i but still identify the population parameters. Leads to "conditional MLE" if we can find "sufficient statistics" s_i such that

$$D(y_{i1},\ldots,y_{iT}|\mathbf{x}_i,\mathbf{c}_i,\mathbf{s}_i) = D(y_{i1},\ldots,y_{iT}|\mathbf{x}_i,\mathbf{s}_i).$$

- Conditional Independence is usually maintained in the approach based on finding sufficient statistics.
- Key point: PEAs and APEs are generally unidentified by methods that use conditioning to eliminate c_i , essentially by construction.

Correlated Random Effects Probit

• Specify the model:

$$P(y_{it} = 1 | \mathbf{x}_{it}, c_i) = \Phi(\mathbf{x}_{it}\boldsymbol{\beta} + c_i), \ t = 1, \dots, T.$$

• Strict exogeneity conditional on *c_i*:

$$P(y_{it} = 1 | \mathbf{x}_{i1}, \dots, \mathbf{x}_{iT}, c_i) = P(y_{it} = 1 | \mathbf{x}_{it}, c_i), t = 1, \dots, T.$$

• Conditional independence (where we condition on $\mathbf{x}_i = (\mathbf{x}_{i1}, \dots, \mathbf{x}_{iT})$ and c_i):

$$D(y_{i1},\ldots,y_{iT}|\mathbf{x}_i,c_i)=D(y_{i1}|\mathbf{x}_i,c_i)\cdots D(y_{iT}|\mathbf{x}_i,c_i)$$

• Model for $D(c_i | \mathbf{x}_i)$ (Mundlak special case of Chamberlain approach):

$$c_i = \psi + \mathbf{\bar{x}}_i \boldsymbol{\xi} + a_i, \ a_i | \mathbf{x}_i \sim \text{Normal}(0, \sigma_a^2).$$

• Can obtain the first three assumptions from a latent variable model:

$$y_{it} = 1[\mathbf{x}_{it}\mathbf{\beta} + c_i + u_{it} > 0]$$
$$u_{it}|(\mathbf{x}_{it}, c_i) \sim Normal(0, 1)$$
$$D(u_{it}|\mathbf{x}_i, c_i) = D(u_{it}|\mathbf{x}_{it}, c_i)$$
$$\{u_{it} : t = 1, \dots, T\} \text{ independent across } t$$

• Can include time dummies in \mathbf{x}_{it} but omit from $\mathbf{\bar{x}}_i$. Can also include time-constant elements, say \mathbf{z}_i :

$$c_i = \boldsymbol{\psi} + \mathbf{\bar{x}}_i \boldsymbol{\xi} + \mathbf{z}_i \boldsymbol{\zeta} + a_i$$

(Up to you to intepret ζ)

• If $\boldsymbol{\xi} = \mathbf{0}$, get the traditional random effects probit model. Adding $\mathbf{\bar{x}}_i \boldsymbol{\xi}$ allows a specific form of correlation between c_i and $(\mathbf{x}_{i1}, \dots, \mathbf{x}_{iT})$.

• MLE (conditional on \mathbf{x}_i) is relatively straightforward but it can be computationally demanding. It is based on the joint distribution $D(y_{i1}, \dots, y_{iT} | \mathbf{x}_i)$. For simplicity, omit \mathbf{z}_i .

$$\ell_i(\boldsymbol{\beta}, \boldsymbol{\psi}, \boldsymbol{\xi}, \sigma_a^2) = \log \left[\int_{-\infty}^{\infty} \left(\prod_{t=1}^{T} f(\boldsymbol{y}_{it} | \mathbf{x}_{it}, c; \boldsymbol{\beta}) \right) h(c | \mathbf{\bar{x}}_i; \boldsymbol{\psi}, \boldsymbol{\xi}, \sigma_a^2) dc \right]$$

• Here, $f(y_t | \mathbf{x}_t, c; \boldsymbol{\beta}) = [1 - \Phi(\mathbf{x}_t \boldsymbol{\beta} + c)]^{(1-y_t)} [\Phi(\mathbf{x}_t \boldsymbol{\beta} + c)]^{y_t}$ and $h(c | \mathbf{\bar{x}}_i; \psi, \boldsymbol{\xi}, \sigma_a^2)$ is the normal distributio with mean $\psi + \mathbf{\bar{x}}_i \boldsymbol{\xi}$ and variance σ_a^2 .

- Requires numerical integration, but is programmed in lots of packages.
- All parameters, including are identified; inference is standard.
- In Stata, "xtprobit" with an "re" qualifier. Need to generate and include the time averages.
- Generally, including a set of time dummies is a good idea, and time constant variables can be included directly.
- Simple to compute a Wald test of whether the time averages are needed. H_0 : $\boldsymbol{\xi} = \boldsymbol{0}$.

```
egen xlbar = mean(x1), by(id)
egen x2bar = mean(x2), by(id)
egen xKbar = mean(xK), by(id)
xtprobit y d2 ... dTx1 x2 ... xK xlbar ... xKbar
z1 ... zJ, re
test xlbar x2bar ... xKbar
```

- Can estimate features of the unconditional distribution of c_i .
- For example, $c_i = \psi + \bar{\mathbf{x}}_i \boldsymbol{\xi} + a_i$ and so

$$\mu_c = E(c_i) = \psi + E(\mathbf{\bar{x}}_i)\boldsymbol{\xi}$$

A consistent estimator of μ_c is

$$\hat{\mu}_c = \hat{\psi} + \mathbf{\bar{x}}\hat{\boldsymbol{\xi}}$$

where $\mathbf{\bar{x}}$ is the sample average of $\mathbf{\bar{x}}_i$:

$$\mathbf{\bar{x}} = N^{-1} \sum_{i=1}^{N} \mathbf{\bar{x}}_i = (NT)^{-1} \sum_{i=1}^{N} \sum_{t=1}^{T} \mathbf{x}_{it}$$

• We also have

$$\sigma_c^2 = \boldsymbol{\xi}' Var(\mathbf{\bar{x}}_i)\boldsymbol{\xi} + \sigma_a^2,$$

and so

$$\hat{\sigma}_{c}^{2} \equiv \hat{\boldsymbol{\xi}}' \left(N^{-1} \sum_{i=1}^{N} (\bar{\mathbf{x}}_{i} - \bar{\mathbf{x}})' (\bar{\mathbf{x}}_{i} - \bar{\mathbf{x}}) \right) \hat{\boldsymbol{\xi}} + \hat{\sigma}_{a}^{2}$$

Can evaluate PEs at, say, the estimated mean value, say $\hat{\mu}_c$, or look at $\hat{\mu}_c \pm k\hat{\sigma}_c$ for various *k*.

• The APEs are gotten, as usual, from the ASF:

$$ASF(\mathbf{x}_{t}) = E_{c_{i}}[\Phi(\mathbf{x}_{t}\boldsymbol{\beta} + c_{i})] = E_{\mathbf{\bar{x}}_{i}}\{E[\Phi(\mathbf{x}_{t}\boldsymbol{\beta} + c_{i})|\mathbf{\bar{x}}_{i}]\}$$
$$= E_{\mathbf{\bar{x}}_{i}}\{E[\Phi(\mathbf{x}_{t}\boldsymbol{\beta} + \psi + \mathbf{\bar{x}}_{i}\mathbf{\xi} + a_{i})|\mathbf{\bar{x}}_{i}]\}$$
$$= E_{\mathbf{\bar{x}}_{i}}\{\Phi[(\mathbf{x}_{t}\boldsymbol{\beta} + \psi + \mathbf{\bar{x}}_{i}\mathbf{\xi})/(1 + \sigma_{a}^{2})^{1/2}]\}$$
$$\equiv E_{\mathbf{\bar{x}}_{i}}[\Phi(\mathbf{x}_{t}\boldsymbol{\beta}_{a} + \psi_{a} + \mathbf{\bar{x}}_{i}\mathbf{\xi}_{a})]$$

where, for example, $\beta_a = \beta/(1 + \sigma_a^2)^{1/2}$ are scaled coefficients.

• Because we have consistent estimators of all parameters, we can estimate $ASF(\mathbf{x}_t)$ consistently as

$$\widehat{ASF}(\mathbf{x}_t) = N^{-1} \sum_{i=1}^N \Phi(\mathbf{x}_t \hat{\boldsymbol{\beta}}_a + \hat{\boldsymbol{\psi}}_a + \bar{\mathbf{x}}_i \hat{\boldsymbol{\xi}}_a)$$

where, for example, $\hat{\boldsymbol{\beta}}_a = \hat{\boldsymbol{\beta}}/(1 + \hat{\sigma}_a^2)^{1/2}$.

- Note where the averaging out occurs: across the sample of $\bar{\mathbf{x}}_i$.
- Take derivatives and changes with respect to \mathbf{x}_t . Can then average out across \mathbf{x}_{it} to get a single APE.
- Conditional independence is very strong, and the usual RE estimator not known to be robust to its violation (unlike RE in linear model).

• If we focus on APEs, can just use a pooled method because

$$P(y_{it} = 1 | \mathbf{x}_i) = P(\mathbf{x}_{it} \boldsymbol{\beta} + \boldsymbol{\psi} + \mathbf{\bar{x}}_i \boldsymbol{\xi} + a_i + u_{it} > 0 | \mathbf{x}_i)$$

= $P[a_i + u_{it} > -(\mathbf{x}_{it} \boldsymbol{\beta} + \boldsymbol{\psi} + \mathbf{\bar{x}}_i \boldsymbol{\xi}) | \mathbf{x}_i]$
= $\Phi(\mathbf{x}_{it} \boldsymbol{\beta}_a + \boldsymbol{\psi}_a + \mathbf{\bar{x}}_i \boldsymbol{\xi}_a).$

• To estimate β_a, ψ_a , and ξ_a , just used pooled probit with $\bar{\mathbf{x}}_i$ as an additional set of explanatory variables. Cannot identify β and σ_a^2 separately, but do not need to for APEs.

• Pooled probit inefficient. Can use GMM or "generalized estimating equations" (essentially, multivariate nonlinear least squares) to enhance efficiency without sacrificing consistency.

• Using either the full random effects assumptions or pooled probit, it is easy to test the strict exogeneity assumption conditional on c_i , provided $T \ge 3$. Let \mathbf{w}_{it} be a subset of \mathbf{x}_{it} that possibly is not strictly exogenous. Then, along with time dummies, \mathbf{x}_{it} , $\mathbf{\bar{x}}_i$, and \mathbf{z}_i (time-constant variables), include $\mathbf{w}_{i,t+1}$ and test joint significance. Lose the last time period. • What is dubbed "fixed effects" probit is an inconsistent method (for fixed *T*) that treats *c_i* as *N* parameters to estimate. Suffers from incidental parameters problem.

• Some recent work shows that perhaps the APEs are well estimated without "too much" heterogeneity if *T* is not "too small." Also, some corrections to the bias caused have been offered and studied.
Fixed Effects Logit

If we replace the probit function by the logit function and maintain conditional independence, we can estimate β without restricting *D*(*c_i*|**x**_i). Often called "fixed effects logit," but it is really a conditional MLE were we condition on (*n_i*, **x**_i), where

$$n_i = \sum_{r=1}^T y_{ir}$$

is the total number of successes for unit *i*.

• Can show $D(y_{i1}, ..., y_{iT} | n_i, \mathbf{x}_i, c_i)$ does not depend on c_i , but does depend on $\boldsymbol{\beta}$, provided there is time variation in \mathbf{x}_{it} .

• Generally, $n_i = 0$ and $n_i = T$ observations are uninformative. So, when T = 2, only $n_i = 1$ observations contain information on β :

$$P(y_{i2} = 1 | n_i = 1, \mathbf{x}_i) = \Lambda[(\mathbf{x}_{i2} - \mathbf{x}_{i1})\boldsymbol{\beta}]$$
$$P(y_{i1} = 1 | n_i = 1, \mathbf{x}_i) = 1 - \Lambda[(\mathbf{x}_{i2} - \mathbf{x}_{i1})\boldsymbol{\beta}]$$

Let $w_i = (1 - y_{i1})y_{i2}$. Then $D(w_i | \Delta \mathbf{x}_i)$ follows a standard logit model, where $\Delta \mathbf{x}_i = \mathbf{x}_{i2} - \mathbf{x}_{i1}$.

• Generally, not known to be consistent without condition independence. So it does not strictly relax assumptions for CRE probit when the latter is estimated using pooled probit, or some other robust method, such as GEE.

- PEAs and APEs not identified by FE logit (because the distribution of c_i is unspecified).
- In Stata, "xtlogit" with "fe" option.

xtlogit y d2 ... dT x2 ... xK, fe

- There is a CRE version of logit, but it is computationally hard and more difficult to work (no closed forms for APEs, for example) than CRE probit.
- Can show with T = 2 that, if treat c_i as parameters to estimate along with β , the plim of the estimator is 2β .

Dynamic Models

• Difficult to specify and estimate models with heterogeneity if we do not assume strict exogeneity. Completely specified dynamic models can be estimated under certain assumptions.

• A linear model, estimated using the Arellano and Bond approach (and extensions), is a good starting point. Coefficients can be compared with partial effects from nonlinear models.

• Here we study a simple dynamic model: There is one lag of the dependent variable and all other explanatory variables are strictly exogenous:

$$P(y_{it} = 1 | \mathbf{z}_i, y_{i,t-1}, \dots, y_{i0}, c_i) = P(y_{it} = 1 | \mathbf{z}_{it}, y_{i,t-1}, c_i),$$

$$t = 1, \dots, T.$$

This also assumes that we have the dynamics correctly specified.

• Why is this specification of interest? Allows us to assess the relative important of "state dependence" – that is, whether being in a certain state last period affects the probability of being in that state this period – and unobserved heterogeneity. For example, if we control for different attributes in c_i , is welfare participation persistent? How persistent? Just seeing correlation over time, even conditional on \mathbf{z}_{it} , does not tell us that the previous state matters; we must also control for c_i .

• We study the dynamic probit model primarily for computational reasons; logit is more difficult:

$$P(y_{it} = 1 | \mathbf{z}_{it}, y_{i,t-1}, c_i) = \Phi(\mathbf{z}_{it} \mathbf{\delta} + \rho y_{i,t-1} + c_i),$$

which, as we will see, allows us to estimate the parameters and APEs very easily (under a distributional assumption for the heterogeneity).

• Treating the c_i as parameters to estimate causes inconsistency in δ and ρ . Somewhat open question is how it affects bias in APEs. It is computationally intensive.

• Several different approaches to handling the "initial conditions" problem. (i) Treat the c_i as parameters to estimate (incidental parameters problem and computationally intensive). (ii) Try to estimate the parameters δ and ρ without specifying conditional or unconditional distributions for c_i (available in some special cases). Generally, cannot estimate partial effects.). (iii) Approximate $D(y_{i0}|c_i, \mathbf{z}_i)$ and then model $D(c_i|\mathbf{z}_i)$. Leads to $D(y_{i0}, y_{i1}, \dots, y_{iT}|\mathbf{z}_i)$ and MLE conditional on \mathbf{z}_i . (iv) Model $D(c_i|y_{i0}, \mathbf{z}_i)$. Leads to $D(y_{i1}, \dots, y_{iT}|y_{i0}, \mathbf{z}_i)$ and MLE conditional on (y_{i0}, \mathbf{z}_i) . Wooldridge (2005b, Journal of Applied Econometrics) shows this can be computationally simple for popular models.

• Using the last approach for the probit model, a simple analysis is obtained from

$$c_i | \mathbf{z}_i, y_{i0} \sim Normal(\psi + \xi_0 y_{i0} + \mathbf{z}_i \boldsymbol{\xi}, \sigma_a^2)$$

Then

$$P(y_{it} = 1 | \mathbf{z}_i, y_{i,t-1}, \dots, y_{i0}, a_i) = \Phi(\mathbf{z}_{it} \mathbf{\delta} + \rho y_{i,t-1} + \psi + \xi_0 y_{i0} + \mathbf{z}_i \xi + a_i),$$

where $a_i \equiv c_i - \psi - \xi_0 y_{i0} - \mathbf{z}_i \boldsymbol{\xi}$. This allows us to characterize $D(y_{i1}, \dots, y_{iT} | \mathbf{z}_i, y_{i0})$ after "integrating out" c_i .

• Turns out that we can use standard random effects probit software, where the explanatory variables in time *t* are $(1, \mathbf{z}_{it}, y_{i,t-1}, y_{i0}, \mathbf{z}_i)$ in time period *t*. Easily get the average partial effects, too:

$$\widehat{ASF}(\mathbf{z}_t, y_{t-1}) = N^{-1} \sum_{i=1}^N \Phi(\mathbf{z}_t \hat{\mathbf{\delta}}_a + \hat{\rho}_a y_{t-1} + \hat{\psi}_a + \hat{\xi}_{a0} y_{i0} + \mathbf{z}_i \hat{\mathbf{\xi}}_a)$$

and take differences or derivatives with respect to elements of (\mathbf{z}_t, y_{t-1}) . As before, the coefficients are multiplied by $(1 + \hat{\sigma}_a^2)^{-1/2}$. • Let $\mathbf{x}_{i0} \equiv (y_{i0}, \mathbf{z}_i)$. Then the first two moments of c_i are easily estimated:

$$\hat{\mu}_{c} = \hat{\psi} + \hat{\xi}_{0} \bar{y}_{0} + \bar{z} \hat{\xi}$$
$$\hat{\sigma}_{c}^{2} = \hat{\lambda}' \left(N^{-1} \sum_{i=1}^{N} (\mathbf{x}_{i0} - \bar{\mathbf{x}}_{0})' (\mathbf{x}_{i0} - \bar{\mathbf{x}}_{0}) \right) \hat{\lambda} + \hat{\sigma}_{a}^{2}$$

where $\hat{\boldsymbol{\lambda}} = (\hat{\boldsymbol{\xi}}_0, \hat{\boldsymbol{\xi}}')'$.

6. MULTIVARIATE PROBIT

• Sometimes we have two or more binary responses to model. Call them y_g , g = 1, ..., G, each a binary response. No restriction such as $y_1 + y_2 + ... + y_G = 1$. In other words, any combination of zeros and ones is possible.

• Example: G = 2, y_1 indicates when a worker has employer-sponsored health insurance, y_2 indicates having an employer-sponsored pension plan. • The marginal distributions (but conditional on **x**, as always) are assumed to follow probits:

$$P(y_g = 1 | \mathbf{x}) = \Phi(\mathbf{x}_g \boldsymbol{\beta}_g), g = 1, \dots, G.$$

• Multivariate probit is like seemingly unrelated regressions for binary response. Can be obtained from

$$y_{i1}^{*} = \mathbf{x}_{i1}\boldsymbol{\beta}_{1} + e_{i1}$$
$$y_{i2}^{*} = \mathbf{x}_{i2}\boldsymbol{\beta}_{2} + e_{i2}$$
$$\vdots$$
$$y_{iG}^{*} = \mathbf{x}_{iG}\boldsymbol{\beta}_{G} + e_{iG},$$

with $\mathbf{e}_i | \mathbf{x}_i \sim Normal(\mathbf{0}, \mathbf{\Omega})$ with unit variances.

- Can be computationally hard with large *G*. Stata has the bivariate version programmed ("biprobit").
- Important difference with the linear case: if the joint distribution underlying multivariate probit is incorrect, but the probit marginals are correct, the joint MLE is (evidently) inconsistent. In the linear case,

$$y_{ig} = \mathbf{x}_{ig}\mathbf{\beta}_g + u_{ig}, g = 1, \ldots, G,$$

if every equation is correctly specified in the sense that $E(\mathbf{x}'_i u_{ig}) = \mathbf{0}$ for all *g*, the FGLS estimator is consistent even if, say, $E(\mathbf{u}_i \mathbf{u}'_i | \mathbf{x}_i)$ is heteroskedastic.

• And, of course, if $P(y_1 = 1 | \mathbf{x}) = \Phi(\mathbf{x}_1 \boldsymbol{\beta}_1)$ is correct but the probit model for equation two is incorrect, the joint procedure has no robustness properties.

- The reason to use multivariate probit is to enhance efficiency; how much it does is an empirical issue.
- Unlike in the linear case, there are no algebraic equivalences from having the same covariates in every equation.

7. EXAMPLES

LPM, Probit, and Logit with Exogenous Explanatory Variables

- Married women's labor force participation, using data from Mroz (1987)
- Dependent variable is *inlf*, "in the labor force."

. use mroz

. tab inlf

=1 if in lab frce, 1975	Freq.	Percent	Cum.
0 1	325 428	43.16 56.84	43.16 100.00
Total	 753	100.00	

Variable	0bs	Mean	Std. Dev.	Min	Max
nwifeinc	753	20.12896	11.6348	0290575	96
educ	753	12.28685	2.280246	5	17
exper	753	10.63081	8.06913	0	45
expersq	753	178.0385	249.6308	0	2025
age	753	42.53785	8.072574	30	60
kidslt6	+ 753	.2377158	.523959	0	3
kidsge6	753	1.353254	1.319874	0	8

. sum nwifeinc educ exper expersq age kidslt6 kidsge6

. * Estimate LPM by OLS.

. reg inlf nwifeinc educ exper expersq age kidslt6 kidsge6, robust

oggia Linea

Linear regress	sion				Number of obs F(7, 745) Prob > F R-squared Root MSE	= 753 = 62.48 = 0.0000 = 0.2642 = .42713
inlf	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
nwifeinc educ exper expersq age kidslt6 kidsge6 _cons	0034052 .0379953 .0394924 0005963 0160908 2618105 .0130122 .5855192	.0015249 .007266 .00581 .00019 .002399 .0317832 .0135329 .1522599	-2.23 5.23 6.80 -3.14 -6.71 -8.24 0.96 3.85	0.026 0.000 0.002 0.002 0.000 0.000 0.337 0.000	0063988 .023731 .0280864 0009693 0208004 3242058 013555 .2866098	0004115 .0522596 .0508983 0002233 0113812 1994152 .0395795 .8844287

. probit inlf nwifeinc educ exper expersq age kidslt6 kidsge6

Probit regress	Numbe	er of obs	=	753			
				LR ch	ii2(7)	=	227.14
				Prob	> chi2	=	0.0000
Log likelihood	d = -401.30219	9		Pseud	lo R2	=	0.2206
inlf	Coef.	Std. Err.	Z	P> z	[95%	Conf.	Interval]
nwifeinc	0120237	.0048398	-2.48	0.013	0215	096	0025378
educ	.1309047	.0252542	5.18	0.000	.0814	074	.180402
exper	.1233476	.0187164	6.59	0.000	.0866	641	.1600311
expersq	0018871	.0006	-3.15	0.002	003	063	0007111
age	0528527	.0084772	-6.23	0.000	0694	678	0362376
kidslt6	8683285	.1185223	-7.33	0.000	-1.100	628	636029
kidsge6	.036005	.0434768	0.83	0.408	049	208	.1212179
_cons	.2700768	.508593	0.53	0.595	7267	473	1.266901

. * Compute partial effects at the averages.

. mfx

Marginal effects after probit

у =	= Pr((inlf)	(predict)
-----	-------	--------	-----------

= .58154201

<pre>variable dy/dx Std. Err. z P> z [95% C.I.] X nwifeinc 0046962 .00189 -2.48 0.013008401000991 20.129 educ .0511287 .00986 5.19 0.000 .031805 .070452 12.2869 exper .0481771 .00733 6.57 0.000 .033815 .062539 10.6308 expersq0007371 .00023 -3.14 0.002001197000277 178.039 age0206432 .00331 -6.24 0.00002712701416 42.5378 kidslt63391514 .04636 -7.32 0.000430012248291 .237716 kidsge6 .0140628 .01699 0.83 0.408019228 .047353 1.35325</pre>								
nwifeinc0046962.00189-2.480.01300840100099120.129educ.0511287.009865.190.000.031805.07045212.2869exper.0481771.007336.570.000.033815.06253910.6308expersq0007371.00023-3.140.002001197000277178.039age0206432.00331-6.240.0000271270141642.5378kidslt63391514.04636-7.320.000430012248291.237716kidsge6.0140628.016990.830.408019228.0473531.35325	variable	dy/dx	Std. Err.	Z	P> z	[95%	C.I.]	Х
kidsge6 .0140628 .01699 0.83 0.408019228 .047353 1.35325	nwifeinc educ exper expersq age kidslt6	0046962 .0511287 .0481771 0007371 0206432 3391514	.00189 .00986 .00733 .00023 .00331 .04636	-2.48 5.19 6.57 -3.14 -6.24 -7.32	0.013 0.000 0.000 0.002 0.000 0.000	008401 .031805 .033815 001197 027127 430012	000991 .070452 .062539 000277 01416 2248291	20.129 12.2869 10.6308 178.039 42.5378 .237716
	kidsge6	.0140628	.01699	0.83	0.408	019228	.047353	1.35325

. * Now the APEs. Not meaningful for the experience variables.

. margeff

Average partial effects after probit y = Pr(inlf)

_							
	variable	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
	nwifeinc educ	0036162 .0393088	.0014414 .0071877	-2.51 5.47	0.012 0.000	0064413 .0252212	0007911 .0533964
	exper expersq	03/046 0005675 0158917	.005131 .0001771	7.22 -3.20 -6.74	0.000 0.001	0269893 0009146 020511	0002204 0112723
	age kidslt6 kidsge6	2441788 .0108274	.0258995	-9.43 0.83	$0.000 \\ 0.000 \\ 0.407$	2949409 0147576	1934167 .0364124
_							

. logit inlf nwifeinc educ exper expersq age kidslt6 kidsge6

Logistic regre	Numbe	er of obs	; =	753			
				LR ch	ni2(7)	=	226.22
				Prob	> chi2	=	0.0000
Log likelihood	Log likelihood = -401.76515					=	0.2197
inlf	Coef.	Std. Err.	Z	P> z	[95%	Conf.	Interval]
nwifeinc	0213452	.0084214	-2.53	0.011	0378	509	0048394
educ	.2211704	.0434396	5.09	0.000	.1360	303	.3063105
exper	.2058695	.0320569	6.42	0.000	.1430	391	.2686999
expersq	0031541	.0010161	-3.10	0.002	0051	456	0011626
age	0880244	.014573	-6.04	0.000	116	587	0594618
kidslt6	-1.443354	.2035849	-7.09	0.000	-1.842	373	-1.044335
kidsge6	.0601122	.0747897	0.80	0.422	086	473	.2066974
_cons	.4254524	.8603696	0.49	0.621	-1.260	841	2.111746

. margeff

	y = Pr((inlf)					
_	variable	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
	nwifeinc educ exper expersq age kidslt6 kidsge6	0038118 .0394323 .0367123 0005633 0157153 240805 .0107335	.0014824 .0072593 .0051289 .0001774 .0023789 .0259425 .0133282	-2.57 5.43 7.16 -3.18 -6.61 -9.28 0.81	0.010 0.000 0.001 0.000 0.000 0.000 0.421	0067172 .0252044 .0266598 0009109 0203779 2916515 0153893	0009064 .0536602 .0467648 0002156 0110527 1899585 .0368564
_							

Average partial effects after logit y = Pr(inlf)

Other Sources of Income Endogenous

. ivreg inlf educ exper expersq age kidslt6 kidsge6 (nwifeinc = huseduc)

Instrumental variables (2SLS) regression

Source	SS	df	MS		Number of obs	= 753
Model Residual + Total	42.5996438 142.128112 184.727756	7 6.0 745 .19 752 .24	8566339 0775989 5648611		F(7, 745) Prob > F R-squared Adj R-squared Root MSE	$= 36.41 \\ = 0.0000 \\ = 0.2306 \\ = 0.2234 \\ = .43678$
inlf	Coef.	 Std. Err.	t	P> t	[95% Conf.	Interval]
nwifeinc educ exper expersq age kidslt6 kidsge6 _cons	0118549 .0516295 .0370652 0006144 0133932 2527052 .0168261 .4950353	.0057181 .0116751 .0060138 .0001893 .0030927 .0347755 .0137223 .1683877	$\begin{array}{r} -2.07 \\ 4.42 \\ 6.16 \\ -3.25 \\ -4.33 \\ -7.27 \\ 1.23 \\ 2.94 \end{array}$	$\begin{array}{c} 0.038 \\ 0.000 \\ 0.000 \\ 0.001 \\ 0.000 \\ 0.000 \\ 0.221 \\ 0.003 \end{array}$	0230804 .0287096 .0252592 0009861 0194645 3209749 0101129 .1644645	0006294 .0745495 .0488713 0002428 0073218 1844356 .0437651 .8256062
Instrumented: Instruments:	nwifeinc educ exper e	xpersq age	kidslt6	kidsge6	huseduc	

. * Now Rivers-Vuong. Need first-stage residuals.

. reg nwifeinc huseduc educ exper expersq age kidslt6 kidsge6

Source	SS	df	MS		Number of obs	=	753
Model Residual	20676.7705 81120.3451	7 295 745 108	3.82436 .886369		F(7, 745) Prob > F R-squared	=	27.13 0.0000 0.2031 0.1956
Total	101797.116	752 135	.368505		Root MSE	=	10.435
nwifeinc	Coef.	Std. Err.	t	P> t	[95% Conf.	In	terval]
huseduc educ exper expersq age kidslt6 kidsge6 _cons	$\begin{array}{c} 1.178155\\.6746951\\3129877\\0004776\\.3401521\\.8262719\\.4355289\\-14.72048\end{array}$.1609449 .2136829 .1382549 .0045196 .0597084 .8183785 .3219888 3.787326	7.32 3.16 -2.26 -0.11 5.70 1.01 1.35 -3.89	0.000 0.002 0.916 0.000 0.313 0.177 0.000	.8621956 .2552029 5844034 0093501 .2229354 7803305 1965845 -22.15559	1 1 2 1 -7	.494115 .094187 0415721 .008395 4573687 .432874 .067642 .285383

. predict v2hat, resid

. probit inlf nwifeinc educ exper expersq age kidslt6 kidsge6 v2hat

Probit regress		Numbe	er of obs	=	753		
				LR ch	ni2(8)	=	229.14
				Prob	> chi2	=	0.0000
Log likelihood	og likelihood = -400.30301				lo R2	=	0.2225
inlf	Coef.	Std. Err.	Z	 P> z	 [95%	Conf.	Interval]
	' +						
nwifeinc	0368641	.0182706	-2.02	0.044	0726	738	0010543
educ	.1702153	.0376718	4.52	0.000	.0963	798	.2440507
exper	.1163123	.0193312	6.02	0.000	.0784	239	.1542007
expersq	0019459	.0006009	-3.24	0.001	0031	235	0007682
age	044953	.0101367	-4.43	0.000	0648	206	0250855
kidslt6	8444363	.1198154	-7.05	0.000	-1.07	927	6096025
kidsge6	.0477905	.0443204	1.08	0.281	0390	758	.1346568
v2hat	.0267093	.0189352	1.41	0.158	0104	031	.0638217
_cons	.0171187	.5392914	0.03	0.975	-1.039	873	1.07411

. * Some evidence of endogeneity; p-value = .158.

. * Can still use the margeff option:

. margeff

Average partial effects after probit y = Pr(inlf)

variable	Coef.	Std. Err.	Z	P> z	[95% Conf	. Interval]
nwifeinc educ exper expersq age kidslt6 kidsge6 v2hat	0110576 .0509234 .0348459 0005837 0134815 2377707 .0143321 .0080116	.0054418 .0107908 .0053706 .0001766 .0029258 .0266742 .0132573 .00566	-2.03 4.72 6.49 -3.30 -4.61 -8.91 1.08 1.42	$\begin{array}{c} 0.042 \\ 0.000 \\ 0.001 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.280 \\ 0.157 \end{array}$	0217234 .0297738 .0243198 0009299 019216 2900512 0116518 0030817	0003918 .072073 .0453721 0002375 007747 1854903 .040316 .019105

. * Note how close the APEs are to the linear IV estimates.

Binary Endogenous Variable

- Binary endogenous explanatory variable is a dummy for having more than two children. Population is women with at least two children.
- Start with Linear IV. The binary variable *samesex* is the IV for *morekids*.

. reg morekids samesex nonmomi educ age agesq black hispan, robust

Linear regression

			Number of obs F(7, 31849) Prob > F R-squared Root MSE	$= 31857 \\= 398.53 \\= 0.0000 \\= 0.0717 \\= .48174$
 t rr.		P> t	[95% Conf.	Interval]
98 14 36 19 58	10.19 -7.27 -38.19 3.86 -1.90	0.000 0.000 0.000 0.000 0.058	.044418 0012921 0354772 .0216668 0007556	.0655786 0007432 0320133 .0662848 .0000119

morekids	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
samesex	.0549983	.005398	10.19	0.000	.044418	.0655786
nonmomi	0010177	.00014	-7.27	0.000	0012921	0007432
educ	0337452	.0008836	-38.19	0.000	0354772	0320133
age	.0439758	.0113819	3.86	0.000	.0216668	.0662848
agesq	0003719	.0001958	-1.90	0.058	0007556	.0000119
black	0102972	.0343039	-0.30	0.764	0775342	.0569399
hispan	0257407	.0343662	-0.75	0.454	0930998	.0416183
_cons	0875206	.1668783	-0.52	0.600	4146085	.2395673

. ivreg worked nonmomi educ age agesq black hispan (morekids = samesex), robust								
Instrumental N	variables (2SI	S) regressio	on		Number of obs F(7, 31849) Prob > F R-squared Root MSE	$= 31857 \\ = 374.59 \\ = 0.0000 \\ = 0.0737 \\ = .47347$		
worked	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]		
morekids nonmomi educ age agesq black hispan _cons	200832 00126 .0175522 .0603517 0008178 .0168118 1308112 454969	.0964728 .0001698 .0033777 .012166 .0001989 .0351723 .0352456 .1678432	-2.08 -7.42 5.20 4.96 -4.11 0.48 -3.71 -2.71	0.037 0.000 0.000 0.000 0.000 0.633 0.000 0.007	3899224 0015928 .0109318 .0365059 0012076 0521271 199894 783948	0117417 0009271 .0241726 .0841974 0004281 .0857508 0617284 1259899		
Instrumented: Instruments:	morekids nonmomi educ	c age agesq]	olack his	span sam	esex			

. * So morekids has a large effect on labor force participation and is

. * marginally statistically significant.

. biprobit (worked = morekids nonmomi educ age agesq black hispan)
 (morekids = samesex nonmomi educ age agesq black hispan)

Seemingly unre	elated bivaria	Numbe Wald Prob	chi2(14) =	31857 5124.29		
	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
worked						
morekids	7025719	.204014	-3.44	0.001	-1.102432	3027119
nonmomi	0034903	.000395	-8.84	0.000	0042645	0027161
educ	.0405621	.0085385	4.75	0.000	.0238271	.0572972
age	.1632256	.0312412	5.22	0.000	.1019939	.2244573
agesq	0021524	.0005277	-4.08	0.000	0031867	001118
black	.0367322	.0909997	0.40	0.686	1416239	.2150883
hispan	3614826	.0912096	-3.96	0.000	5402502	182715
_cons	-2.475317	.4496294	-5.51	0.000	-3.356575	-1.59406

morekids						
samesex	.1446566	.0144319	10.02	0.000	.1163705	.1729427
nonmomi	0027063	.0003685	-7.34	0.000	0034285	0019841
educ	0907148	.0024968	-36.33	0.000	0956083	0858212
age	.1190243	.0307613	3.87	0.000	.0587333	.1793154
agesq	001028	.0005284	-1.95	0.052	0020636	7.54e-06
black	0277804	.0921479	-0.30	0.763	208387	.1528263
hispan	0690523	.0922843	-0.75	0.454	2499262	.1118217
_cons	-1.572557	.4514335	-3.48	0.000	-2.457351	6877639
+ /a+brba	+ 2500507	1206201	1 06	0 062	0126006	E22601
/aciiriio	.2599507	.1390201	1.00	0.005	0130990	.333001
rho		1305946			- 0136987	4881289
						. 100±209
Likelihood-rat	tio test of r	ho=0: c	chi2(1) =	3.33969	Prob > chi	12 = 0.0676

- . * Compute APE of morekids:
- . predict xdh, xb
- . gen xd0 = xdh _b[morekids]*morekids
- . gen xd1 = xd0 + b[morekids]
- . gen pel = norm(xdl) norm(xd0)
- . sum pel

Variable	C)bs	Mean	Std.	Dev.	Min	Max
pel	318	3572	559131	.0208	093	2746262	1606505
. * The APE,	26, is	somewhat	larger	than th	e IV	estimate,	20.

. * Now use the forbidden method of inserting fitted probit values from
. * a first-stage probit.

. probit morekids samesex nonmomi educ age agesq black hispan

Probit regression	Number of obs	=	31857
	LR chi2(7)	=	2372.91
	Prob > chi2	=	0.0000
Log likelihood = -20889.981	Pseudo R2	=	0.0537
Log likelihood = -20889.981	Prob > chi2 Pseudo R2	= =	0. 0.

m	orekids	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
 ;]	samesex nonmomi educ agesq black hispan _cons	.1460784 0026941 0905486 .1189666 0010266 0270085 0683493 -1.576492	.0143653 .0003681 .002495 .0307773 .0005286 .092 .0921359 .4516805	$ \begin{array}{r} 10.17 \\ -7.32 \\ -36.29 \\ 3.87 \\ -1.94 \\ -0.29 \\ -0.74 \\ -3.49 \\ \end{array} $	0.000 0.000 0.000 0.000 0.052 0.769 0.458 0.000	.1179229 0034155 0954388 .0586441 0020627 2073252 2489323 -2.461769	.1742339 0019726 0856584 .1792891 9.40e-06 .1533081 .1122337 6912142

. predict PHI2hat
(option pr assumed; Pr(morekids))

. probit worked PHI2hat nonmomi educ age agesq black hispan

Probit regress	sion d = -20410.050	5		Numbe LR cl Prob Pseuc	er of obs hi2(7) > chi2 lo R2	= = =	31857 2310.07 0.0000 0.0536
worked	Coef.	Std. Err.	Z	P> z	[95%	Conf.	Interval]
PHI2hat nonmomi educ age agesq black hispan _cons	8426923 0036757 .0368082 .1693934 0022009 .037665 3651419 -2.495462	.2554568 .00045 .0088861 .0327489 .0005374 .0915228 .0919233 .4504235	-3.30 -8.17 4.14 5.17 -4.10 0.41 -3.97 -5.54	0.001 0.000 0.000 0.000 0.000 0.681 0.000 0.000	-1.343 0045 .0193 .1052 0032 1417 5453 -3.378	378 576 919 067 541 163 083 276	3420062 0027938 .0542246 .23358 0011476 .2170463 1849755 -1.612649

. * The coefficient on PHI2hat is quite a bit larger in magnitude than the

. * bivariate MLE.

Static Panel Data Model

- Married Women's Labor Force Participation, LFP.DTA
- . use lfp
- . des lfp kids hinc

variable na	me	torage type	displa format	У	value label	Vá	ariable label
lfp kids hinc		byte byte float	%9.0g %9.0g %9.0g			== 	l if in labor force umber children < 18 usband's monthly income, \$
. tab period	d						
1 through 5, each 4 months long		Free	q.	Percer	nt	Cum	
1 2 3 4 5		5,60 5,60 5,60 5,60 5,60	63 63 63 63 63 63	20.0 20.0 20.0 20.0 20.0)0)0)0)0)0)0	20.00 40.00 60.00 80.00 100.00	- 0 0 0 0
Total	-+	28,3	 15	100.0	0		-
. egen kids	bar char	= mean()	kids),	by(id))		
4 5 Total . egen kids . egen lhind	 bar cbar	5,60 5,60 28,33 = mean() 5 = mean	63 63 15 kids), (lhinc)	20.0 20.0 100.0 by(id))0)0)0) Ld)	80.00) - -
. * Linear model by FE:

. xtreg lfp kids lhinc per2-per5, fe cluster(id)

Fixed-effects (within) regression	Number of	obs	=	28315
Group variable (i): id	Number of	groups	=	5663

(Std. Err. adjusted for 5663 clusters in id)

lfp	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
kids lhinc per2 per3 per4 per5 _cons	0388976 0089439 0042799 0108953 0123002 0176797 .8090216	.0091682 .0045947 .003401 .0041859 .0044918 .0048541 .0375234	-4.24 -1.95 -1.26 -2.60 -2.74 -3.64 21.56	0.000 0.052 0.208 0.009 0.006 0.000 0.000	0568708 0179513 0109472 0191012 0211058 0271957 .7354614	0209244 .0000635 .0023875 0026894 0034945 0081637 .8825818
sigma_u sigma_e rho	.42247488 .21363541 .79636335	(fraction	of varia	nce due	to u_i)	

. * Fixed Effe	ects Logit:						
. xtlogit lfp note: multiple note: 4608 gro all nega	kids lhinc pe e positive out oups (23040 ob ative outcomes	er2-per5, fe comes withi os) dropped s.	n groups because c	encounte f all po	red. sitive d	or	
Conditional fi Group variable	xed-effects] e: id	logistic reg	ression	Number Number	of obs of grou <u>r</u>	= ps =	5275 1055
				Obs per	group:	min = avg = max =	5 5.0 5
Log likelihood	d = -2003.418	34		LR chi2 Prob >	(6) chi2	=	57.27 0.0000
lfp	Coef.	Std. Err.	Z	P> z	[95%	Conf.	Interval]
kids lhinc per2 per3 per4 per5	6438386 1842911 0928039 2247989 2479323 3563745	.1247828 .0826019 .0889937 .0887976 .0888953 .0888354	-5.16 -2.23 -1.04 -2.53 -2.79 -4.01	0.000 0.026 0.297 0.011 0.005 0.000	8884 3461 2672 398 422 5304	4084 1878 2283 3839 2164 4886	3992688 0223943 .0816205 0507587 0737006 1822604

. di 644/184 3.5

. di 389/89 4.3707865

. * CRE probit:

. xtprobit lf	p kids lhinc l	kidsbar lhir	ıcbar educ	black a	age agesq per2	-per5, re
Random-effects probit regression Group variable (i): id				Number Number	of obs = of groups =	28315 5663
Log likelihood	d = -8990.089	98		Wald c Prob >	hi2(12) = chi2 =	824.11 0.0000
lfp	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
kids lhinc kidsbar lhincbar educ black age agesq per2 per3 per4 per5 _cons	3174051 0777949 2098409 6463674 .221596 .5226558 .4036543 0054898 034359 0954482 1046944 1559446 -2.080352	.06203 .0414033 .0708676 .0792719 .0147891 .1502331 .0287538 .0003536 .0438562 .0439688 .0439108 .0435241 .6567295	$\begin{array}{c} -5.12\\ -1.88\\ -2.96\\ -8.15\\ 14.98\\ 3.48\\ 14.04\\ -15.52\\ -0.78\\ -2.17\\ -2.38\\ -3.58\\ -3.17\end{array}$	0.000 0.060 0.003 0.000 0.000 0.001 0.000 0.000 0.433 0.030 0.017 0.000 0.002	4389816 1589439 3487389 8017374 .1926099 .2282042 .3472979 0061829 1203156 1816253 1907581 2412502 -3.367518	1958287 .0033541 0709429 4909974 .2505821 .8171073 .4600107 0047966 .0515976 009271 0186308 0706389 7931854
/lnsig2u	1.73677	.0266277			1.684581	1.78896
sigma_u rho	2.383059 .8502764	.0317277 .0033899			2.321679 .8435102	2.446063 .8567997

Likelihood-ratio test of rho=0: chibar2(01) = 1.5e+04 Prob >= chibar2 = 0.000

```
. predict xdhat, xb
. gen xdhata = xdhat/sqrt(1 + 2.383059^2)
. di 1/sqrt(1 + 2.383059^2)
.38694144
. * Scaled coefficients to compare with pooled probit:
. di (1/sqrt(1 + 2.383059^2))*_b[kids]
-.1228172
. di (1/sqrt(1 + 2.383059^2))*_b[lhinc]
-.03010209
```

. probit lfp kids lhinc kidsbar lhincbar educ black age agesq per2-per5, cluster(id)

 Probit regression
 Number of obs = 28315

 Wald chi2(12) = 538.09

 Prob > chi2 = 0.0000

 Log pseudolikelihood = -16516.436

(Std. Err. adjusted for 5663 clusters in id) Robust Coef. Std. Err. z P |z|lfp [95% Conf. Interval] -4.35 0.000 kids -.1173749 .0269743 -.1702435 -.0645064 .014344 lhinc -.0288098 -.0569234 -2.01 0.045 -.0006961 kidsbar -.0856913 .0311857 -2.750.006 -.146814 -.0245685 -.3193466 lhincbar -.2501781.0352907 -7.09 0.000 -.181009712.50 .0709428 educ .0841338 .0067302 0.000 .0973248 .3331976 .0729359 black .2030668 .0663945 3.06 0.002 .1516424 .0124831 12.15 0.000 .127176 .1761089 age .0001553 -.0020672 -13.31-.0017628 agesq 0.000 -.0023717.0067648 per2 -.0135701 .0103752 -1.31 0.191 -.0339051 -.0581293 .0127197 -.008269 per3 -.0331991 -2.61 0.009 -.0390317 .0136244 -2.86 0.004 -.0657351 -.0123284 per4 .0146067 -3.78 0.000 -.0838711 -.0552425 -.0266139 per5 -.7260562 .2836985 -2.56 0.010 -1.282095-.1700173cons

- . drop xdhat xdhata
- . predict xdhat, xb
- . gen scale = normden(xdhat)
- . sum scale

Variable	Obs	Mean	Std. Dev.	Min	Max
scale	28315	.3310079	.057301	.0694435	.3989423
. di .331*(: 03885113	117375)				

- . di .331*(-.02881)
- -.00953611

. margeff

Average marginal effects on Prob(lfp==1) after probit

lfp	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
kids lhinc kidsbar lhincbar educ black age agesq per2 per3 per4 per5	038852 0095363 0283645 0828109 .027849 .0643443 .0501948 0006843 0044999 0110375 0129865 0184197	.0089243 .0047482 .0102895 .0115471 .0021588 .0200207 .0039822 .0000493 .0034482 .0042512 .0045606 .0049076	$\begin{array}{r} -4.35\\ -2.01\\ -2.76\\ -7.17\\ 12.90\\ 3.21\\ 12.60\\ -13.88\\ -1.30\\ -2.60\\ -2.85\\ -3.75\end{array}$	$\begin{array}{c} 0.000\\ 0.045\\ 0.006\\ 0.000\\ 0.000\\ 0.001\\ 0.000\\ 0.000\\ 0.192\\ 0.009\\ 0.004\\ 0.000\end{array}$	$\begin{array}{c}0563433\\0188426\\0485315\\1054428\\ .0236178\\ .0251043\\ .0423898\\0007809\\0112583\\0193698\\0219252\\0280385\end{array}$	0213608 00023 0081974 060179 .0320801 .1035842 .0579998 0005876 .0022585 0027052 0040479 008801

. probit lfp kids lhinc educ black age agesq per2-per5, cluster(id)

Probit regression

	Number of obs	=	28315
	Wald chi2(10)	=	537.36
	Prob > chi2	=	0.0000
571	Pseudo R2	=	0.0651

Log pseudolikelihood = -16556.671

(Std. Err. adjusted for 5663 clusters in id)

lfp	Coef.	Robust Std. Err.	z	P> z	[95% Conf.	Interval]
kids lhinc educ black age agesq per2 per3 per4 per5 _cons	1989144 2110739 .0796863 .2209396 .1449159 0019912 0124245 0325178 046097 0577767 -1.064449	.0153153 .0242901 .0065453 .0659041 .0122179 .0001522 .0104551 .0127431 .0136286 .014632 .261872	-12.99 -8.69 12.17 3.35 11.86 -13.08 -1.19 -2.55 -3.38 -3.95 -4.06	0.000 0.000 0.000 0.001 0.000 0.235 0.011 0.001 0.000 0.000	2289319 2586816 .0668577 .09177 .1209693 0022895 0329162 0574938 0728087 0864548 -1.577709	1688969 1634661 .0925149 .3501093 .1688624 0016928 .0080672 0075418 0193853 0290985 5511895

. margeff

Average marginal effects on Prob(lfp==1) after probit

lfp	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
kids lhinc educ black age agesq per2 per3 per4 per5	$\begin{array}{c c}0660184 \\070054 \\ .0264473 \\ .0698835 \\ .0480966 \\0006609 \\0041304 \\010839 \\0153921 \\0193224 \end{array}$.0049233 .0079819 .0021119 .0197251 .0039216 .0000486 .0034828 .0042694 .0045809 .0049309	$\begin{array}{r} -13.41 \\ -8.78 \\ 12.52 \\ 3.54 \\ 12.26 \\ -13.60 \\ -1.19 \\ -2.54 \\ -3.36 \\ -3.92 \end{array}$	0.000 0.000 0.000 0.000 0.000 0.236 0.011 0.001 0.000	$\begin{array}{c}0756678\\0856981\\ .0223082\\ .031223\\ .0404105\\0007561\\0109565\\0192069\\0243705\\0289867\end{array}$	056369 0544099 .0305865 .108544 .0557828 0005656 .0026957 0024712 0064137 0096581

. * So, without accounting for heterogeneity through the time averages,

. * the effects are much larger.

```
. do ex15 5 boot1
. version 9
. capture program drop probit_boot
. program probit_boot, rclass
 1.
. probit lfp kids lhinc kidsbar lhincbar educ black age agesg per2-per5,
       cluster(id)
 2.
. predict xdhat, xb
 3. gen scale=normden(xdhat)
 4. gen pel=scale*_b[kids]
 5. summarize pel
 6. return scalar ape1=r(mean)
 7. gen pe2=scale*_b[lhinc]
 8. summarize pe2
 9. return scalar ape2=r(mean)
10.
. drop xdhat scale pel pe2
11. end
. bootstrap r(ape1) r(ape2), reps(500) seed(123) cluster(id) idcluster
         (newid): probit boot
(running probit_boot on estimation sample)
Bootstrap replications (500)
50
500
Number of obs
Bootstrap results
                                                      =
                                                            28315
```

Number of clusters = 5663 Replications = 500

command: probit_boot
 _bs_1: r(ape1)
 _bs_2: r(ape2)

	Observed Coef.	Bootstrap Std. Err.	Z	P> z	Normal [95% Conf.	-based Interval]
_bs_1	038852	.0085179	-4.56	0.000	0555469	0221572
_bs_2	0095363	.00482	-1.98	0.048	0189833	0000893

```
. program drop probit_boot
```

end of do-file

```
. do ex15_5_boot2
```

```
. capture program drop probit_boot
```

```
. program probit_boot, rclass
1.
. probit lfp kids lhinc educ black age agesq per2-per5, cluster(id)
2.
. predict xdhat, xb
3. gen scale=normden(xdhat)
4. gen pe1=scale*_b[kids]
5. summarize pe1
6. return scalar ape1=r(mean)
7. gen pe2=scale*_b[lhinc]
8. summarize pe2
```

```
9. return scalar ape2=r(mean)
```

10. . drop xdhat scale pel pe2 11. end . bootstrap r(ape1) r(ape2), reps(500) seed(123) cluster(id) idcluster(newid): probit boot (running probit_boot on estimation sample) Bootstrap replications (500) 50 500 Bootstrap results Number of obs = 28315 Number of clusters = 5663 Replications = 500 command: probit_boot _bs_1: r(apel) bs 2: r(ape2) _____ Observed Bootstrap Normal-paseu Coef. Std. Err. z P>|z| [95% Conf. Interval] _bs_1 | -.0660184 .0047824 -13.80 0.000 -.0753916 -.0566451 0.000 -.0855061 -.0546019 _bs_2 | -.070054 .0078839 -8.89 _____

. program drop probit_boot

end of do-file

Dynamic Model of Women's LFP

. * Start with a linear model estimated by Arellano and Bond:

. xtabond lfp kids lhinc per3 per4 per5

Arellano-Bond Group variable	Arellano-Bond dynamic panel-data estimation Group variable: id Fime variable: period			Number of Number of	obs groups	=	16989 5663
	period			Obs per gr	oup:	min = avg = max =	3 3 3
Number of inst	cruments =	12		Wald chi2(Prob > chi	6) 2	=	378.77 0.0000
One-step resul	lts						
lfp	Coef.	Std. Err.	Z	P> z	[95%	Conf.	Interval]
lfp L1.	.3818295	.0201399	18.96	0.000	.342	3559	.4213031
kids lhinc per3 per4 per5 _cons	0130903 0058375 0053284 0038833 0090286 .4848731	.0091827 .0053704 .0039777 .0039916 .0039853 .0458581	-1.43 -1.09 -1.34 -0.97 -2.27 10.57	0.154 0.277 0.180 0.331 0.023 0.000	03 016 013 011 016 .39	1088 3633 1245 7067 8396 4993	.0049075 .0046882 .0024677 .00394 0012176 .5747533
Instruments for GMM-ty Standa Instruments for Standa	or differenced pe: L(2/.).lf ard: D.kids D. or level equat ard: _cons	l equation p lhinc D.per ion	3 D.per	4 D.per5			

- . * Accounting for heterogeneity is important, even in the linear
- . * approximation. Without heterogeneity, the estimated state dependence is
- . * much higher:
- . reg lfp l.lfp kids lhinc per3 per4 per5, robust

Linear regress	sion				Number of obs F(6, 22645) Prob > F R-squared Root MSE	$= 22652 \\ = 7938.78 \\ = 0.0000 \\ = 0.7207 \\ = .24664$
lfp	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
lfp L1.	.8510015	.0039478	215.57	0.000	.8432637	.8587394
kids lhinc per3 per4 per5 _cons	0021431 0071892 0036044 .0010464 0036555 .157911	.0014379 .0025648 .0047215 .0046287 .0045471 .0210127	-1.49 -2.80 -0.76 0.23 -0.80 7.52	0.136 0.005 0.445 0.821 0.421 0.000	0049615 0122164 0128588 0080262 0125681 .1167247	.0006754 0021619 .00565 .010119 .0052571 .1990972

```
. * Generate variables needed for dynamic probit.
. sort id period
. gen lfp_1 = lfp[_n-1] if period > 1
(5663 missing values generated)
. * Put initial condition in periods 2-5:
. gen lfp1 = lfp[_n-1] if per2
(22652 missing values generated)
. replace lfp1 = lfp[_n-2] if per3
(5663 real changes made)
. replace lfp1 = lfp[_n-3] if per4
(5663 real changes made)
. replace lfp1 = lfp[_n-4] if per5
(5663 real changes made)
```

```
. * Put all kids variables in periods 2-5:
. gen kids2 = kids if per2
(22652 missing values generated)
. replace kids2 = kids[_n-1] if per3
(5663 real changes made)
. replace kids2 = kids[_n-2] if per4
(5663 real changes made)
. replace kids2 = kids[_n-3] if per5
(5663 real changes made)
. gen kids3 = kids[n+1] if per2
(22652 missing values generated)
. replace kids3 = kids if per3
(5663 real changes made)
. replace kids3 = kids[_n-1] if per4
(5663 real changes made)
. replace kids3 = kids[n-2] if per5
(5663 real changes made)
```

```
. gen kids4 = kids[_n+2] if per2
(22652 missing values generated)
. replace kids4 = kids[_n+1] if per3
(5663 real changes made)
. replace kids4 = kids if per4
(5663 real changes made)
. replace kids4 = kids[_n-1] if per5
(5663 real changes made)
. gen kids5 = kids[_n+3] if per2
(22652 missing values generated)
. replace kids5 = kids[_n+2] if per3
(5663 real changes made)
. replace kids5 = kids[_n+1] if per4
(5663 real changes made)
. replace kids5 = kids if per5
(5663 real changes made)
```

```
. * Put all lhinc variables in periods 2-5:
. gen lhinc2 = lhinc if per2
(22652 missing values generated)
. replace lhinc2 = lhinc[_n-1] if per3
(5663 real changes made)
. replace lhinc2 = lhinc[_n-2] if per4
(5663 real changes made)
. replace lhinc2 = lhinc[_n-3] if per5
(5663 real changes made)
. gen lhinc3 = lhinc[_n+1] if per2
(22652 missing values generated)
. replace lhinc3 = lhinc if per3
(5663 real changes made)
. replace lhinc3 = lhinc[_n-1] if per4
(5663 real changes made)
. replace lhinc3 = lhinc[_n-2] if per5
(5663 real changes made)
```

```
. gen lhinc4 = lhinc[_n+2] if per2
(22652 missing values generated)
. replace lhinc4 = lhinc[_n+1] if per3
(5663 real changes made)
. replace lhinc4 = lhinc if per4
(5663 real changes made)
. replace lhinc4 = lhinc[_n-1] if per5
(5663 real changes made)
. gen lhinc5 = lhinc[_n+3] if per2
(22652 missing values generated)
. replace lhinc5 = lhinc[_n+2] if per3
(5663 real changes made)
. replace lhinc5 = lhinc[_n+1] if per4
(5663 real changes made)
. replace lhinc5 = lhinc if per5
(5663 real changes made)
```

. * Now includ . * time-const	de initial con cant variable:	ndition, lea s in RE prob	ds and la Dit	ags, and	other		
. xtprobit lfr bi	p lfp_1 lfp1 l lack age ageso	kids kids2-k q per3-per5,	ids5 lhiı re	nc lhinc2	2-lhinc5	educ	
Random-effects Group variable	Number Number	of obs of grou	= ps =	22652 5663			
Random effects	s u_i ~Gaussia	an		Obs per	group: 1	min = avg = max =	4 4.0 4
Log likelihood	d = -5028.978	85		Wald ch Prob >	ni2(19) chi2	= =	4091.17 0.0000
lfp	Coef.	Std. Err.	Z	₽> z	[95%	Conf.	Interval]
lfp_1	1.541288	.066803	23.07	0.000	1.41	0357	1.67222
lfp1	2.530053	.1565322	16.16	0.000	2.22	3256	2.836851
kids	1455379	.0787386	-1.85	0.065	299	8626	.0087868
kids2	.3236282	.0968499	3.34	0.001	.13	3806	.5134504
kids3	.1072842	.1235197	0.87	0.385	134	8099	.3493784
kids4	.01792	.1275595	0.14	0.888	232	0921	.2679322
kids5	3912412	.1058482	-3.70	0.000	598	6998	1837825
lhinc	0748846	.0508406	-1.47	0.141	174	5304	.0247612
lhinc2	0232267	.0590167	-0.39	0.694	138	8973	.0924438
lhinc3	083386	.0626056	-1.33	0.183	206	0908	.0393188
lhinc4	0862979	.060961	-1.42	0.157	205	7793	.0331835
Ihinc5	.0627793	.0592742	1.06	0.290	05	3396	.1/89547
educ	.049906	.0100314	4.97	0.000	.030	2447	.0695672
black	.1316009	.0982941	1.34	0.181	06	1052	.3242539
age	.1278946	.0193999	6.59	0.000	.089	8/15	.16591///

agesq	0016882	.00024	-7.03	0.000	0021586	0012177
per3	0560723	.0458349	-1.22	0.221	1459071	.0337625
per4	029532	.0463746	-0.64	0.524	1204245	.0613605
per5	0784793	.0464923	-1.69	0.091	1696025	.012644
_cons	-2.946082	.4367068	-6.75	0.000	-3.802011	-2.090152
/lnsig2u	.0982792	.1225532			1419206	.338479
sigma_u	1.050367	.0643629			.9314989	1.184404
rho	.52455	.0305644			.4645793	.583821

Likelihood-ratio test of rho=0: chibar2(01) = 160.73 Prob >= chibar2 = 0.000

```
. predict xdh, xb
(5663 missing values generated)
. gen xd0 = xdh - b[lfp_1]*lfp_1
(5663 missing values generated)
. gen xd1 = xd0 + b[lfp_1]
(5663 missing values generated)
. gen xd0a = xd0/sqrt(1 + (1.050367)^2)
(5663 missing values generated)
. gen xd1a = xd1/sqrt(1 + (1.050367)^2)
(5663 missing values generated)
. gen PHIO = norm(xdOa)
(5663 missing values generated)
. gen PHI1 = norm(xd1a)
(5663 missing values generated)
. gen pelfp_1 = PHI1 - PHI0
(5663 missing values generated)
```

. sum pelfp_1

Variable	Obs	Mean	Std. Dev.	Min	Max
pelfp_1	22652	.2591284	.0551711	.0675151	.4047995

. * .259 is the average probability of being in the labor force in . * period t, given participation in t-1. This is somewhat lower than . * the linear model estimate, .382.\pagebreak

. * A nonlinear model without heterogeneity gives a much larger

. * estimate:

. probit lfp lfp_1 kids lhinc educ black age agesq per3-per5

Probit regress	sion			Numbe	r of obs	=	22652
				LR ch	i2(10)	=	17744.22
				Prob	> chi2	=	0.0000
Log likelihood	d = -5332.528	9		Pseud	.o R2	=	0.6246
lfp	Coef.	Std. Err.	Z	₽> z	[95% (Conf.	Interval]
lfp_1	2.875679	.0269811	106.58	0.000	2.822	797	2.928561
kids	060792	.012217	-4.98	0.000	0847	368	0368472
lhinc	1143176	.0211668	-5.40	0.000	1558	037	0728315
educ	.0291868	.0052362	5.57	0.000	.0189	241	.0394495
black	.0792495	.0536694	1.48	0.140	0259	406	.1844395
age	.084403	.0099983	8.44	0.000	.0648	067	.1039993
agesq	0010991	.0001236	-8.90	0.000	0013	413	000857
per3	0340795	.0369385	-0.92	0.356	1064	777	.0383187
per4	.0022816	.0371729	0.06	0.951	0705	759	.0751391
per5	0304156	.0371518	-0.82	0.413	1032	318	.0424006
_cons	-2.170796	.2219074	-9.78	0.000	-2.605	727	-1.735866

```
. predict xdph, xb
(5663 missing values generated)
. gen xdp0 = xdph - _b[lfp_1]*lfp_1
(5663 missing values generated)
. gen xdp1 = xdp0 + _b[lfp_1]
(5663 missing values generated)
. gen PHI0p = norm(xdp0)
(5663 missing values generated)
. gen PHI1p = norm(xdp1)
(5663 missing values generated)
. gen pelfp_1p = PHI1p - PHI0p
(5663 missing values generated)
```

. sum pelfp_1p

Variable	Obs	Mean	Std. Dev.	Min	Max
pelfp_1p	22652	.8373056	.012207	.6019558	.8495204

. * Without accounting for heterogeneity, the average state dependence . * is much larger: .837 versus .259.

. * The .837 estimate is pretty close to the dynamic linear model without . * heterogeneity, .851.