2nd Mid Term Exam- Theoretical Part (15 minutes)

This exam consists of two parts. This is Part 1 - Theoretical (35 points). During the duration of the exam, no clarifications will be provided. GOOD LUCK!

Name: \qquad no \qquad
Each of the following 2 groups of multiple-choice questions is worth 10 points (1 mark). Each question answered correctly is worth 2.5 points; each wrong answer is worth -2.5 points. The grade in each of the 2 groups varies between a minimum of 0 and a maximum of 10 points.

Indicate whether the following statements are true (T) or false (F) by ticking the corresponding box with a cross (X)

1. Let (X, Y) be a two dimensional random variable.

T F

Let (X, Y) be a discrete random variable. X and Y are independent random variables if and only if $P(X=x \mid Y=y)=P(X=x) \forall(x, y) \in D_{X, Y}$	X	
If (X, Y) is a discrete random variable, the marginal expected value of X always exist.		X
If $M_{X}^{\prime}(0)$ and $M_{X}^{\prime \prime}(0)$ exist μ_{2} may not exist.		X
If the correlation coeficiente $\rho_{X, Y} \neq 0$, then X and Y are dependent random variables.	X	

2.

Let $X_{1} \sim P o\left(\lambda_{1}\right)$ and $X_{2} \sim P o\left(\lambda_{2}\right) \quad \lambda_{1} \neq \lambda_{2}$, be random variables representing the number of events in a time interval $\Delta t_{1}=(0,2]$ and $\Delta t_{2}=(3,5]$ respectively. Then the random variable $W=X_{1}+$ X_{2} follows a Poisson distribution with mean $\lambda_{1}+\lambda_{2}$.	X	
Let $Y_{1} \sim B\left(n_{1}, \theta_{1}\right)$ and $Y_{2} \sim B\left(n_{2}, \theta_{2}\right) \theta_{1}=\theta_{2}$ be independent random variables, then the random variable $W=Y_{1}+Y_{2}$ follows a binomial distribution with probability of success $\theta=\theta_{1}+\theta_{2}$.	X	
Let $X \sim N\left(\mu, \sigma^{2}\right), P[X<a]=0.3 \Leftrightarrow a<\mu$	X	
If the random variable $X \sim(a, a+2) a \in \mathbb{R}$, then the $3^{\text {rd }}$ quartile $\xi_{0.75}=3 / 2$		X

3. Show, using the definition of variance of a random variable, that if $\operatorname{Var}(X)$ exists and c is a constant, then $\operatorname{Var}(c X)=c^{2} \operatorname{Var}(X)$ [Cotação: 15]

This exam consists of two parts. This is Part 1 - Theoretical (35 points). During the duration of the exam, no clarifications will be provided. GOOD LUCK!

Name: \qquad no \qquad
Each of the following 2 groups of multiple-choice questions is worth 10 points (1 mark). Each question answered correctly is worth 2.5 points; each wrong answer is worth -2.5 points. The grade in each of the 2 groups varies between a minimum of 0 and a maximum of 10 points.

Indicate whether the following statements are true (T) or false (F) by ticking the corresponding box with a cross (X)
4. Let (X, Y) be a two dimensional random variable.

Let (X, Y) be a discrete random variable. X and Y are independent random variables if and only if $P(X=x \mid Y=y)=P(X=x)$ for some $(x, y) \in D_{X, Y}$	T	
If (X, Y) is a continuous random variable, the marginal expected value of Y always exist.		X
If $M_{X}^{\prime}(0)$ and $M_{X}^{\prime \prime}(0)$ exist μ_{2} always exist.	X	
If the correlation coeficiente $\rho_{X, Y}=0$, then X and Y are independent random variables		X

5.

Let $X_{1} \sim \operatorname{Po}\left(\lambda_{1}\right)$ and $X_{2} \sim \operatorname{Po}\left(\lambda_{2}\right) \lambda_{1} \neq \lambda_{2}$, be random variables representing the number of events		
in a time interval $\Delta t_{1}=(0,3]$ and $\Delta t_{2}=(2,5]$ respectively. Then the random variable $W=X_{1}+$		
X_{2} follows a Poisson distribution with mean $\lambda_{1}+\lambda_{2}$.		
Let $Y_{1} \sim B i\left(n_{1}, \theta_{1}\right)$ and $Y_{2} \sim B i\left(n_{2}, \theta_{2}\right) \theta_{1} \neq \theta_{2}$, be independent random variables, then the random		
variable $V=Y_{1}+Y_{2} \sim B i\left(n_{1}+n_{2}, \theta_{1}+\theta_{2}\right)$		X
Let $X \sim N\left(\mu, \sigma^{2}\right), P[X>a]=0.3 \Leftrightarrow a>\mu$	X	
If the random variable $X \sim(a, a+2) a \in \mathbb{R}$, then the $1^{\text {st }}$ quartile $\xi_{0.25}=\frac{1}{2}$.	X	

6. Show, using the definition of variance of a random variable, that if $\operatorname{Var}(X)$ exists and c is a constant, then $\operatorname{Var}(c X)=c^{2} \operatorname{Var}(X)$ [Cotação: 15]

STATISTICS I - 2nd Year Economics\Management Science BSc - 2nd semester - 05/04/2016 !st Mid Term Exam- Practical Part (45 minutes)
This is Part 2: 6.5 marks. The answers to the multiple-choice questions should be given by signalling with an \mathbf{X} the corresponding square. The other questions should be answered in the provided space.

Attention: For each of the multiple-choice questions, each correct answer is worth 10 points, each wrong answer is worth -2.5 points.
Open questions should be duly justified and formalized.
Name: \qquad №:

Espaço reservado para a classificação

a) (10)
c) (15)
2 (15)
T:
b) (10)
1
d) (20)
P:

1

1. A machine that works continuously has on average three breakdowns per 8 -hour shift operation. Breakdown occurrences follow a Poisson process.
a) What is the probability that in the 1st half of the shift there are less than 2 breakdowns.
$0.2510 \square$
X 0.8088
0.5578 X
0.3347
b) Find the probability that in two of the 3 shifts, in a day, there are just one breakdown.
$0.992 \square$
0.003
0.057 X
0.096
$0.997 \square$
c) Considering the first shift, compute the probability that the first breakdown occurs after 6 hours knowing that there were no breakdowns in the first 2 . Comment your result.
Y - time, in hours, until the $1^{\text {st }}$ breakdown $\sim E x(3 / 8)$ (5)

$$
\begin{aligned}
\underbrace{P(Y>6 \mid Y>2)}_{2.5} & =\underbrace{\frac{\exp \left(-\frac{3}{8} * 6\right)}{\exp \left(-\frac{3}{8} * 2\right)}=\exp \left(-\frac{3}{8} * 6+\frac{3}{8} * 2\right)=\exp \left(-\frac{3}{8} * 4\right)=0.2231}_{2.5} \\
& =\underbrace{P(Y>4)}_{2.5}
\end{aligned}
$$

o que ilustra a propriedade de falta de memória da distribuição exponencial.(2.5)
d) Determine the probability that in a day, the $6^{\text {th }}$ breakdown occurred before the end of the $2^{\text {nd }}$ shift.
W - time, in hours, until the $6^{\text {th }}$ breakdown $\sim G(6,3 / 8)$ (5)

$$
\begin{aligned}
\underbrace{P(W \geq 16)}_{2.5}= & \underbrace{1-P(W<16)}_{2.5}=1-\underbrace{P\left(2 * \lambda * W<2 * \frac{3}{8} * 16\right)}_{2.5}=1-\underbrace{P\left(\chi_{(2 * 6)}^{2}<12\right)}_{2.5} \\
& =1-\underbrace{0.554}_{2.5}=\underbrace{0.446}_{2.5}
\end{aligned}
$$

2. A quality standard requires that the weight in grams of a certain type of grain contained in a package differs from the mean weight, in absolute value, by less than \boldsymbol{k} grams. The weight of cereals contained in a package is well represented by a normal distribution with mean 350 grams and variance 25 . Determine the value of \boldsymbol{k} so that the package meets the quality standard with a probability of 90%.
X - weight of cereals contained in a package $\sim N(350,25)$

$$
\begin{aligned}
& \underbrace{a, b: P(a<X<b)=0.9}_{5} \Leftrightarrow\left\{\begin{array}{l}
\underbrace{P(X<a)=0.05}_{2.5} \Leftrightarrow \underbrace{P(X<b)=0.95}_{2.5} \Leftrightarrow \underbrace{b=\operatorname{invnorm}(0.05,350,5)=341.776}_{2.5} \\
\underbrace{p=\operatorname{invnorm}(0.95,350,5)=358.224}_{2.5}
\end{array}\right. \\
& a, b: P(a<X<b)=0.9 \Leftrightarrow \underbrace{P\left(\frac{a-350}{5}<\frac{X-\mu}{\sigma}<\frac{b-350}{5}\right)=0.9}_{2.5} \\
& \Leftrightarrow \underbrace{P(-Z \varepsilon / 2<Z<Z \varepsilon / 2)=0.9}_{2.5}
\end{aligned}
$$

A tabela 5 dá para $\varepsilon=0.1$ o valor $\underbrace{z \varepsilon_{\varepsilon}=1.645}_{2.5}$, pelo que:
$a: \frac{a-350}{5}=-1.645 \Leftrightarrow a=350-1.645 * 5=341.775(1.25) \mathrm{e}$
$b: \frac{b-350}{5}=1.645 \Leftrightarrow a=350+1.645 * 5=358.225(1.25)$

STATISTICS I - 2nd Year Economics\Management Science BSc - 2nd semester - 05/04/2016 !st Mid Term Exam- Practical Part (45 minutes)

This is Part 2: 6.5 marks. The answers to the multiple-choice questions should be given by signalling with an \mathbf{X} the corresponding square. The other questions should be answered in the provided space.

Attention: For each of the multiple-choice questions, each correct answer is worth 10 points, each wrong answer is worth -2.5 points. Open questions should be duly justified and formalized.

Name: \qquad №: \qquad

Espaço reservado para a classificação

a) (10)
c) (10)
2 (15)
T:
b) (10)
d) (20)
P:

1

1. A machine that works continuously has on average three breakdowns per 8 -hour shift operation.
a) What is the probability that in the 1 st half of the shift there are less than 3 breakdowns.
$0.2510 \square$
0.8088 X
0.1255
$0.9344 \square$
b) Find the probability that in every shift, in a day, there are just one breakdown.
0.003 X
$0.05 \sqrt{\square}$
$1 \square$
$0.997 \square$
c) Considering the first shift, compute the probability that the first breakdown occurs after 6 hours knowing that there were no breakdowns in the first 2 . Comment your result.
d) Determine the probability that in a day, the $6^{\text {th }}$ breakdown occurred before the end of the $2^{\text {nd }}$ shift.
2. A quality standard requires that the weight in grams of a certain type of grain contained in a package differs from the mean weight, in absolute value, by less than 5 grams. The weight of cereals contained in a package is well represented by a normal distribution with mean 350 grams and variance 25. Determine the interval of variation of the weight of cereals contained in a package so that it meets the quality standard with a probability of 90%.
