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1. INTRODUCTION

∙ Two ways to extend the binary response: unordered and ordered

outcomes. In both cases, it is convenient to label the possible outcomes

on y as 0,1, . . . ,J, so y takes on J  1 different values.

∙ In the unordered (or nominal) case, the labeling of outcomes is totally

arbitrary. For example, if y is mode of transportation to work, we might

use the follow labels: 0 is by car without pooling, 1 is car pooling, 2 is

bus, and 3 is rapid transit (train). Nothing changes if we switch the

labels.

∙ Another example of an unordered outcome is different kinds of health

insurance.
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∙ In other cases the order matters. For example, each person applying

for a mortage is given a credit rating in the set 0,1, 2, 3, 4, 5, 6. The

fact that a credit rating of 5 is better than 4, and that 1 is better than 0, is

important.

∙ Such outcomes are ordinal because we could replace the values by

any other set that preserves the ranking. In other words, cardinality

does not matter, but the order does.
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2. MULTINOMIAL LOGIT

∙ In the basic multinomial logit (MNL) model, y is an unordered

response and we have a set of conditioning variables, x, that change by

unit but not alternative. For example, in modeling type of health

insurance, we include observable characteristics of the individual but

not of the different kinds of health plans.

∙ In this setting, we are interested in the response probabilities,

pjx  Py  j|x, j  0, . . . ,J.

Since exactly one choice is possible,

p0x  p1x . . .pJx  1 for all x
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∙We are interested in how changing elements of x affects the response

probabilities.

∙ The MNL response probabilities are

Py  j|x 
expxj

1 ∑h1
J expxh

, j  1, . . . ,J

Py  0|x  1
1 ∑h1

J expxh

where in almost all applications x1 ≡ 1.
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∙We can write the response probabilities in common form, using the

first equation, by defining 0 ≡ 0.

∙ Unless J  1 (binary response logit), the partial effects are

complicated. For a continuous xk,

∂pjx
∂xk

 pjx jk −
∑h1

J hk expxh

1 ∑h1
J expxh

,

which need not be the same sign as jk.

∙ Easier to interpret:

pjx
p0x

 expxj
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∙ The log odds of response j relative to response 0 is

log pjx
p0x

 xj,

and so jk measures the partial effect of xk on the log odds of j relative

to outcome 0.

∙ A key feature of the MNL model is that if we condition on any two

outcomes, the resulting model for choosing between the outcomes is a

binary response logit. That is, suppose we condition on the event that

y ∈ j,h.
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∙ Then

Py  j|y  j or y  h  pjx,/pjx,  phx,


expxj

expxj  expxh


expxj − h

expxj − h  1

 xj − h.

∙ In other words, Py  j|y  j or y  h has the logit form with

parameter vector j − h.

∙ This is an artifact of the MNL functional form.
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∙Maximum likelihood estimation of the j is straightforward. The log

likelihood for random draw xi,yi is

ℓi ∑
j0

J

1yi  j logpjxi,.

∙ Inference is standard. The expected Hessian given xi is easy to

compute.

∙ In terms of goodness of fit and prediction, the MNL model often

works well. Can choose x to be flexible functions of underlying

explanatory variables.
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3. PROBABILISTIC CHOICE MODELS

∙ Again, let there be J  1 choices, but now explicitly view the response

(choice) as maximizing underlying utility. For a random draw i, the

latent utilities are

yij
∗  xij  aij, j  0, . . . ,J,

where xij can vary by unit (i) and choice (j). Notice that , in this

formulation, does not depend on j.

∙ For example, xij can include the costs of various modes of

transportation for each unit i. Its coefficient measures the effect of cost

on utility across any mode of transportation.
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∙ Sometimes a variable will change only by choice and not individual

(such as the price of a car). In more sophisticated settings, another

dimension – such as market (often measured by geographic location) –

is added to the problem. Then, price can change by market and brand,

but not by individual.

∙ Let xi include all nonredundant elements of xi0,xi1, . . . ,xiJ. Let

ai  ai0,ai1, . . . ,aiJ and assume ai is independent of xi (exogeneity).

∙ The observed choice yi ∈ 0,1, . . . ,J is the one that maximizes

utility:

yi  argmaxyi0
∗ ,yi1

∗ , . . . ,yiJ
∗ ,

that is, yi  j if choice j yields the highest utility.
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∙McFadden (1974) showed that if the aij : j  0,1, . . . ,J are

independent, identically distributed with the type I extreme value

distribution, that is, with cdf Fa  exp−exp−a, then it can be

shown that

Pyi  j|xi 
expxij

1 ∑h1
J expxih

, j  0,1, . . . ,J.

∙ In the context of probabilistic choice models, usually called the

conditional logit model (the name given by McFadden).
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∙ Easy to estimate , which is common to all choices, by MLE.

∙ The type I extreme value distribution is not especially natural because

it is not symmetric – it has a thicker right tail. But it does roughly have

a “bell shape.”
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∙ Can encompass the MNL in the CL model. Suppose we have a MNL

model with covariates wi and parameters 1,2, . . . ,J. Let

d1,d2, . . . ,dJ be dummy variables for all but the zero alternative.

Define xij  d1jwi,d2jwi, . . . ,dJjwi and   1
′ ,2

′ , . . . ,J
′ ′.

∙ So the focus is often on CL model.

∙ In many applications, allow for choice-specific and

individual-specific covariates:

yij
∗  zij  wij  aij, j  0,1, . . . ,J

with 0  0.
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∙ A key restriction of CL model is independence from irrelevant

alternatives (IIA), which for the pure CL model follows from

Py  j|y  j or y  h  expxij
expxij  expxih

∙ This means that the probability of selecting between two alternatives

given only those two choices does not depend on characteristics of

other choices – that is, xim for m ∉ j,k – do not appear.
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∙ Can have unattractive implications for the probabilities when

alternatives are similar, and for predicting substitution patterns when

new alternatives are introduced or old choices are taken away.

∙ Another way to characterize the problem: in

yij
∗  xij  aij, j  0, . . . ,J,

the aij, j  0,1, . . . ,J, are assumed to be independent. This is an

unrealistic assumption when some choices are similar.
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∙ See Imbens’ “Discrete Choice” lecture from NBER Summer Course.

Three restaurants in Berkeley, Chez Panisse (C), Lalime’s (L), and the

Bongo Burger (B).

∙ Suppose the two characteristics of the restaurants are price, with

PC  95, PL  80, and PB  5,

and quality, with

QC  10, QL  9, and QB  2

∙ Utility is given by

yij
∗  −. 2Pj  2Qj  aij
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∙ If we compute the choice probabilties – which can be thought of the

market shares – they are roughly

SC . 09, SL . 24, and SB . 67

For example,

SC  exp−. 2  95  2  10
exp−. 2  95  2  10  exp−. 2  80  2  9  exp−. 2  5  2  2

(Note: In this case, there is no normalization of setting Pj and Qj for

one of the choices equal to zero.)
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∙ Now suppose Lalime’s goes out of business. The new shares for Chez

Panisse and Bongo Burger predicted by the CL model are

Py  C|y  C or B ≈ . 09
. 09 . 67 ≈. 12

Py  B|y  C or B  . 67
. 09 . 67 ≈. 88

In other words, C gets about . 09/. 76. 24 ≈. 03 of B’s share and C

gets . 67/. 76. 24 ≈. 21.

∙ Seems much more likely that most of B’s customers will patronize

restaurant A, so the shares should be closer to . 33 and .67 (but might

be, say, . 30 and .70).
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∙ Three popular ways to relax IIA.

1. Allow correlation among the aij. Usually done by specifying

multivariate normal. That is, assume ai has a multivariate normal

distribution (with unit variances) and an unrestricted correlation matrix.

This leads to multinomial probit (which is better called conditional

probit, in the spirit of the probabilistic choice framework).

∙Mutinomial probit is computationally very difficult, although

simulation methods and fast computers help. More importantly, it is not

clear it does what we want. If we only ever observe a single choice for

each unit, difficult to estimate many correlation parameters when the

choice set is large.
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2. Nested logit. Suppose we can group alternatives into S groups of

“similar” alternatives. Let there be Gs alternatives in subgroup s,

s  1, . . . ,S. Now specify a nested structure

Py ∈ Gs|x 
s ∑ j∈Gs

exps
−1xj

s

∑r1
S r ∑ j∈Gr

expr
−1xj

r

Py  j|y ∈ Gs,x 
exps

−1xj

∑h∈Gs
exps

−1xh

∙ Need a normalization, usually 1  1. Get standard CL model by

s  1, all s.
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∙ Important Issue: How can the nesting structure be chosen? Also, gets

more complicated with more than one level of nesting.

∙ Structure does lead to a simple two-step estimation method. Let

s  s
−1, s  1, . . . , s. These can be easily estimated by applying

conditional logit within each group.

∙ Then estimate the s and s by maximizing

∑
i1

N

∑
s1

S

1yi ∈ Gs logqsxi; ̂,,

where qsx;,, is Py ∈ Gs|x.
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∙ Can easily bootstrap the standard errors and inference for the two-step

estimation method.

∙ Problem with method is that, by specifying the groups, we are

assuming the extreme value errors within each group are independent.

Results can be sensitive to those choices.
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3. An approach that fits well in the utility maximization framework is

random coefficient models. So consider models of the form

yij
∗  xijbi  aij, j  0, . . . ,J

 xij  xijdi  aij

≡ xij  uij

where uij  xijdi  aij.

∙ Does not require us to group ahead of time, as in nested logit.

∙ Even thought the aij are assumed to be independent across j – usually

with indentical extreme value distributions – the uij are correlated

through di, and the correlation depends on xij.
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∙ If the intercept in bi is the only heterogeneous parameter, can write

xijdi  ci with Eci  0, which gives a kind of random effects

structure across choices:

yij
∗  xij  ci  aij

∙ The presence of ci breaks the IIA property conditional on xi.
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∙ In the general model yij
∗  xijbi  aij, often assume that, conditional

on bi, the model is conditional logit. Then specify a distribution for bi,

such as assume a finite number of types. Or, use a continuous

distribution, such as multivariate normal. Can even allow bi to depend

on observed individual-specific characteristics, wi.

∙ Estimation is computationally very intensive, and simulation methods

of estimation are often used.
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∙ Extensions of conditional logit, and its extensions, to allow for

endogenous characteristics is possible but can be very difficult. Petrin

and Train (2010, Journal of Marketing Research) show how simple

control function methods can be used for continuous endogenous

explanatory variables.

∙ Panel data harder to handle, too, but the CRE approach of

Chamberlain can be used. As in the Petrin and Train approach, easiest

to assume that the model conditional on observables follows a MNL

functional form, or some other convenient model.
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4. ORDERED RESPONSE MODELS

∙ Here we discuss cases where the ordered response, y, is the variable

we wish to explain. A setting with a similar statistical structure, but a

different interpretation, is interval regression, which is a data censoring

problem that arises from observing an underlying continuous response

only in cells. Here, y is the response of interest.

∙When the response probabilities are of interest, we can take the

outcomes to be 0,1, . . . ,J without loss of generality.
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∙ Underlying ordered probit is a latent variable model that looks just

like binary response:

y∗  x  e, e|x ~ Normal0,1

where, for reasons to be seen, x does not include a constant. Let

1  2 . . . J be J unknown cut points. These are parameters that

we estimate these along with .
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∙ Assume

y  0 if y∗ ≤ 1

y  1 if 1  y∗ ≤ 2



y  J − 1 if J−1  y∗ ≤ J

y  J if y∗  J.
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∙ The response probabilities are easy to obtain:

Py  0|x  Px  e ≤ 1|x  1 − x
Py  1|x  P1  x  e ≤ 2|x  2 − x − 1 − x



Py  J − 1|x  J − x − J−1 − x
Py  J|x  1 − J − x

∙ Of course, when we add them all up, we get one.
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∙ For random draw i the log likelihood is

ℓi,  1yi  0 log1 − xi

 1yi  1 log2 − xi − 1 − xi

. . .1yi  J log1 − J − xi

∙MLE is well behaved: computation is usually straightforward,

inference is standard.

∙When J  1, Py  0|x  1 − x  1 − x − 1,

Py  1|x  x − 1, and so −1 plays the role of the intercept in

standard probit.
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∙ For ordered logit, replace  with .

∙ Interpreting coefficients requires some care.

∂p0x
∂xk

 −k1 − x, ∂pJx
∂xk

 kJ − x

∂pjx
∂xk

 kj−1 − x − j − x

∙ The sign of ∂pjx/∂xk is ambiguous. It depends on |j−1 − x| versus

|j − x| (remember,  is symmetric about zero).

∙ As in other nonlinear models, can compute PEAs or APEs. Bootstrap

standard errors.
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∙ For ordered logit or probit,

Py ≤ j|x  Py∗ ≤ j|x  Gj − x, j  0,1, . . . ,J − 1,

where G   or G  . Probabilities differ across j only

because of the cut parameters, j. In effect, an intercept shift inside the

nonlinear cdf determines the differences in probabilities. Sometimes

called the parallel assumption.

∙ Some have proposed replacing  with j, which means estimating a

sequence of binary responses: Py ≤ j|x  Gj − xj,

Py  j|x  1 − Gj − xj. But the resulting estimates of Py ≤ j|x

need not increase in j.
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∙ Can construct a likelihood ratio test (say) comparing OP or OL

against the more general model. If we reject the OP or OL models

against the general alternative, what would we do? Is a statistical

rejection important for computing partial effects?

∙ The OP and OL models allow us to sign partial effects on Py  j|x:

for a continuous variable xh,

∂Py  j|x
∂xh

 hgj − x,

where g is the density associated with G. If h  0, an increase in

xh increases the probability that y is greather than any value j.
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∙ It is sometimes useful to compute the conditional mean, and partial

effects on the mean, especially if the the ordered variable can be

(roughly) assigned magnitudes. The estimates of the probabilities in

each category will be the same provided the order is preserved.

∙ As an example, suppose on a survey about retirement investments,

people are asked whether their assets are in “all bonds,” “mostly

bonds,” “mix of stocks and bonds,” “mostly stocks,” and “all stocks.”

We could just estimate an ordered probit or logit with J  4.
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∙ But we also might assign approximate numerical values for the

fraction held in stocks, for example

m0  0, m1 . 2, m2 . 5, m3 . 8, m4  1

∙ Using these values in ordered probit or logit has no effect on the

estimates of  or the j; that is the nature of an ordered response.

∙ But, after estimation, we might compute an estimate of Ey|x

because its magnitude has some meaning.
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∙ Generally, let m0,m1, . . . ,mJ be the J values assigned to y, where

mj−1  mj. Then, for ordered probit,

Ey|x  m0Py  m0|x  m1Py  m1|x . . .mJPy  mJ|x
 m01 − xi  m12 − x − 1 − x
. . .mJ1 − J − x

 m0 − m11 − x  m1 − m22 − x
. . .mJ−1 − mJJ − x  mJ
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∙ It is easy to see that the signs of the partial effects on Ey|x are

unambiguously the same sign as a coefficient:

∂Ey|x
∂xk

 km1 − m01 − x  m2 − m12 − x

. . .mJ − mJ−1J − x

and each term in  is positive because mj  mj−1 and   0.

∙ The estimated partial effects, when averaged across xi, can be

compared with OLS estimates of a linear model. The linear model

estimates make some sense when y is assigned one of the mj values.
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∙ One way to extend the basic model that preserves ordering of

probabilities is to allow heteroskedasticity in the latent variable model,

as in binary case:

e|x ~ Normal0, exp2x1

where x1 can be a subset of x.
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∙ Can use the Rivers-Vuong control function approach to allow

endogeneity when y2 is continuous.

y1
∗  z11  1y2  u1

y2  z2  v2,

where u1,v2 is independent of z and jointly normally distributed. (As

in the binary case, we can relax these assumptions a bit.)
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∙ Again, z1 does not contain an intercept. Instead, there a cut points, j,

j  1, . . . ,J. We define the observed ordered response, y1, in terms of

the latent response, y1
∗.

∙Write u1  1v2  e1 and plug in:

y1
∗  z11  1y2  1v2  e1,

where 1  1/2
2, 1  Covv2,u1, 2

2  Varv2, e1|z,v2

~Normal0,1 − 1
2, and 1  1

22
2  1

2/2
2.
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∙ So (1) Obtain the OLS residuals, v̂i2, from the first-stage regression

yi2 on zi, i  1, . . . ,N. (2) Run ordered probit of yi1 on zi1,yi2, and v̂i2

in a second stage. Consistently estimate the scaled coefficients

1 ≡ 1/1 − 1
21/2, 1 ≡ 1/1 − 1

21/2, 1 ≡ 1/1 − 1
21/2, and

j  j/1 − 1
21/2.

∙ A simple test of the null hypothesis that y2 is exogenous is just the

standard t statistic on v̂i2.

∙ Can estimate the original parameters by dividing each of the scaled

coefficients by 1  ̂1
2 ̂2

21/2.
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∙ As usual, can obtain the average structural function by averaging out

the v̂i2 from the equation with scaled coefficients. For example, with

0  j  J,

ASFjx1  N−1∑
i1

N

̂2 − x1̂1
− ̂1v̂i2 − ̂1 − x1̂1

− ̂1v̂i2

where x1 can be any function of z1,y2.

∙ As always, partial effects are obtained by taking derivatives or

differences.

∙ Bootstrapping is a natural way to obtain standard errors; the delta

method can also be used.

44



∙ Panel data versions of ordered probit are easily specified and

estimated. We add unobserved heterogeneity to the model and subsume

its mean into the cut points.

yit
∗  xit  ci  eit

eit|xi,ci ~ Normal0,1

yit  0 if yit
∗ ≤ 1

yit  1 if 1  yit
∗ ≤ 2



yit  J if yit
∗  J.
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∙ Notice that the assumption on eit in incorporates strict exogeneity

conditonal on ci.

∙ Again, a convenient assumption is

ci|xi ~ Normal  x̄i ,a
2

∙ Under these assumptions, we can estimate the coefficients scaled by

1  a
2−1/2 because, for example, for 0  j  J,

Pyit  j|xi  a,j1 − xita − x̄ia

− a − xita − x̄ia.
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∙ The APEs can be obtained from

ASFxt  N−1∑
i1

N

̂a,j1 − xt̂a − x̄i̂a

− ̂aj − xt̂a − x̄i̂a

∙ Use the panel bootstrap for standard errors.

∙ If we add conditional independence, we can estimate the orginal

parameters and a
2 separately. Called (correlated) random effects

ordered probit.
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∙We can extend the basic dynamic probit model to the ordered case,

too. Because yit is an ordered response, a dynamic model should allow

the current probabilities to depend on the past in a flexible way. Let

witj  1yit  j, j  1, . . . ,J, and wit  wit1, ..., witJ and write the

latent variable model as

yit
∗  zit  wi,t−1  ci  uit, t  1, . . . ,T

where yit is defined as before.

∙We assume the dynamics are correctly specified, which means that

Duit|zi,yi,t−1, . . . ,yi0,ci  Duit  Normal0,1.

where zi  zi1,zi2, . . . ,ziT.
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∙ To account for the initial conditions problem, the unobserved effect,

ci, is modeled as ci    wi0  zi  ai, where wi0 is the J-vector of

initial conditions, wi0j.

∙ Assume

ai|zi,wi0 ~ Normal0,a
2.

∙We can apply random effects ordered probit to the equation

yit
∗  zit  wi,t−1  wi0  zi  ai  uit, t  1, . . . ,T,

where we absorb the intercept into the cut parameters, j.
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∙ Any software that estimates random effects ordered probit models can

be applied directly to estimate all parameters, including a
2; we simply

specify the explanatory variables at time t as zit,wi,t−1,wi0,zi. (Pooled

ordered probit does not consistently estimate any interesting

parameters.)

∙ Average partial effects are easily computed. Not surprisingly, the

APEs depend on the coefficients multiplied by 1  ̂a
2−1/2; see

Wooldridge (2005b, Journal of Applied Econometrics).

∙ Using the same approach for dynamic probit, the mean and variance

of ci can also be estimated.
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