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1. INTRODUCTION
¢ The most common application of binary response models is when we
are interested in “explaining” a binary outcome in terms of some
explanatory variables. Thus, we are interested in a conditional
probability.
¢ A less common application is when we have a linear model of an
underlying quantitative variable, but the data collection scheme censors
the data. For example, we have a linear model for willingness to pay for
a project or product. However, because it is difficult to elicit WTP,
each individual may be presented with a cost of the project; we then

only observe whether they are in favor of the project at that cost.



e \We treat data censoring problems later. For now, we focus on the first
situation. So, y is a binary (zero-one) variable. For example,

y = employed Or y = arrested. Given a set of (exogenous) covariates X,

we are interested In
P(y = 1|x) = p(X),

which is called the response probability. It is the probability of a

“success,” that s, y = 1.
e As in regression, we are interested in the partial effects of the x; on

p(X). For continuous x;, these are usually

dp(X)
5)6 j '




e For discrete x;, look at changes in the response probability (usually
holding other variables fixed). For example, if xx = train (Job training

Indicator) and y is an employment indicator,

p(x11 ceoy XK1, 1) _p(x].’ v 1xK—1!O)

IS the effect of job training on the employment probability, at given
values for the other covariates.

¢ In nonlinear models generally, and binary response models
specifically, it is often useful to have a single number to summarize the
relationship between P(y = 1|x) and x;. In a linear model that is simply

the coefficient.



e Generally, we might report an estimated average partial effect (APE).

The APE for a continuous x; Is

Ex|: op(X) }

8xj

which means we average the partial effect across the population
distribution of x. This is a weighted average of the partial effects at
each outcome X.

® Suppose xx Is a binary variable. Then its APE is

Ex p(X,1) — p(Xx),0)]

where X, Is the 1 x K vector with xx excluded.



e Another partial effect that has been reported in empirical work is the

partial effect at the average (PEA). For a continous variable x;,

op(u,)
8xj '

¢ In nonlinear models, the APE and PEA can be very different: the
expected value does not pass through nonlinear functions.
e Because p, might not even represent a population unit — for example,

If X includes discrete variables, such as dummy variables — the PEA

might not be especially interesting.



e Some simple, useful facts about Bernoulli (zero-one) random

variables are

EQX) = P(y = 1|x) = p(X)

Var(y|x) = p(x)[1 - p(X)]
¢ S0 a binary variable has natural heteroskedasticity except in the
special case where p(x) does not depend on x.
e Unlike variables that take on more than two values, there is a
necessary link between the mean and the variance. It is not possible for
E(Ix) = p(x) while Var(y|x)  p(X)[1 — p(x)]. (If, say, y is a takes
values in {0,1,2,...}, Var(y|X) need not be related to E(y|x), even

though that is true for popular distributions such as the Poisson.)



2. THE LINEAR PROBABILITY MODEL
¢ The linear probability model (LPM) models the response probability
as a function linear in parameters. Absorbing an intercept into X, if we

take the model literally we are assuming
P(y = 1|X) = P14+ Poxo +...+Prxg = Xﬁ.

Because this is also E£(y[x), we can use OLS to consistently estimate B.
In fact, if the conditional mean is truly xB, the OLS estimator is

unbiased.



e Because Var(y|x) = XB(1 — xp) — a rare case where we know the
functional form of heteroskedasticity — inference for OLS should be
made robust to heteroskedasticity. As we know, this is easy to do.

e Because y Is binary, we must rely on large-sample properties for
Inference; clearly normality of D(y|x) does not hold.

e The LPM is always a good starting point when y is the variable we
hope to explain. The estimated coefficients give direct estimates of the
effects of each x; on the response probability. (Of course, as with any
regression framework, we can include various functional forms in X,

such as quadratics, interactions, and dummy variables.)



e The LPM is simple to estimate and interpret. The often cited
drawbacks of the LPM include

(1) Nothing guarantees the OLS fitted values, y; = xiﬁ, are in the
unit interval. As these are estimates of the p(X;), one might worry about
estimated probabilites above one or negative. (In practice, this is a
minor issue.)

(2) While we can use various functional forms in x, it is difficult to
Impose, in a simple way, diminishing effects of the x; on the p(x). For
example, if B; > 0, increasing x; in increases p(x) = Xp by B;, no
matter the values of x; or the other elements of x. Logically, the effect

must diminish at some point.
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(3) Heteroskedasticity. This has asymptotic efficiency implications
if we assume that p(x) = xp. That is, in principle we can improve
efficiency by weighted least squares, but xiﬁ not strict between zero
and one for all i causes problems because the efficient weights are
supposed to be 1/[x;B(1 — x:B)].

e WLS hardly seems worth it because we can use the usual
heteroskedasticity-robust inference for OLS without worrying about

adjusting the fitted values.
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e As a practical matter, it makes more sense to think of the LPM as the
best linear approximation (in a mean squared error sense) to the true
response probability, p(x). That is,
y=Xp+u
E(x'u) =0
is all we are willing to assume. If so, then E(u?|x) generally depends on
p(X) In addition to xp, but the heteroskedasticity-robust variance matrix

estimator is still valid (because it is valid for heteroskedasticity of

unknown form).
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e A carefully chosen linear model can yield good estimates of the APEs
defined earlier. In other words, the LPM often yields good estimates of
average effects.

¢ A leading reason for going from the LPM to nonlinear models of p(x)
IS to allow the partial effects to vary across different values of x.

¢ \When we view the LPM as a linear projection, weighted least squares
— even if all fitted values are in (0,1) — is not even consistent for the
parameters of the linear projection L(y|x) = xB. (The parameters
Identified by WLS are necessarily less interesting than those in the

linear projection, but they are different.)
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3. INDEX MODELS: PROBIT AND LOGIT

e A general index model has the form

Py = 1|x) = G(xB)
forsome G : R - (0,1). Thatis, 0 < G(-) < 1. In most cases, G(+) IS
actually a cumulative distribution function for a continuous random
variable with density g(-). Then, G(-) is strictly increasing, and the
estimates are easier to interpret.
¢ The leading cases are G(z) = ®(z) (probit) and
G(z) = exp(2)/[1 + exp(z)] (logit).
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e MLE is straightforward. The general log likelihood for random draw i
IS
li(B) = (1 —yi)log[l — G(xiB)] +yilog[G(xiB)].

e Asymptotic variance has the same form as for probit:

(zN: eI )
= GxP)L-GxP)] )

where

2(z) = ¢(z) for probit
g(z) = exp(2)/[1 + exp(z)]? for logit

15



e Testing multiple hypotheses about B (we drop the “o” subscript for
simplicity) — usually joint exclusion restrictions — is most easily done
with the Wald and LR statistics. The former is commonly used in
canned packages (in Stata, it is computed with the “test” command),
and the LR statistic is easily obtained because the value of the log
likelihood is reported routinely.

e The score statistics i1s convenient for testing the standard index

models against more complicated alternatives (below).
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Estimating Partial Effects
e More interesting is: What do we do with the estimates? Let x; be

continuous. Then

dp(X)

@Xj

= Big(xB)

and, because g(z) > 0 (assume it is a continuous density), B; gives the
direction of the partial effect. But its magnitude depends on g(xp).

e For probit, the largest value of the scale factor is about .4 = g(0). For
logit, it is . 25.
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e For two continous covariates, the ratio of the coefficients give the

ratio of the partial effects, independent of x.

op(X)/ox; _ Big(xB)
op(X)ox,  Brg(XP)

e No simple relationship exists for discrete variables or changes.

= Bl Bn.

e [n any case, we would like the magnitude of the effect.
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e Two common summary measures are the estimated PEAs and APEs.

The estimated PEA for a continuous variable is
PEA; = Pig(xp)
e As discussed earlier, putting in averages for discrete covariates might
not be especially interesting.
e When x includes nonlinear functions, such as age?, probably makes

more sense to use (@ge)? rather than average age?.

e Delta method or bootstrapping can be used to get a standard error for

—
PEA,.
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e The APE has more appeal, as we are averaging partial effects for

actual units:

N
17, - fsj[zvl zgmﬁ)]
i—1

e To use the delta method, must account for randomness in X;, too.
Bootstrap makes that easy.
e \Whether we use the PEA or APE, the scale factor multiplying ,BJ- IS

below one, and sometimes well below one.
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e [t makes no sense to compare magnitudes of coefficients across
probit, logit, LPM. Comparing APEs is preferred.

e In particular, if y; is the linear regression coefficient on x; from

estimating an LPM, it can be compared with ,@j (provided no other

function of x; appears in the regressors).

21



e Suppose xx IS a binary variable. Then its APE Is estimated as

—~ 1 N A A A
APEK = N~ Z[G(Xi(K)B(K) + ﬁK) - G(Xi(K)B(K)):I’
i=1

where X;, IS X; but without x .

e The APE has a nice counterfactual interpretation that is especially
useful in policy analysis. Called the average treatment effect (ATE) In
the treatment effect literature with a binary outcome. (The “treatment,”
Xk, IS binary.)

e Can average the individual treatment effects across subgroups, too, or

Insert fixed values for some of the other covariates.
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e Stata, with its “margins” (marginal effects) command can report at
PEA or APE. For a discrete xg, the estimated PEA is

PEAx = G()_((K)ﬁ(K) + ﬁK) — G()_((K)ﬁ([{))

Again, this might correspond to a weird population unit, or might not
be representative of the population.

e To obtain standard errors of APEs and PEAS, we can use the delta
method or bootstrap.

e Stata uses the delta method to obtain standard errors.
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e Complicated functional forms are, in principle, easily handled within

the index structure. For example, suppose

P(y = 1|z) = G[Bo + P1z1 + P2z + B3log(z2) + Paz3] = G(XB)
Then
oP(y = 1|2)

— = (B1+2P221)g(XB)
aP(ya; 12 _ (Balzr)a(xp)
alogafl’c% Z=2 lz) _ B3g(XB)IG(xB)
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e The signs of the coefficients are informative, but the partial effects
are somewhat complicated. Need to evaluate them at interesting values
or average across the distribution of x similar to the usual APE
calculation.

e For example, the average elasticity of P(y = 1|z) with respect to z; Is

N
Bs [Nl D gx:B)G(xB) J -
i—1
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Goodness of Fit

e [n addition to reporting coefficients, standard errors, partial effects,
and their standard errors, some additional goodness-of-fit measures are
sometimes reported.
e Define, for each 7, a binary predictor

7 = 1if G(x;P) =.5

- 0if G(x;P) <.5

¢ \We make a correct prediction if y; = 0and y; = 0 or y; = 1 and
yi = 1. Let No be the number of observations with y; = 0 and N; the
number with y; = 1, sothat N = No + Ni.
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e \We can compute the percent correctly predicted for each of the
outcomes, and the overall percent correctly predicted. If Noo is the
number of observations with y; = 0 and y; = 0 and N11 Is the number
of observations with y; = 1 and y; = 1, then the proportions correctly

predicted are

_ Noo _ Nu
q0 No y 41 N.

e |[f one of gg or g1 seems “too small,” the prediction threshold can be

chosen to be different from . 5.
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e For example, some suggest using the fraction of “successes,” y, as the
threshold. With random sampling, y is a consistent estimator of the
unconditional probability of success, P(y; = 1).

¢ S0, the idea Is to predict one If the estimated conditional probability
of success exceeds the unconditional probability. (Of course, changing
the threshold increases the proportion correctly predicted for one
outcome but generally decreases the proportion for the other outcome.)

e The overall proportion correctly predicted is

_ Noo+Nu) _ (M) (M)
9= N —\y JioT "y )9

which is a weighted average of the two.
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e \Whether we use an R-squared or the percent correctly predicted to
summarize goodness of fit, it is not necessary to have a “good” fit in
order for the estimated partial effects to be useful. For example, we
might be able to get a good estimate of the average effect of job
training on the probability of employment even though we cannot
predict with much accuracy whether a particular person in an at-risk

group becomes employed.
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e Because the Kullback-Leibler information criterion is maximized for
the true density, the values of the log likelihoods can be used to choose
among different nonnested models. In practice, it might be difficult to
choose between, say, logit and probit. (Often the differences are
practically unimportant, although they can be when fitted values at the

extreme tails are important.)
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Specification Issues and Testing
e There is much confusion about specification issues in probit, logit,
and other models, because sometimes inappropriate parallels are made
with linear models.
e Probit Is easiest to discuss because analytical results are available.
Omitted Variable Independent of Covariates
e Consider first the problem of an omitted variable independent of X,
call it c:

P(y = 1X,¢) = O(XB + ¢)

c|X ~ Normal(0, 52)

where X includes unity so E(c) = 0 is without loss of generality.
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e \Write the underlying latent variable as y* = Xp+ c + ¢, (c + e)|x ~
Normal(0,6% +1). So

P(y = 1|x) = ®[xB/(1 + c2)V2].
e |t follows immediately that probit of y; on X; consistently estimates
B, = B/(L+02)™2,
e That B is attenuated toward zero has been called “attenuation bias.”

This would not happen in a linear model. Question: Is it truly a

“problem”?
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e Answer: Not really. The scaled coefficients give directions of effects
and relative effects just as well as the original parameters.
e For magnitudes, the B; index the PEAs at the average value of c,
E(c) = 0:

oP(y|X,c = 0)

an

= Bo(Xp).

So the PEAs at ¢ = 0 (or any other value of ¢) are not identified.
e But the APE is identified. Can show that

£ SO~ pgxp,)

ax]'
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e S0, In fact, the scaled coefficients — which we consistently estimate —
Index a quantity that is of significant interest.

e More generally, in any model, if ¢ is independent of X, just estimating
P(y = 1|x) consistently estimates the APEs (as a function of x). But, of
course, we could not estimate the heterogeneity distribution.

e Of course, If ¢ is correlated with x, a much different story (later).
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Heteroskedasticity in the Latent Variable Model

e Again suppose y is the variable of interest, and now we allow

heteroskedasticity in the error e in
y =1[xB+e > 0].
® SuUppose we assume
e|x ~ Normal(0, exp(2x19)),

where X1 1S a subset of x (and does not include a constant). So

homoskedasticity is & = 0 and then e has unit variance.
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e Clearly the introduction of heteroskedasticity in e changes the
response probability, P(y = 1|x). In fact,

P(y = 1|x) = P(e > —XB|X) = P[exp(—x10)e > —exp(—X18)XP|X]

= 1 — ®[-exp(—X10)XP] =D[exp(—X10)XB].

e Estimation by Bernoulli MLE, as before.
e Now, the derivatives and changes in P(y = 1|x) are much more
complicated, and need not have the same sign as the relevant
coefficient.
e |f we view P(y = 1|x) = ®[exp(—X10)XP] as just a way to generalize

functional form, partial effects should be computed.
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e Of course, it may be sufficient to include covariates in a flexible way
In probit and logit.

e After estimation of, say, probit with squares and interactions, it Is
legitimate to compare log likelihood with the heteroskedastic probit log
likelihood.

e Generally, heteroskedastic probit and probit with flexible polynomials

are nonnested. Can use Vuong’s (1989, Econometrica) model selection

test.
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e |[f we truly believe the index structure with e heteroskedastic, there is
a different way to proceed. Define the average structural function as a

function of x:
ASF(X) = E.{1[xB+e > 0]} =1-F(—xP)

where F(-) iIs the unconditional distribution of e.
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e |_et X;1 denote the random quantity. Then we can use the law of

Iterated expectations to show
ASF(X) = Ex,;{®@[exp(—Xi18)XB]}

and a consistent estimator Is

N
ASF(x) = N1 D" dlexp(—x10)xp].
i—1
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e The estimated average partial effect, for a continuous x;, IS

N
APE;(x) = B, {Nl > exp(—xﬂS)qs[exp(—xﬂS)xﬁ]}
i=1

which is the same sign as [3]- because the term in {-} is strictly positive.
e Of course, ignoring heteroskedasticity in e does generally lead to
Inconsistent estimators of the f;, but that is largely beside the point.

The important question is: how far off are estimated partial effects?

40



e Possible point of confusion: using the “robust” option with probit
does not mean the probit estimators of B somehow robust to
heteroskedasticity in the latent error. In fact, B will be inconsistently
estimated (but the MLE is still of value, providing the “best”
approximation).

e Using “robust” means that a sandwich estimator is used for the
asymptotic variance of the quasi-MLE (that is, the usual probit

estimator).
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e Remember, allowing heteroskedasticity in e with y = 1[XpB + e > 0]
changes P(y = 1|x), which completely describes D(y|x). This is not like
other regression applications where we can have E(y|X) = xp and

separately talk about heteroskedasticity in Var(y|x).
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e Testing the probit model against a heteroskedastic alternative is a
good functional form test. The score test is convenient because it only
requires estimation of the probit model. A variable addition test is
convenient, too. After the initial probit to get the estimated linear

indices, x;B, do probit of
yia on i, (XiB)“Xa

and use a joint test Wald test on (Xiﬁ)le‘]_. The degrees-of-freedom in

the y2 distribution equals the dimension of x;; < X.
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e Another functional form test is like the RESET from regression. For

example, after probit, do an expanded probit of

A2 A 3
yionX; (XiB) , (XiP)
and test the last two terms for joint significance using a Wald test.

(Some think it iIs best to add (xiﬁ)4, but the expanded test need not have
more power.)
e |f you want to proceed with the heteroskedastic probit model, the

command is “hetprob” in Stata.
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Nonnormality in the Latent Variable Model

e Again, consider
y=1[xB+e > 0]

where e is independent of x but not normally distributed. What if we
apply probit? Not surprisingly, the probit MLE is not consistent for B if
e 1s not normal. But the partial effects are often very close, at least over
the range of x where we can have some confidence in the estimated
partial effects. (For example, logit and probit can give similar partial
effects except in the extreme tails of the distribution.)

e The key Is that we should focus on partial effects and not just

parameters.
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The Linear Probability Model, Revisited

e Now write an index model with the “intercept” shown explicitly,
P(y = 1|xX) = G(a + xB)
where X is a continuous random vector. Define the APE for x; as

BiElg(a +XxB)].

e |_et n and vy be the linear projection parameters,

L1, X) = n+Xy
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e Can show that if x 1s multivariate normal then

v; = BiElgla+xB)],j =1,....K.
In other words, estimating an LPM consistently estimates the APEs.
e Multivariate normality Is restrictive, but suggests that OLS on the
LPM might get close to the APEs more generally.
e Of course, we miss out on some of the richness of nonlinear binary

response models by focusing only on the APEs.
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4. ENDOGENOUS EXPLANATORY VARIABLES

e For nonlinear binary response models, the nature of the endogenous
explanatory variable(s) plays a role in estimation. In principle, one can
use joint maximum likelihood. But specifying the joint distribution can
be tricky, and the methods generally require the distributional
assumptions to hold for consistency.

¢ In some cases, control function (CF) methods are available. CF
methods are useful for testing, too.

e Sometimes plug-in methods produce consistent estimators of scaled
coefficients, but in many cases they do not. With random samples, CF

methods are usually preferred to plugging in fitted values.
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e Because of the limitations of nonlinear models, some have proposed
using linear models and applying standard IV estimation methods.

Recall the linear model

Y1 = oa1y2 +2101 +u1
L(y2|2) = 282 = 21621 + 2202
with 822 + 0. We can apply this with y; binary as an approximation.
No special restrictions are needed on y, to apply 2SLS. y, can be
continuous, binary, count, and so on.
e Some simulations show that the average partial effects can be

estimated pretty well by 2SLS.
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Continuous EEV

e |f we want to allow nonconstant partial effects, we need to turn to
nonlinear models.

e \With a single EEV (for simplicity), consider the model

y1 = 1lla1y2 + 2101 + u1 > 0]
u1|z ~ Normal(0,1)
where z is the vector of all endogenous variables. Analysis goes
through If we replace (z1,y2) with any known function X1 = g,(z1,y2).
e The parameters (a1,61) index the average structural function, and so
they index the APEs, too.
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e The Rivers-Vuong (1988) approach is to make a

homoskedastic-normal assumption on the reduced form for yo,

V2 = 282 + vy = 21821 + 22822 + v, 522 + 0
v2|z ~ Normal(0,15)

e Can relax normality in two-step methods. In fact, sufficient is

Ul = 91\/2 + é1

e1|v2,z ~Normal(0,1 — 0%7%)
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e The CF approach is a two-step method. Write
y1 = 1lla1y2 +2101 + 01v2 +e1 > O]
so that
P(y1 = 1y2,2) = O(a,1y2 + 210,1 + 0 p1v2),

where each coefficient is multiplied by (1 — p$)~'2 and
p1 = 0112 = Corr(vz,u1). The scaled coefficients are identified

because we effectively observe v, = yo — z29».

52



e The RV two-step approach is

(i) OLS of y» on z, to obtain the residuals, va.

(i1) Probit of y1 on z1,y>, V> to estimate the scaled coefficients. A
simple ¢ test on v, is valid to test Hy : 61 = 0.
e The original coefficients, which appear in the partial effects, are

easily obtained from the set of two-step estimates:

ﬁ1 — Bpll(l + 91231%%)1/2
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e Notice that the two-step estimates are larger than the unscaled
coefficients.
e Bootstrapping is convenient for standard errors; also for APEs, such

as

ar1p(a1y2 + 2181)

e The APE for y, across the entire population is then estimated as

N
&1|:N1 Z d(aiyiz + Zilsl) :|
i=1
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e Alternatively, we average out the reduced form residuals using the

scaled coefficients:

N
ASF(z1,2) = N1 D@1, +0,i)
i=1

and take derivatives or changes with respect to the elements (y2,21),

even If X1 1s nonlinear functions of them. This formulation is useful for

more complicated models.
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e |f instead of adding RF residuals we replace y, with y,, the two-step
procedure consistently estimates a different set of scaled parameters in
the basic model. With random sampling, it has little to offer over the

CF, and does not work if, say, y5 or y,z appear in the model.
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e |f we make the stronger assumption

(u1,v2)|z ~ BivariateNormal

with p1 = Corr(ui,v2), then we can proceed with MLE based on

f1,y202) = fyilva, )Ay2(2).

e The distribution f{y2|z) Is straightforward because it iIs homoskedastic

normal with a linear conditional mean.
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e For f(y1]|y2,2) we have, for example,

0 / — 70
POy1 = 12,2) = cl)[ a1yz + 21 (11+_(Z%;/22)(Vz 207) }

and then P(y1 = Oly2,z) is immediate. Then, all parameters —

a1,01, p1,02,72 are estimated jointly by MLE conditional on z.
e The Stata command is “ivprobit.” The same sorts of goodness-of-fit
measures and partial effects are available, of course. For APEs, still

might want to bootstrap the standard errors, confidence intervals.
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Binary EEV
e What if y, is not continuous? No generally useful two-step methods

are available when discreteness in y» is important. The CF approach
above — and even more recent nonparametric approaches by Blundell
and Powell — hinges on being able to write

y2 = g2(2) +v2
where

v2 IS Independent of z.
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e |f, say, y» IS binary, this representation does not exist. Generally, the
natural choice for g2(z) is E(v2|z). But when y, is discrete,

v2 =y — E(y2|z) usually depends on z in higher moments, such as the
variance.

e \When y» Is binary, the support of v, conditional on z is just the two

points {—g2(z),1 — g2(2)}, and so v, and z are clearly not independent.
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e Somewhat radical suggestion: First, standardize y» as

_ e —EQy2|7)]
Sd()/2|Z) !

so that E(r2|z) = 0, Var(rz2|z) = 1. Then, just assume that

r?2

D(u1ly2,2) = D(u1l|r2)

that is, D(u1|y2,z) depends on (y2,z) only through the standardized

error r».

61



e Could use standardized residuals 72 = [yi2 — E(y,-2|zl-)]/§c\z’(yiz|zl-) In a
control function approach.

e This is “radical” because it does not follow from standard
assumptions, such as joint normality of (u1,v2).

e Some methods exist for estimating parameters up to an uknown (but
common) scale, but they often require special assumptions and do not

deliver magnitudes of effect.
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e Generally available approach: MLE. Assume (y1,y2) are generated as

y1 = 1[0(1)/2 +2151 +u1 > 0]
V2 = 1[252 + vy > O],

where (u1,v2) IS Independent of z and

_ . _
‘i ~ Normal 0 , P
V2 0 p1 1
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e Distribution D(y2|z) is straightforward: probit.

e D(y1|y2,2) Is more complicated, but tractable. For example,

O[(ary2 + 2181 + p102)/(1 — p%) 2]

- p(v2)do>

e The other three conditional probabilities are similar. Combine these
with the probit for D(y2|z) to obtain the MLE (conditional on z).

Pos =12 =12 = gogs |
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e [n Stata, can get “biprobit” to estimate this model. Get all parameter
estimates directly.

e Much harder is to allow true simultaneity between y; and y». In fact,
the model does not make logical sense for all values of parameters.
Most applications are not truly simultaneous in nature.

e Because we are working with D(y1|y2,2), it is straightforward to
replace the linear function of (2, z) with other functions, such as

Interactions between y, and elements of z.
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¢ You should not try to emulate “two stage least squares” as follows.
(1) Run probit of y;» on z; and obtain the fitted probabilities, . (2)

Run probit of y;1 on ®., ;1. The coefficients are usually much larger
than other coefficients because @;, has a smaller range than y».

e As far as we know, this “forbidden regression” estimates nothing

Interesting, although APEs have not been studied (I think).
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e The problem is trying to take the expected value through the indicator

function: If
y1 = 1lla1y2 + 2101 + u1 > 0]
does it follow that
P(y1 = 1|z) = ®[a1D(z202) + 2101]7?
e No. To see why, write y, = ®(zd2) + r2. Then
P(y1 = 1|z2) = Pla1®(z2d2) + 2101 + a1rz2 +u1 > 0|z].

But 172 + u1 1S not independent of z and is clearly not normally
distributed.
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5. PANEL DATA MODELS
Pooled Methods

e Useful to start with methods that do not explicitly introduce
unobserved heterogeneity. Assume a balanced panel,

{(Xit,vir) - t=1,..., Ty and N cross section observations.
e An index model for P(y;; = 1|X;;) IS
P()/it — 1|Xit) — G(Xitﬁ), t — 1, .. .,T,
where X;; generally includes a constant, time dummies, explanatory

variables that do not change across #, and those that do.

e X;; can contain lagged dependent variables and lags of other variables.
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e Pooled (partial) MLE is very attractive, as it is simple and require no

further modeling. For each (i, ¢), the log likelihood is

li(B) = (1 —yi)log[l - G(XiP)] + yil0g[G(X:P)]
e Consistency follows from general pooled MLE results. Generally, we

need a sandwich etimator to account for serial correlation.
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e For each ¢, the APE Is estimated as

N
[Nl D gxip) JBJ-
i=1

and these can be further averaged across ¢ if desired to get a single scale

factor.
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e With small 7 and large N (our setting), apply the “panel bootstrap,”
where cross section units are resampled. That is, we sample from the
Integers <{1,2,...,N} and keep all time periods for each unit drawn. We
do not resample time periods within cross section units.

e |If the model is “dynamically complete” in the sense that
Pir = 1Xir, yie1,Xie1s .yt Xin) = Pie = 1|Xir)
then we can used the usual standard errors reported with the pooled

MLE. In addition, all of the standard tests, include the “likelihood

ratio” test, are valid.
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e As usual, this condition is unlikely to hold unless x;; contains one or
more lagged dependent variables.

e How might we test for dynamic completeness? Lots of possibilities,
but here is one. Compute residuals as ii;; = yir — G(xitﬁ), and then
estimate the probit or logit “model” of y;; on X, 1,1,

t=2,...,T,i =1,...,Nand use the usual 7 statistic on ; ;1.

e Dynamic models can be useful for prediction and controlling for

endogeneity of policy interventions — just as in linear regression.
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Models with Heterogeneity and Strictly Exogenous

Regressors

e |t does not hurt to start with a linear model
P(yit = 1|Xit;ci) = XitB+Ci1t — 1,...,T
and also assume the strict exogeneity assumption,

P(_)/it — 1|Xil1xi21"'1XiTyci) — P(,)/it — 1|Xit1ci)1t — 11"'1T
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e Assuming the elements of x;, are time-varying (for at least some
Individuals), B can be consistently estimated by the usual fixed effects

estimator applied to a linear model:
Vie = XaP + ¢i + uir, E(uiyglXi,ci)) = 0,6 =1,...,T.
¢ \We should not take the LPM literal, because we must have
0 < Xif+c; <1,all x;

which puts strange restrictions on the heterogeneity distribution.
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e But FE estimation of the linear model does not restrict D(c;|x;). Easy
to make inference robust to serial correlation in u;, and
heteroskedasticity.

e The FE coefficients can give reasonable estimates of average partial
effects. In particular, they can be compared with APEs from nonlinear

models

75



e Unobserved effects logit and probit models are popular nonlinear

models. The probit model is given as
P()/iz = 1|Xl’t,C‘i) = (D(XitB + C‘i), [ = 1, ooy 1.

e Logit replaces ®(-) with A(-).
e Before introducing any additional assumptions, we can ask: What are
the quantities of interest for most purposes? Usually, partial effects. For

a continuous x,

8P(yt = 1|Xt,C)
axtj

= Bio(XP + ¢).

e Depends on unobserved c, but sign is given by ;.
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e Can look at discrete changes:
O(x; B+ c) — D(x; B+ )

Again, this depends on c.
e For any two continuous covariates, the ratio of coefficients, B,/fB;, IS
Identical to the ratio of partial effects (and the ratio does not depend on

the covariates or unobserved heterogeneity, c¢;).
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e But we often want magnitudes of the partial effects. These depend not
only on the value of the covariates, say Xx;, but also on the value of the
unobserved heterogeneity.

e Questions: (1) Assuming we can estimate B, what should we do about
the unobservable ¢? (i1) If we can only estimate B up to a common
scale, can we still learn something useful about magnitudes of partial
effects? (ii1) What kinds of assumptions do we need to estimate partial

effects?
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e Helpful to have a general setup. Let {(Xis,yi) : t =1,...,T) be a

random draw from the cross section. Suppose we are interested in
EyilXir, €i) = m(Xi,C;),

where c; can be a vector of unobserved heterogeneity.

e Partial effects: if x;; is continuous, then

@m;(Xt, C)
axtj

Hj(xt,C) =

or discrete changes.
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e How do we account for unobserved c;? If we know enough about the
distribution of ¢; we can insert meaningful values for c. For example, if

u, = E(c;), then we can compute the partial effect at the average
(PEA),

PEA;(X:) = 0;(Xs, ).
Of course, we need to estimate the function m, and p.. If we can

estimate the distribution of c;, or features in addition to its mean, we
can insert different quantiles, or a certain number of standard deviations

from the mean.
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e Alternatively, we can obtain the average partial effect (APE) (or

population average effect) by averaging across the distribution of c;:
APE(X;) = E¢,[0;(X,Ci)].

e The APE is closely related to the notion of the average structural
function (ASF) (Blundell and Powell (2003)). The ASF is defined as a

function of x;:
ASF(Xt) = EC,' [mt(Xt, Cl):l

e Passing the derivative through the expectation in the ASF gives an
APE.
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e How do APEs relate to parameters? Index model:
m:(Xs,c) = G(XP + ¢),
where G(-) Is differentiable. Then
0,(X1,c) = Big(X:P +c),

where g(-) Is the derivative of G(-).
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e The APE as a function of x; “integrates out” c;:

APE(X;) = BiE.[g(XB + ¢;)]

Even if G(-) i1s known, magnitude of effects cannot be estimated
without making assumptions about the distribution of c;.

e I[mportant: Definitions of partial effects do not depend on whether x;,
IS correlated with c;. Of course, whether we can estimate the APEs, and

how, certainly does.
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Exogeneity Assumptions

e As in linear case, cannot get by with just specifying a model for the
contemporaneous conditional distribution, D(y;,|X,C;).

e The most useful definition of strict exogeneity for nonlinear panel

data models is
D(y,|Xi1,...,Xit,Ci) = D(Y, |Xi, Ci).

Chamberlain (1984) labeled (10) strict exogeneity conditional on the

unobserved effects ¢;. Conditional mean version:

E()/itlxil; v ’XiTyci) — E()/itlxit;ci)-
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® The sequential exogeneity assumption Is

D(y, IXi1, ..., Xit,Ci) = D(Y, |[Xi, Ci).
Unfortunately, it is much more difficult to allow sequential exogeneity
In In nonlinear models. (Most progress for lagged dependent variables
or specific functional forms, such as exponential.)
e Neither strict nor sequential exogeneity allows for contemporaneous

endogeneity of one or more elements of x;;, where, say, x;; is correlated

with unobserved, time-varying unobservables that affecty ..

85



Conditional Independence

e In linear models, serial dependence of idiosyncratic shocks is easily
dealt with, either by “cluster robust” inference or Generalized Least
Squares extensions of Fixed Effects and First Differencing. With
strictly exogenous covariates, serial correlation never results in
Inconsistent estimation, even if improperly modeled. The situation is
different with most nonlinear models estimated by MLE.

e Conditional independence (CI) (under strict exogeneity):

T
DYy, Yirlxi,c) = | | DOy, Ixir, ).
—1
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e [n a parametric context, the Cl assumption reduces our task to
specifying a model for D(y, [xi, C;), and then determining how to treat
the unobserved heterogeneity, c;.

¢ In random effects and correlated random frameworks (next section),
Cl plays a critical role in being able to estimate the “structural™
parameters and the parameters in the distribution of ¢; (and therefore, in
estimating PEAS). In a broad class of popular models, ClI plays no

essential role in estimating APEs.
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Assumptions about the Unobserved Heterogeneity

Random Effects

e Generally stated, the key RE assumption is
D(C,-|X,-1, - ,Xl'T) = D(Cl‘).

and then the unconditional distribution of c; is modeled. This is very
restrictive. It implies that all APEs can be obtained by just estimating
EWilXic = X¢).
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Correlated Random Effects

A CRE framework allows dependence between c; and X;, but restricted
In some way. In a parametric setting, we specify a distribution for
D(ci|Xi1,...,X;7), as in Chamberlain (1980,1982), and much work
since. Distributional assumptions that lead to simple estimation —

homoskedastic normal with a linear conditional mean — can be
restrictive.
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e Possible to drop parametric assumptions with
D(cilxi) = D(cil;),
without restricting D(c;|X;).
e \We will use parametric assumptions for D(c;|X;), such as normality

(other possibilities exist), but some general arguments do not rely on a
specific form for D(c;|X;).
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e In particular, we can show that the APEs are identified very

generally. By the LIE, we can always write

ASF(X;) = Ec,[m(X:,Ci)] = Ex,{E[m/(X;,C)|X:]}
= Exi[rt(xt’)_(i)]

where
ri(Xs, X)) = E[m(Xs, C)|X;].

e Notice how X, acts as a fixed argument; we will insert values later.
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e Importantly, under strict exogeneity conditional conditional on c; and

the assumption D(c;|X;) = D(c;|X;), we have

E(ulx;) = E[E(yulXi, Ci)[X:] = E[m:(Xir, C;)|Xi] = jmt(xitic)dF(Clxi)

— jmt(xit,c)dF(Cb'(i) = r(Xit, X;).

e Because E(y«|X;) depends only on (X;, X;), we must have

E(_)/itlxit1)_(i) — rt(xit1)_(i)'
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e Therefore, once we have consistently estimated »,(-, +), a consistent
estimator of the average structural function is

N
ASF(X) = N1 ) 74X, R2).
=1

e \We will obtain (-, -) from parametric models, but flexible

nonparametric approaches can be used because the mean function

E(yilxi, X;) 1s identified generally.
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Fixed Effects

e The label “fixed effects” is used in different ways by different
researchers. One view: ¢;, i = 1,...,N are parameters to be estimated.
Usually leads to an “incidental parameters problem” unless 7'is “large.”
e Second meaning of “fixed effects”: D(c;|x;) Is unrestricted and we
look for objective functions that do not depend on c; but still identify

the population parameters. Leads to “conditional MLE” if we can find

“sufficient statistics” s; such that

DWit,...,yir|Xi,Ci,Si) = D(ya,...,yir|Xi, Si).
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e Conditional Independence is usually maintained in the approach
based on finding sufficient statistics.
e Key point: PEAs and APEs are generally unidentified by methods

that use conditioning to eliminate c;, essentially by construction.
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Correlated Random Effects Probit
e Specify the model:

P()/iz = 1|Xit,C‘i) = (D(XitB + C‘i), [ = 1, ooy 1.
e Strict exogeneity conditional on ¢;:
P = 1Xi,...,Xir,ci) = POir = 1Xir,ci), t =1,...,T.

e Conditional independence (where we condition on X; = (Xi1,...,Xi1)

and ¢;) :

DWit,...,yvirlXi,ci) = D(yalXi,ci)---DWir|Xi, ci)
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e Model for D(c;|x;) (Mundlak special case of Chamberlain approach):
ci =y +X:E+a;, ailx; ~Normal(0,c2).
e Can obtain the first three assumptions from a latent variable model:

Vie = 1XuP +ci+ui > Q]
uir|(Xis, i) ~ Normal(0, 1)
D(ui|Xi,ci) = D(uilXi, i)
{uy . t=1,...,Ty independent across ¢
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e Can include time dummies in x;; but omit from X;. Can also include

time-constant elements, say z;:
C; = W+)_(i§+2ic+ai

(Up to you to intepret )
e If & = 0, get the traditional random effects probit model. Adding X;&

allows a specific form of correlation between ¢; and (X;1,...,X7).
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e MLE (conditional on Xx;) is relatively straightforward but it can be
computationally demanding. It is based on the joint distribution

DWi,...,yir|X;). For simplicity, omit z;.

T
lLiB.v.&03) = |09[jw (Hf(yirlxm c; B))h(cl)‘(i; v, &, Gﬁ)él’é}
=1

o Here, f(yi|x,,c;B) = [1 - OX,P + )] T2 [D(X,B + )] and
h(clR:;w,& 02) is the normal distributio with mean v + X;& and

variance o2.
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e Requires numerical integration, but is programmed in lots of
packages.

e All parameters, including are identified; inference is standard.

e In Stata, “xtprobit” with an “re” qualifier. Need to generate and
Include the time averages.

e Generally, including a set of time dummies is a good idea, and time
constant variables can be included directly.

e Simple to compute a Wald test of whether the time averages are
needed. Hy : £ = 0.
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egen xlbar
egen Xx2bar
egen xKbar
xtprobit y
zl ... zJ,
test xlbar

mean(x1l), by(id)
= mean(x2), by(id)
= mean(xK), by(id)

d2 ... dTx1l x2 ... XK xlbar ...
re
x2bar ... XKbar
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e Can estimate features of the unconditional distribution of ¢;.

e For example, ¢; = v + X;§ + a; and so
pe = E(ci) = v + E(R)E
A consistent estimator of u. is
fic = W + %
where X Is the sample average of X;:

IR 3

=1 =1
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e \\Ve also have
62 = E'Var(X)E + o2,

and so

o

N
3 (Nl D (K —R)'(%i - 70)& +62
i=1

Can evaluate PEs at, say, the estimated mean value, say ji., or look at

li. = ko . for various k.
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e The APEs are gotten, as usual, from the ASF:

ASF(X;) = Ec,[OXP + ci)] = Ex,{E[PX:P + ¢i)IRi]}
= Ex AE[O(X:P + v + X:E+ a;)|X]}
= Ex {O[(X,B + v + RE)/(1 + 62)12]}
= Ex,[O(X P, +va +RXi& )]

where, for example, B, = B/(1 + 02)/2 are scaled coefficients.
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e Because we have consistent estimators of all parameters, we can

estimate ASF(X,) consistently as

N
ASF(x) = N'LY d(x B, + vy + %)
i—1

where, for example, B = B/(1 + 62)1/2,

e Note where the averaging out occurs: across the sample of X;.

e Take derivatives and changes with respect to x,. Can then average out
across Xx; to get a single APE.

¢ Conditional independence is very strong, and the usual RE estimator

not known to be robust to its violation (unlike RE in linear model).

105



e |f we focus on APEs, can just use a pooled method because
P(yi = 1X;) = PXiPf + v + &+ a; +uir > 0|X;)

= Pla; +ui; > —(XuPp + v + X:E)|X]

= O(XiP, + wa +XE).
e To estimate B_,yq, and & , just used pooled probit with X; as an
additional set of explanatory variables. Cannot identify B and o2
separately, but do not need to for APEs.
e Pooled probit inefficient. Can use GMM or “generalized estimating
equations” (essentially, multivariate nonlinear least squares) to enhance

efficiency without sacrificing consistency.
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e Using either the full random effects assumptions or pooled probit, it is
easy to test the strict exogeneity assumption conditional on ¢;, provided
T > 3. Let w;, be a subset of x;; that possibly is not strictly exogenous.
Then, along with time dummies, X;;, X;, and z; (time-constant
variables), include w; .1 and test joint significance. Lose the last time

period.
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e \What Is dubbed “fixed effects” probit is an inconsistent method (for
fixed 7) that treats ¢; as NV parameters to estimate. Suffers from
Incidental parameters problem.

e Some recent work shows that perhaps the APEs are well estimated
without “too much” heterogeneity if 7'is not “too small.” Also, some

corrections to the bias caused have been offered and studied.
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Fixed Effects Logit
e |f we replace the probit function by the logit function and maintain

conditional independence, we can estimate 8 without restricting

D(ci|x;). Often called “fixed effects logit,” but it is really a conditional

MLE were we condition on (n;, X;), where

T

ni = Zyir

r=1

IS the total number of successes for unit ;.
e Can show D(ya,...,yir|n:, Xi, c;) does not depend on c¢;, but does

depend on B, provided there is time variation in X;.
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e Generally, n; = 0 and n; = T observations are uninformative. So,
when 7' = 2, only n; = 1 observations contain information on f:

P2 = 1n; = 1,X;) = A[(Xi2 — Xi1)PB]

Py =1n; =1,x;) =1-A[(Xi2 — Xi1)B]
Let w; = (1 —yi)yi2. Then D(w;|AX;) follows a standard logit model,
where AX; = X2 — X1.
e Generally, not known to be consistent without condition
Independence. So it does not strictly relax assumptions for CRE probit
when the latter is estimated using pooled probit, or some other robust

method, such as GEE.
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e PEAs and APEs not identified by FE logit (because the distribution of
c; IS unspecified).

e In Stata, “xtlogit” with “fe” option.

xtlogit y d2 ... dT x2 ... xK, fe

e There is a CRE version of logit, but it is computationally hard and
more difficult to work (no closed forms for APEs, for example) than
CRE probit.

e Can show with 7' = 2 that, if treat ¢; as parameters to estimate along

with B, the plim of the estimator is 2.
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Dynamic Models

e Difficult to specify and estimate models with heterogeneity if we do
not assume strict exogeneity. Completely specified dynamic models
can be estimated under certain assumptions.

¢ A linear model, estimated using the Arellano and Bond approach (and
extensions), Is a good starting point. Coefficients can be compared with

partial effects from nonlinear models.
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e Here we study a simple dynamic model: There is one lag of the
dependent variable and all other explanatory variables are strictly

€X0genous.

Pi = 1zi,vir1,...,vi0,¢i) = P = YZi, yir1,¢i),
tr=1,...,T.

This also assumes that we have the dynamics correctly specified.
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e \Why is this specification of interest? Allows us to assess the relative
Important of “state dependence” — that is, whether being in a certain
state last period affects the probability of being in that state this period
— and unobserved heterogeneity. For example, if we control for
different attributes in c;, is welfare participation persistent? How
persistent? Just seeing correlation over time, even conditional on z,
does not tell us that the previous state matters; we must also control for

Ci.
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e \We study the dynamic probit model primarily for computational

reasons; logit is more difficult:

PWir = 1z, vir1,ci) = ©(2id + pyir1 + i),
which, as we will see, allows us to estimate the parameters and APEs
very easily (under a distributional assumption for the heterogeneity).
e Treating the ¢; as parameters to estimate causes inconsistency in 6
and p. Somewhat open question is how it affects bias in APEs. It is

computationally intensive.
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e Several different approaches to handling the “initial conditions”
problem. (i) Treat the ¢; as parameters to estimate (incidental
parameters problem and computationally intensive). (ii) Try to estimate
the parameters 6 and p without specifying conditional or unconditional
distributions for ¢; (available in some special cases). Generally, cannot
estimate partial effects.). (ii1) Approximate D(yio|c:, z;) and then model
D(cilz;). Leads to D(yi0,yi1,...,yir|Z;) and MLE conditional on z;. (iv)
Model D(cil|yi,z;). Leads to D(yi1,...,yirlyio, Z;) and MLE conditional
on (yi0,2;). Wooldridge (2005b, Journal of Applied Econometrics)

shows this can be computationally simple for popular models.
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e Using the last approach for the probit model, a simple analysis is

obtained from
cilzi,yio ~ Normal(y + Eoyio + 2:€,03)
Then

PWi = 124, yis1,...,yi0,ai) =
(20 + pyir-1 +w +Eovio + 2,5 + ai),

where a; = ¢; —w — Eoyio — ;€. This allows us to characterize

D(a,...,virlZi,yio) after “integrating out” c;.
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e Turns out that we can use standard random effects probit software,
where the explanatory variables in time ¢ are (1,2, yis1,vi0,2Z;) In time

period ¢. Easily get the average partial effects, too:

— al
ASF(z,,y1) = N1 Z D(2:04 + payr-1 +Wa + Eaoyio + 2:€,)
i=1

and take differences or derivatives with respect to elements of (z;,v.1).

As before, the coefficients are multiplied by (1 + 62)712,
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e L et X;0 = (yio,Z;). Then the first two moments of ¢; are easily

estimated:

where & = (&0,&)".
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6. MULTIVARIATE PROBIT

e Sometimes we have two or more binary responses to model. Call
them y,, g = 1,..., G, each a binary response. No restriction such as
y1+y2 +...+vg = 1. In other words, any combination of zeros and
ones is possible.

e Example: G = 2, y1 indicates when a worker has employer-sponsored
health insurance, y, indicates having an employer-sponsored pension

plan.
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e The marginal distributions (but conditional on X, as always) are

assumed to follow probits:
P(ys = 1|x) = (D(Xng),g =1,...,G.

e Multivariate probit is like seemingly unrelated regressions for binary

response. Can be obtained from

yi = XuP; +en

Vi = Xi2P, +ei2

Vig = XiGBG + €iG,

with e;|X; ~ Normal(0, Q) with unit variances.
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e Can be computationally hard with large G. Stata has the bivariate
version programmed (“biprobit™).

e [mportant difference with the linear case: if the joint distribution
underlying multivariate probit is incorrect, but the probit marginals are

correct, the joint MLE is (evidently) inconsistent. In the linear case,
Vig = X,-gﬁg+ul~g,g =1,...,G,

if every equation is correctly specified in the sense that £(X;u;,) = 0 for
all g, the FGLS estimator is consistent even if, say, E(u;u:|x;) is

heteroskedastic.

122



e And, of course, If P(y1 = 1|X) = ®(Xx1B,) Is correct but the probit
model for equation two is incorrect, the joint procedure has no
robustness properties.

e The reason to use multivariate probit is to enhance efficiency; how
much it does Is an empirical issue.

e Unlike in the linear case, there are no algebraic equivalences from

having the same covariates in every equation.
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7. EXAMPLES
LPM, Probit, and Logit with Exogenous Explanatory Variables

e Married women’s labor force participation, using data from Mroz
(1987)

e Dependent variable is inlf, “in the labor force.”

. use mroz
. tab inlf
=1 if in |
lab frce, |
1975 | Freq. Percent Cum.
____________ +___________________________________
0 | 325 43.16 43.16
1] 428 56.84 100.00
____________ +___________________________________
Total | 753 100.00
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. sum nwifeinc educ exper expersq age kidslt6 kidsge6

Variable
nwifeinc
educ
exper
expersq
age
kidslt6
kidsge6

20.12896
12.28685
10.63081
178.0385
42 .53785

11.6348
2.280246
8.06913
249.6308
8.072574

.2377158
1.353254

-523959
1.319874
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. * Estimate LPM by OLS.

. reg inlf nwifeinc educ exper expersq age kidslt6 kidsge6, robust

Linear regression

Number of obs
FC 7,

Prob > F
R-squared
Root MSE

745)

753
62.48
0.0000
0.2642
.42713

nwifeinc
educ
exper
expersq
age
kidslt6
kidsge6
_cons

Robust

Std. Err.
.0034052
.0379953
.0394924
.0005963
.0160908
.2618105
.0130122
.5855192

.0015249

.007266
.00581
.00019

-002399

.0317832
.0135329
.1522599

.0063988

.023731
.0280864
-0009693
.0208004
.3242058
-.013555
.2866098

.0004115
.0522596
-0508983
.0002233
.0113812
.1994152
.0395795
.8844287
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. probit inlf nwifeinc educ exper expersqg age kidslt6 kidsge6

Probit regression

Log likelithood = -401.30219

Number of obs

753
227.14
0.0000
0.2206

+
nwifeinc |
educ |
exper |
expersq | -
age |
kidslt6 |
kidsge6 |
_cons |

.0120237
-1309047
.1233476
.0018871
.0528527
.8683285

-036005

.2700768

.0048398
.0252542
.0187164

.0006

.0084772
.1185223
.0434768

-508593

LR chi2(7) =

Prob > chi?2 =

Pseudo R2 =
P>|z] [95% Conf
0.013 -.0215096
0.000 .0814074
0.000 .0866641
0.002 -.003063
0.000 -.0694678
0.000 -1.100628
0.408 -.049208
0.595 -.7267473

-.0025378

-180402
-1600311

-.0007111
-.0362376

-.636029
.1212179
1.266901
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. * Compute partial effects at the averages.

. mfx

Marginal

effects after probit

.58154201

Pr(inlTt) (predict)

nwifeinc
educ
exper
expersq
age
kidslt6
kidsge6

.0511287
.0481771

-.0007371
-.0206432
-.3391514

.0140628

-008401
.031805
.033815
.001197
.027127
.430012
-019228

-.000991
.070452
.062539

-.000277
-.01416

-.248291
.047353

-.0046962

20.129
12.2869
10.6308
178.039
42 .5378
.237716
1.35325

128



. * Now the APEs. Not meaningful for the experience variables.

-005131

.0001771
.0023569
.0258995
.0130538

. margeff
Average partial effects after probit
y = Pr(inlfT)
variable | Coef
_____________ +
nwifeinc | .0036162
educ | -.0393088
exper | .037046
expersq | -0005675
age | .0158917
kidslt6 | .2441788
kidsge6 | .0108274

[95% Conf.

.0014414
.0071877

.0064413
.0252212
.0269893
.0009146
-.020511
.2949409
.0147576

Interval]

.0007911
.0533964
.0471026
.0002204
.0112723
.1934167
.0364124
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logit inlf nwifeinc educ exper expersq age kidslt6 kidsge6

Logistic regression Number of obs = 753
LR chi2(7) = 226.22

Prob > chi2 = 0.0000

Log likelithood = -401.76515 Pseudo R2 = 0.2197
inlf | Coef Std. Err z P>|z] [95% Conf. Interval]
_____________ +________________________________________________________________
nwifeinc | -.0213452 .0084214 -2.53 0.011 -.0378509 -.0048394
educ | .2211704 -0434396 5.09 0.000 -1360303 -3063105

exper | .2058695 -0320569 6.42 0.000 -1430391 .2686999
expersq | --0031541 .0010161 -3.10 0.002 -.0051456 -.0011626

age | -.0880244 .014573 -6.04 0.000 -.116587 -.0594618

kidslt6 | -1.443354 .2035849 -7.09 0.000 -1.842373  -1.044335
kidsge6 | .0601122 .0747897 0.80 0.422 -.086473 .2066974
_cons | .4254524 -8603696 0.49 0.621 -1.260841 2.111746
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. margeff

Average partial effects after logit

y = Pr(inlfT)

nwifeinc
educ
exper
expersq
age
kidslt6
kidsge6

.0014824
.0072593
.0051289
.0001774
.0023789
.0259425
.0133282

[95% Conf.
-.0038118
.0394323
.0367123
-.0005633
-.0157153
-.240805
.0107335

.0067172
.0252044
.0266598
.0009109
.0203779
.2916515
.0153893

Interval]

-0009064
.0536602
.0467648
.0002156
.0110527
-1899585
.0368564



Other Sources of Income Endogenous

. ivreg iInlf

Instrumental

Model

educ exper expersq age kidslt6 kidsge6 (nwifeinc = huseduc)

variables (2SLS) regression

42 .5996438
142.128112

Number of obs
745)

FC 7,
Prob > F
R-squared

Adj R-squared

Root MSE

753
36.41
0.0000
0.2306
0.2234
-43678

nwifeinc
educ
exper
expersq
age
kidslt6
kidsge6
_cons

-.0118549
-0516295
.0370652

-.0006144

-.0133932

-.2527052
.0168261
-4950353

df MS

7 6.08566339
745 .190775989
752 .245648611
Std. Err t
.0057181 -2_.07
.0116751 4._42
.0060138 6.16
.0001893 -3.25
.0030927 -4_33
.0347755 -7.27
.0137223 1.23
.1683877 2.94

-.0230804
.0287096
.0252592

-.0009861

-.0194645

-.3209749

-.0101129
.1644645

.0006294
.0745495
.0488713
.0002428
.0073218
.1844356
.0437651
.8256062

Instrumented:

Instruments:

nwifeinc

educ exper expersq age kidslt6 kidsge6 huseduc
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. * Now Rivers-Vuong. Need first-stage residuals.

. reg nwifeinc huseduc educ exper expersqg age kidslt6 kidsge6

. predict vzhat, resid

133

Source | SS df MS Number of obs = 753
------------- S F( 7, 745) = 27.13
Model | 20676.7705 7 2953.82436 Prob > F = 0.0000
Residual | 81120.3451 745 108.886369 R-squared = 0.2031
————————————— i et LT T AdjJ R-squared = 0.1956
Total | 101797.116 752 135.368505 Root MSE = 10.435
nwifeinc | Coef Std. Err t P>|t] [95% Conf. Interval]
_____________ +________________________________________________________________
huseduc | 1.178155 -1609449 7.32 0.000 .8621956 1.494115

educ | .6746951 .2136829 3.16 0.002 .2552029 1.094187

exper | -.3129877 .1382549 -2.26 0.024 -.5844034 -.0415721
expersq | --0004776 -0045196 -0.11 0.916 -.0093501 -008395

age | -3401521 -.0597084 5.70 0.000 .2229354 .4573687

kidslt6 | .8262719 .8183785 1.01 0.313 -.7803305 2.432874
kidsge6 | .4355289 .3219888 1.35 0.177 -.1965845 1.067642
_cons | -14.72048 3.787326 -3.89 0.000 -22.15559  -7.285383



. probit inlf nwifeinc educ exper expersq age kidslt6 kidsge6 vZhat

Probit regression

Log likelthood = -400.30301

Number of obs

753
229.14
0.0000
0.2225

+
nwifeinc | -
educ |
exper |
expersq | -

age |
kidslt6 |
kidsge6 |
vZhat |
_cons |

.0368641
-1702153
-1163123
-0019459
-.044953
.8444363
.0477905
-0267093
.0171187

LR chi2(8) =

Prob > chi?2 =

Pseudo R2 =

z P>|z] [95% Conf
-2.02 0.044 .0726738
4_.52 0.000 .0963798
6.02 0.000 .0784239
-3.24 0.001 .0031235
-4.43 0.000 .0648206
-7.05 0.000 -1.07927
1.08 0.281 .0390758
1.41 0.158 .0104031
0.03 0.975 1.039873

.0182706
.0376718
.0193312
-0006009
.0101367
.1198154
.0443204
.0189352
.5392914

.0010543
.2440507
.1542007
.0007682
.0250855
.6096025
.1346568
.0638217

1.07411

. * Some evidence of endogeneity; p-value

= .158.
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. * Can still use the margeff option:

.0054418
.0107908
.0053706
.0001766
.0029258
.0266742
.0132573

. margeff
Average partial effects after probit
y = Pr(inlfT)
variable | Coef
_____________ +
nwifeinc | .0110576
educ | .0509234
exper | .0348459
expersq | .0005837
age | .0134815
kidslt6 | .2377707
kidsge6 | .0143321
vZhat | .0080116

-00566

[95% Conf.

-.0003918

-.0217234
.0297738
.0243198

-.0009299
-.019216

-.2900512

-.0116518

-.0030817

Interval]

.072073
.0453721

-.0002375

-.007747

-.1854903

.040316
.019105

. * Note how

close the APEs are to the linear 1V estimates.
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Binary Endogenous Variable
e Binary endogenous explanatory variable is a dummy for having more
than two children. Population is women with at least two children.
e Start with Linear IV. The binary variable samesex is the 1V for

morekids.

136



. reg morekids samesex nonmomi educ age agesq black hispan, robust

Linear regression Number of obs = 31857
F(C 7, 31849) = 398.53
Prob > F = 0.0000
R-squared = 0.0717
Root MSE = .48174
| Robust
morekids | Coef Std. Err. t P>|t] [95% Conf. Interval]
_____________ +________________________________________________________________
samesex | -0549983 -005398 10.19 0.000 .044418 .0655786
nonmomi | -0010177 -00014 -7.27 0.000 -0012921 -.0007432
educ | .0337452 .0008836 -38.19 0.000 .0354772  -.0320133
age | .0439758 -0113819 3.86 0.000 -0216668 -0662848
agesq | -0003719 .0001958 -1.90 0.058 -0007556 -0000119
black | .0102972 -0343039 -0.30 0.764 .0775342 -0569399
hispan | -.0257407 .0343662 -0.75 0.454 -0930998 .0416183
_cons | .0875206 -1668783 -0.52 0.600 -4146085 .2395673
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ivreg worked nonmomi educ age agesq black hispan (morekids = samesex), robust

Instrumental variables (2SLS) regression Number of obs = 31857
F(C 7, 31849) = 374.59
Prob > F = 0.0000
R-squared = 0.0737
Root MSE = 47347
| Robust
worked | Coef Std. Err. t P>|t] [95% Conf. Interval]
_____________ +________________________________________________________________
morekids | -.200832 .0964728 -2.08 0.037 -.3899224  -.0117417
nonmomi | -.00126 -0001698 -7.42 0.000 -0015928 -0009271
educ | .0175522 .0033777 5.20 0.000 -0109318 .0241726
age | .0603517 .012166 4.96 0.000 -0365059 -0841974
agesq | --0008178 -0001989 -4.11 0.000 -0012076 -0004281
black | .0168118 .0351723 0.48 0.633 .0521271 -0857508
hispan | -.1308112 .0352456 -3.71 0.000 -.199894 .0617284
_cons | -.454969 -1678432 -2.71  0.007 -.783948 -1259899
Instrumented: morekids
Instruments: nonmomi educ age agesq black hispan samesex

. * So morekids has a large effect on labor force participation and is
. * marginally statistically significant.
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. biprobit (worked = morekids nonmomi educ age agesq black hispan)

(morekids =

Seemingly unrelated bivariate probit

Log likelithood = -41106.422

samesex nonmomi educ age agesq black hispan)

Number of obs =
wald chi2(14) =

31857
5124 .29
0.0000

I
+
worked |
morekids |
nonmomi |
educ |

age |

agesq |

black |
hispan |
_cons |

+

-.7025719
-.0034903
.0405621
.1632256
-.0021524
.0367322
-.3614826
-2.475317

.204014

.000395
.0085385
.0312412
.0005277
-.0909997
.0912096
.4496294
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Prob > chi2
P>|z] [95% Conf
0.001 -1.102432
0.000 -.0042645
0.000 .0238271
0.000 .1019939
0.000 -.0031867
0.686 -.1416239
0.000 -.5402502
0.000 -3.356575

-.3027119
-.0027161
.0572972
.2244573
-.001118
.2150883
-.182715
-1.59406



morekids

|
samesex | -1446566 -0144319 10.02 0.000 .1163705 .1729427
nonmomi | -.0027063 -0003685 -7.34 0.000 -.0034285 -.0019841
educ | --.0907148 -.0024968 -36.33 0.000 -.0956083 -.0858212
age | .1190243 .0307613 3.87 0.000 .0587333 .1793154
agesq | -.001028 -0005284 -1.95 0.052 -.0020636 7.54e-06
black | -.0277804 .0921479 -0.30 0.763 -.208387 .1528263
hispan | -.0690523 -0922843 -0.75 0.454 -.2499262 .1118217
_cons | -1.572557 .4514335 -3.48 0.000 -2.457351 -.6877639
_____________ +________________________________________________________________
/athrho | .2599507 1396201 1.86 0.063 -.0136996 -533601
_____________ +________________________________________________________________
rho | .2542495 1305946 -.0136987 .4881289
Likelithood-ratio test of rho=0: chi2(1l) = 3.33969 Prob > chi2 = 0.0676
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. * Compute APE of morekids:

. predict xdh, xb

. gen xdO = xdh - _b[morekids]*morekids
. gen xdl = xdO + _b[morekids]
. gen pel = norm(xdl) - norm(xdO)
. sSum pel
Variable | Obs Mean Std. Dev. MiIn Max
_________ pel | 31857 -.2550131  .0208093 -.2746262 -.1606505

. * The APE, -.26, is somewhat larger than the IV estimate, -.20.
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. * Now use the forbidden method of inserting fitted probit values from
. * a first-stage probit.

. probit morekids samesex nonmomi educ age

Probit regression

Log likelihood = -20889.981

Number of obs

agesq black hispan

31857
2372.91
0.0000
0.0537

samesex
nonmomi
educ
age
agesq
black
hispan
_cons

. predict PHIZhat

-1460784
.0026941
-0905486
-1189666
-0010266
.0270085

0683493

-1.576492

.0143653
.0003681

.002495

.0307773
.0005286

.092

.0921359
.4516805

(option pr assumed; Pr(morekids))
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LR chi2(7) =

Prob > chi2 =

Pseudo R2 =
P>]z]| [95% Conf
0.000 .1179229
0.000 .0034155
0.000 .0954388
0.000 .0586441
0.052 .0020627
0.769 .2073252
0.458 .2489323
0.000 -2.461769

.1742339

-.0019726
-.0856584

.1792891

9.40e-06

.1533081
.1122337

-.6912142



. probit worked PHI2hat nonmomi educ age agesq black hispan

Probit regression

Log likelthood = -20410.056

Number of obs

31857
2310.07
0.0000
0.0536

PHI2hat
nonmomi
educ
age
agesq
black
hispan
_cons

.8426923
-.0036757
.0368082
.1693934
-0022009

.037665
3651419

_2_495462

.2554568

-00045

.0088861
.0327489
.0005374
.0915228
.0919233
.4504235

LR chi2(7) =

Prob > chi?2 =

Pseudo R2 =
P>|z] [95% Conf
0.001 -1.343378
0.000 -.0045576
0.000 .0193919
0.000 .1052067
0.000 -.0032541
0.681 -.1417163
0.000 -.5453083
0.000 -3.378276

.3420062
.0027938
.0542246

.23358
.0011476
.2170463
.1849755
1.612649

. * The coefficient on PHI2hat is quite a bit larger in magnitude than the

. * bivariate MLE.
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Static Panel Data Model

e Married Women’s Labor Force Participation, LFP.DTA

. use Ifp
. des Ifp kids hinc

storage display value
variable name type format label variable label
Ifp byte  %9.0g =1 1f in labor force
kids byte  %9.0g number children < 18
hinc float %9.0g husband”s monthly income, $
. tab period
1 through |
5, each 4 |
months long | Freq. Percent Cum
____________ +___________________________________
1] 5,663 20.00 20.00
2 | 5,663 20.00 40.00
3] 5,663 20.00 60.00
4 | 5,663 20.00 80.00
5 ] 5,663 20.00 100.00
____________ +___________________________________
Total | 28,315 100.00

. egen kidsbar = mean(kids), by(id)

. egen lhincbar = mean(lhinc), by(id)
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. * Linear model by FE:

. xtreg Ifp kids lhinc per2-per5, fe cluster(id)

Fixed-effects (within) regression
Group variable (i): id

Number of obs
Number of groups

28315
5663

. Err. adjusted for 5663 clusters in id)

sigma_u
sigma_e
rho

Robust

Std. Err.

.0091682
.0045947

-003401
.0041859
.0044918
.0048541
.0375234

.0568708
.0179513
.0109472
.0191012
.0211058
.0271957
. 7354614

[95% Conf.
.0388976
.0089439
-0042799
.0108953
.0123002
.0176797
-8090216

.42247488

.21363541

.79636335

Interval]

.0209244
-0000635
.0023875
.0026894
.0034945
.0081637
.8825818
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. * Fixed Effects Logit:

. xtlogit Ifp kids lhinc per2-per5, fe

note: multiple positive outcomes within groups encountered.
note: 4608 groups (23040 obs) dropped because of all positive or

all negative outcomes.

Conditional fixed-effects logistic regression

Group variable:

Log likelihood

id

-2003.4184

Number of obs
Number of groups

Obs per group: min

5275
1055

5.0

57.27
0.0000

.1247828
.0826019
.0889937
.0887976
.0888953
.0888354

avg =

max =
LR chi2(6) =
Prob > chi2 =
P>|z] [95% Conf.
0.000 .8884084
0.026 .3461878
0.297 .2672283
0.011 -.398839
0.005 -.422164
0.000 .5304886

Interval]
.6438386
.1842911
.0928039
.2247989
.2479323
.3563745

.3992688
.0223943
.0816205
.0507587
.0737006
.1822604

. di 644/184
3.5

. di 389789
4.3707865

147



148



. * CRE probi

t:

. Xtprobit Ifp

Random-effects

Group variabl

Log likelihoo

e

d

kids

probit regression

(i): 1d

= -8990.0898

lhinc kidsbar Ihincbar

educ black age agesq per2-per5, re

Number of obs

Number of groups

Wald chi2(12)

28315
5663

824.11
0.0000

kids
lhinc
kidsbar
lhincbar
educ
black
age
agesq
per2
per3
per4
per5
_cons

-.3174051
-.0777949
-.2098409
-.6463674

.221596
.5226558
-4036543
-0054898
-.034359
.0954482
.1046944
-.1559446
-2.080352

2.383059
.8502764

.06203

.0414033
.0708676
.0792719
.0147891
.1502331
.0287538
.0003536
.0438562
.0439688
.0439108
.0435241
.6567295

Prob > chi2
P>]z] [95% Conf.
0.000 -.4389816
0.060 -.1589439
0.003 -.3487389
0.000 -.8017374
0.000 -1926099
0.001 .2282042
0.000 .3472979
0.000 -.0061829
0.433 -.1203156
0.030 -.1816253
0.017 -.1907581
0.000 -.2412502
0.002 -3.367518
1.684581
2.321679
.8435102

Interval]

-.1958287

.0033541
-.0709429
-.4909974
.2505821
.8171073
.4600107
.0047966
.0515976
-.009271
-.0186308
-.0706389
-.7931854

.0317277
.0033899

2.446063
.8567997

Likelihood-ratio test of rho=0: chibar2(01) =

149

1.5e+04 Prob >= chibar2 = 0.000
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. predict xdhat, xb
. gen xdhata = xdhat/sqrt(1 + 2.383059"2)

. di 1/sqrt(l + 2.38305972)
.38694144

. * Scaled coefficients to compare with pooled probit:

. di (/sgrt(l + 2.38305972))* b[kids]
~.1228172

. di (1/sqre(l + 2.383059°2))* b[lhinc]
~.03010209
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. probit Ifp kids lhinc kidsbar Ihincbar educ black age agesq per2-per5,
cluster(id)

Probit regression

Log pseudolikelihood = -16516.436

. Err.

Number of obs
wald chi2(12)
Prob > chi2
Pseudo R2

28315
538.09
0.0000
0.0673

adjusted for 5663 clusters iIn id)

kidsbar
lhincbar
educ
black
age
agesq
per2
per3
per4
per5
_cons

-.1173749
-.0288098
-.0856913
-.2501781

.0841338

.2030668

.1516424
-.0020672
-.0135701
-.0331991
-.0390317
-.0552425
-.7260562

Robust

Std. Err.

.0269743

.014344

.0311857
.0352907
.0067302
.0663945
.0124831
.0001553
.0103752
.0127197
.0136244
.0146067
.2836985

[95% Conf.

-.1702435
-.0569234
-.146814
-.3193466
.0709428
.0729359
.127176
-.0023717
-.0339051
-.0581293
-.0657351
-.0838711
-1.282095

Interval]

.0645064
-0006961
.0245685
.1810097
.0973248
.3331976
.1761089
.0017628
.0067648
-.008269
.0123284
.0266139
.1700173
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. drop xdhat xdhata
. predict xdhat, xb

. gen scale = normden(xdhat)

. sum scale
Variable | Obs Mean
scale | 28315 -3310079

. di .331*(-.117375)
~.03885113

. di .331*(-.02881)
~.00953611

.057301
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. margeff

Average marginal effects on Prob(Ifp==1) after probit

Interval]

kids
lhinc
kidsbar
lhincbar
educ
black
age
agesq
per2
per3
per4
per5

-.038852
-0095363
-0283645
.0828109

.027849
.0643443
.0501948
.0006843
-0044999
.0110375
-0129865
.0184197

[95% ConfT.
-0089243
.0047482
-0102895
.0115471
-0021588
-0200207
-0039822
-0000493
.0034482
.0042512
-0045606
-0049076

.0563433
.0188426
.0485315
.1054428
.0236178
.0251043
.0423898
.0007809
.0112583
.0193698
.0219252
.0280385

.0213608

-.00023
.0081974
-.060179
.0320801
.1035842
.0579998
.0005876
.0022585
.0027052
.0040479
-.008801
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. probit Ifp kids lhinc educ black age agesq per2-per5, cluster(id)

Probit regression

Log pseudolikelihood = -16556.671

Number of obs
wald chi2(10)
Prob > chi?2
Pseudo R2

28315
537.36
0.0000
0.0651

adjusted for 5663 clusters iIn id)

Coef.

-1989144
.2110739
.0796863
-2209396
.1449159
-0019912
.0124245
.0325178
-.046097
.0577767
1.064449

(Std. Err.

Robust
Std. Err. z
.0153153 -12.99
.0242901 -8.69
.0065453 12.17
.0659041 3.35
.0122179 11.86
.0001522 -13.08
.0104551 -1.19
.0127431 -2.55
.0136286 -3.38

.014632 -3.95

.261872 -4.06

[95% Conf.
.1688969
-1634661
-0925149
-3501093
.1688624
-0016928
-0080672
.0075418
.0193853
-0290985
.5511895

.2289319
.2586816
.0668577

.09177
-1209693
.0022895
.0329162
.0574938
.0728087
.0864548
1.577709

Interval]
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. margeff

Average marginal effects on Prob(Ifp==1) after probit

kids
Ihinc
educ
black
age
agesq
per2
per3
per4
per5

[95% ConfT.

Interval]

|

+

| -.0660184
| -.070054
| .0264473
| .0698835
| .0480966
| -.0006609
| -.0041304
| -.010839
| -.0153921
| -.0193224

.0049233
.0079819
.0021119
.0197251
.0039216
.0000486
.0034828
.0042694
.0045809
.0049309

.0756678
.0856981
.0223082

.031223
.0404105
.0007561
.0109565
.0192069
.0243705
.0289867

-.056369
.0544099
-0305865

.108544
.0557828
-0005656
.0026957
.0024712
.0064137
.0096581

. * So, without accounting for heterogeneity through the time averages,
. * the effects are much larger.
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. do ex15 5 bootl
. version 9
. capture program drop probit_boot

. program probit _boot, rclass

1.
. probit Ifp kids lhinc kidsbar Ihincbar educ black age agesq per2-per5,
cluster(id)
2

. p}edict xdhat, xb

3. gen scale=normden(xdhat)
4. gen pel=scale* b[kids]

5. summarize pel

6. return scalar apel=r(mean)
7. gen pe2=scale*_ b[lIhinc]

8. summarize pe2

9. return scalar ape2=r(mean)
10.

i drop xdhat scale pel pe2
11. end

: bootstrap r(apel) r(ape2), reps(500) seed(123) cluster(id) idcluster
(newid): probit_boot
(running probit _boot on estimation sample)

Bootstrap replications (500)

.................................................. 500

Bootstrap results Number of obs = 28315



Number of clusters = 5663
Replications = 500
command: probit_boot
_bs 1: r(apel)
_bs 2: r(ape2)
| Observed Bootstrap Normal-based
| Coef. Std. Err. z P>]z] [95% Conf. Interval]
_____________ +________________________________________________________________
_bs 1] -.038852 -0085179 -4.56 0.000 -.0555469 -.0221572
bs 2 | -.0095363 -00482 -1.98 0.048 -.0189833  -.0000893

. program drop probit_boot

end of do-file

. do ex15 5 boot2

. capture program drop probit_boot
. program probit_boot, rclass

. probit Ifp kids lhinc educ black age agesq per2-per5, cluster(id)
2.

. predict xdhat, xb

. gen scale=normden(xdhat)

. gen pel=scale*_ b[kids]

. summarize pel

return scalar apel=r(mean)

. gen pe2=scale* b[lhinc]

. summarize pe2

return scalar ape2=r(mean)

OCoo~NOOTh~W
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10.

: drop xdhat scale pel pe2
11. end

. bootstrap r(apel) r(ape2), reps(500) seed(123) cluster(id) idcluster(newid):

probit_boot
(running probit _boot on estimation sample)

Bootstrap replications (500)

Bootstrap results

command: probit_boot
_bs 1: r(apel)
_bs 2: r(ape2)

.- 500

Number of obs
Number of clusters
Replications

28315
5663
500

Observed Bootstrap

Coef. Std. Err. z
_bs 1 -.0660184 .0047824 -13.80
bs 2 -.070054 .0078839 -8.89

Normal -based
[95% Conf. Interval]

-.0753916 -.0566451
-.0855061 -.0546019

. program drop probit_boot

end of do-file
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Dynamic Model of Women'’s LFP

. * Start with a linear model estimated by Arellano and Bond:

. Xtabond Ifp kids lhinc per3 per4 per5

Arellano-Bond dynamic panel-data estimation Number of obs = 16989
Group variable: id Number of groups = 5663
Time variable: period
Obs per group: min = 3
avg = 3
max = 3
Number of iInstruments = 12 wald chi2(6) = 378.77
Prob > chi2 = 0.0000
One-step results
iIfp | Coef. Std. Err. z P>]z] [95% Conf. Interval]
_____________ +________________________________________________________________
iIfp |
L1. | .3818295 .0201399 18.96 0.000 .3423559 .4213031
I
kids | -.0130903 .0091827 -1.43 0.154 -.031088 .0049075
lhinc | -.0058375 .0053704 -1.09 0.277 -.0163633 .0046882
per3 | -.0053284 .0039777 -1.34 0.180 -.0131245 .0024677
perd | -.0038833 .0039916 -0.97 0.331 -.0117067 -00394
per5 | -.0090286 .0039853 -2.27 0.023 -.0168396 -.0012176
_cons | .4848731 .0458581 10.57 0.000 -394993 .5747533

Instruments for differenced equation

GMM-type: L(27.).1fp

Standard: D.kids D.lhinc D.per3 D.per4 D.per5
Instruments for level equation

Standard: _cons
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. * Accounting for heterogeneity is important, even in the linear
. * approximation. Without heterogeneity, the estimated state dependence is

. * much higher:
. reg Ifp L.1fp kids lhinc per3 per4 per5, robust

Linear regression

Number of obs
F( 6, 22645)
Prob > F
R-squared
Root MSE

22652
7938.78
0.0000
0.7207
.24664

-8510015

-.0021431
.0071892
-0036044
.0010464
.0036555

-157911

.0039478

.0014379
.0025648
.0047215
.0046287
.0045471
.0210127

[95% Conf.

.8432637

.0049615
.0122164
.0128588
.0080262
.0125681
.1167247

Interval]

.8587394

.0006754
-.0021619
-00565
.010119
.0052571
-1990972
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. * Generate variables needed for dynamic probit.
. sort id period

. gen Ifp 1 = Ifp[_n-1] if period > 1
(5663 missing values generated)

. * Put initial condition iIn periods 2-5:
. gen Ifpl = Ifp[ _n-1] if per2
(22652 missing values generated)

. replace Ifpl = Ifp[_n-2] i1f per3
(5663 real changes made)

. replace Ifpl = Ifp[ _n-3] if per4d
(5663 real changes made)

. replace Ifpl = Ifp[_n-4] 1f per5
(5663 real changes made)
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. * Put all kids variables in periods 2-5:

. gen kids2 = kids 1T per2
(22652 missing values generated)

. replace kids2 = kids[_n-1] if per3
(5663 real changes made)

. replace kids2 = kids[_n-2] if per4
(5663 real changes made)

. replace kids2 = kids[_n-3] if per5
(5663 real changes made)

. gen kids3 = kids[_n+1] i1f per2
(22652 missing values generated)

. replace kids3 = kids if per3
(5663 real changes made)

. replace kids3 = kids[_n-1] if per4
(5663 real changes made)

. replace kids3 = kids[_n-2] if per5
(5663 real changes made)
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. gen kids4 = kids[_n+2] if per2
(22652 missing values generated)

. replace kids4 = kids[_n+1] if per3
(5663 real changes made)

. replace kids4 = kids if per4
(5663 real changes made)

. replace kids4 = kids[_n-1] if per5
(5663 real changes made)

. gen kids5 = kids[_n+3] if per2
(22652 missing values generated)

. replace kids5 = kids[_n+2] i1f per3
(5663 real changes made)

. replace kids5 = kids[ _n+1] if per4
(5663 real changes made)

. replace kids5 = kids if per5
(5663 real changes made)
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. * Put all lhinc variables in periods 2-5:
. gen Ihinc2 = bhinc 1f per2
(22652 missing values generated)

. replace lhinc2 =
(5663 real changes

. replace Ihinc2 =
(5663 real changes

. replace lhinc2 =
(5663 real changes

Ihinc[_n-1] if per3
made)

lhinc[_n-2]
made)

1T per4

Ihinc[_n-3]
made)

it perb

. gen Ihinc3 = thinc[_n+1] if per2
(22652 missing values generated)

. replace lhinc3 =
(5663 real changes

. replace Ihinc3 =
(5663 real changes

. replace lhinc3 =
(5663 real changes

Ihinc if per3
made)

lhinc[_n-1] if per4
made)

Ihinc[_n-2] if per5
made)
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. gen lhinc4 = lhinc[_n+2] if per2
(22652 missing values generated)

. replace Ihinc4 = lhinc[_n+1] if per3
(5663 real changes made)

. replace lhinc4 = lhinc if per4
(5663 real changes made)

. replace Ihinc4 = lhinc[_n-1] 1f per5
(5663 real changes made)

. gen Ihinc5 = lhinc[_n+3] if per2
(22652 missing values generated)

. replace Ihinc5 = lhinc[_n+2] i1f per3
(5663 real changes made)

. replace Ihinc5 = lhinc[_n+1] if per4
(5663 real changes made)

. replace Ihinc5 = lhinc if per5
(5663 real changes made)
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- * Now include initial condition,
. * time-constant variables iIn RE probit

leads and lags, and other

i xtprobit Ifp Ifp_1 Ifpl kids kids2-kids5 Ihinc IThinc2-1hinc5 educ
black age agesq per3-per5, re

Random-effects probit regression
Group variable (i): id

Random effects u_i ~Gaussian

Log likelihood

-5028.9785

Number of obs
Number of groups

Obs per group: min

22652
5663

4
4.0
4

4091.17
0.0000

lhinc
lhinc2
lhinc3
lhinc4
lhinch
educ
black
age

1.541288
2.530053

-.1455379

.3236282
.1072842
.01792

-.3912412
-.0748846
-.0232267

-.083386

-.0862979

.0627793

-049906
-1316009
.1278946

.066803

.1565322
.0787386
.0968499
.1235197
.1275595
.1058482
.0508406
.0590167
.0626056

-060961

.0592742
.0100314
.0982941
.0193999

avg =

max =
wald chi2(19) =
Prob > chi2 =
P>|z] [95% Conf.
0.000 1.410357
0.000 2.223256
0.065 .2998626
0.001 -133806
0.385 .1348099
0.888 .2320921
0.000 .5986998
0.141 .1745304
0.694 .1388973
0.183 .2060908
0.157 .2057793
0.290 -.053396
0.000 .0302447
0.181 -.061052
0.000 .0898715

Interval]

1.67222

2.836851
.0087868
.5134504
.3493784
.2679322
.1837825
.0247612
.0924438
.0393188
.0331835
.1789547
.0695672
.3242539
.1659177



agesq | --0016882 -00024 -7.03 0.000 -.0021586 -.0012177

per3 | -.0560723 -0458349 -1.22 0.221 -.1459071 .0337625

perd | -.029532 .0463746 -0.64 0.524 -.1204245 -0613605

per5 | -.0784793 -0464923 -1.69 0.091 -.1696025 .012644

_cons | -2.946082 .4367068 -6.75 0.000 -3.802011 -2.090152
_____________ +________________________________________________________________
/Insig2u | .0982792 1225532 -.1419206 .338479
_____________ +________________________________________________________________
sigma_u | 1.050367 -0643629 -9314989 1.184404

rho | -52455 -0305644 -4645793 .583821
Likelihood-ratio test of rho=0: chibar2(01) = 160.73 Prob >= chibar2 = 0.000
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. predict xdh, xb

(5663

. gen
(5663

. gen
(5663

. gen
(5663

. gen
(5663

. gen
(5663

. gen
(5663

. gen
(5663

missing values generated)

xd0 = xdh - _b[Ifp_1]*1fp_1
missing values generated)

xdl = xdO + b[Ifp_1]
missing values generated)

xdOa = xdO/sqrt(l + (1.050367)"2)
missing values generated)

xdla = xd1/sqrt(l + (1.050367)"2)
missing values generated)

PHIO = norm(xdOa)
missing values generated)

PHI1 = norm(xdla)
missing values generated)

pelfp_1 = PHI1 - PHIO
missing values generated)
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sum pelfp_ 1

Variable | Obs Mean Std. Dev. MiIn Max

pelfp_1 | 22652 .2591284 .0551711 .0675151 -4047995

* _259 is the average probability of being in the labor force in
* period t, given participation In t-1. This is somewhat lower than
* the linear model estimate, .382.\pagebreak
*
*

A nonlinear model without heterogeneity gives a much larger
estimate:
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. probit Ifp Ifp_1 kids lhinc educ black age agesq per3-per5

Probit regression

Log likelthood = -5332.5289

Number of obs
LR chi2(10)

22652
17744 .22
0.0000
0.6246

2.875679
-.060792
.1143176
-0291868
.0792495

.084403
-.0010991
-0340795
.0022816
-0304156

-2.170796

.012217

.0211668
.0052362
.0536694
-0099983
.0001236
.0369385
.0371729
.0371518
.2219074

Prob > chi?2

Pseudo R2
P>|z] [95% Conf
0.000 2.822797
0.000 .0847368
0.000 .1558037
0.000 .0189241
0.140 .0259406
0.000 .0648067
0.000 .0013413
0.356 .1064777
0.951 .0705759
0.413 .1032318
0.000 -2.605727

.0269811

2.928561

-.0368472
-.0728315

.0394495
.1844395
-1039993
-.000857
.0383187
.0751391
.0424006

-1.735866
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. predict xdph, xb
(5663 missing values generated)

. gen xdpO = xdph - _b[Ifp_1]*Ifp_1
(5663 missing values generated)

. gen xdpl = xdp0 + b[lIfp_1]
(5663 missing values generated)

. gen PHIOp = norm(xdpO)
(5663 missing values generated)

. gen PHI1p = norm(xdpl)
(5663 missing values generated)

. gen pelfp_1p = PHI1lp - PHIOp
(5663 missing values generated)

174



. sum pelfp_1p
Variable | Obs Mean Std. Dev. MiIn Max
_____________ +________________________________________________________
pelfp_1p | 22652 .8373056 .012207 .6019558 .8495204

. * Without accounting for heterogeneity, the average state dependence
. * 1s much larger: .837 versus .259.

. * The .837 estimate is pretty close to the dynamic linear model without
. * heterogeneity, .851.
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