Models in Finance - Lecture 3
 Master in Actuarial Science

João Guerra

ISEG

Stochastic integrals

- Motivation : Consider a "differential equation" with "noise" of type:

$$
\frac{d X}{d t}=b\left(t, X_{t}\right)+\sigma\left(t, X_{t}\right) " \frac{d B_{t}}{d t}
$$

- " $\frac{d B_{t}}{d t}$ " is a stochastic "noise". Does not exist in classical sense since B is not differentiable.
- "Stochastic differential equation" (SDE) in integral form :

$$
\begin{equation*}
X_{t}=X_{0}+\int_{0}^{t} b\left(s, X_{s}\right) d s+" \int_{0}^{t} \sigma\left(s, X_{s}\right) d B_{s}^{\prime \prime} \tag{1}
\end{equation*}
$$

- How to define the integral:

$$
\begin{equation*}
\int_{0}^{T} u_{s} \mathrm{~d} B_{s} \quad ? \tag{2}
\end{equation*}
$$

where B is a Brownian motion and u is an appropriate adapted process.

- Note: the SDE's that we deal with are the continuous time versions of the equations used to define time series (processes in discrete time). Example: a zero-mean random walk can be defined by:

$$
X_{t}=X_{t-1}+\sigma Z_{t}
$$

where Z_{t} is a standard normal r.v. (the Z_{i} variables are called "white noise"). This equation is a stochastic difference equation and is equivalent to $\Delta X_{t}=\sigma Z_{t}$. Its solution is $X_{t}=X_{0}+\sigma \sum_{s=1}^{t} Z_{s}$.

- In continuous time, the analog of a zero-mean random walk is a zero-mean Brownian motion B_{t}.
- First strategy: Consider the integral (2)
- Consider a sequence of partitions of $[0, T]$ and a sequence of points:

$$
\begin{aligned}
& \tau_{n}: \quad 0=t_{0}^{n}<t_{1}^{n}<t_{2}^{n}<\cdots<t_{k(n)}^{n}=T \\
& s_{n}: \quad t_{i}^{n} \leq s_{i}^{n} \leq t_{i+1}^{n}, \quad i=0, \ldots, k(n)-1
\end{aligned}
$$

such that $\lim _{n \rightarrow \infty} \sup _{i}\left(t_{i+1}^{n}-t_{i}^{n}\right)=0$.

Riemann-Stieltjes (R-S) integral:

$$
\int_{0}^{T} f d g:=\lim _{n \rightarrow \infty} \sum_{i=0}^{n-1} f\left(s_{i}^{n}\right) \Delta g_{i}
$$

where $\Delta g_{i}:=g\left(t_{i+1}^{n}\right)-g\left(t_{i}^{n}\right)$, if the limit exists and is independent of the sequences τ_{n} and s_{n}.

- If g is a differentiable function and f is continuous the (R-S) integral is well defined: $\int_{0}^{T} f(t) d g(t)=\int_{0}^{T} f(t) g^{\prime}(t) d t$.
- In the Bm case B, it is clear that $B^{\prime}(t)$ does not exist, so we cannot define the path integral:
- Problem: The integral $\int_{0}^{T} B_{t}(\omega) d B_{t}(\omega)$ does not exist as a R-S integral. How to define the integral (2)?
- We will construct the stochastic integral $\int_{0}^{T} u_{t} d B_{t}$ using a probabilistic approach.

Definition

Consider processes u of class $L_{a, T}^{2}$, which is defined as the class of processes $u=\left\{u_{t}, t \in[0, T]\right\}$, such that:
(1) u is adapted and measurable.
(2) $E\left[\int_{0}^{T} u_{t}^{2} d t\right]<\infty$.

- Condition 2. allows us to show that u as a map of two variables t and ω belongs to the space $L^{2}([0, T] \times \Omega)$ and that:

$$
E\left[\int_{0}^{T} u_{t}^{2} d t\right]=\int_{0}^{T} E\left[u_{t}^{2}\right] d t
$$

- idea: we will define $\int_{0}^{T} u_{t} d B_{t}$ for $u \in L_{a, T}^{2}$ as a limit in mean-square (i.e., a limit in $L^{2}(\Omega)$) of integrals of simple processes.

Stochastic Itô integral for simple processes

Definition

$u \in \mathcal{S}$ (set of simple processes in $[0, T]$) is called a simple process if

$$
\begin{equation*}
u_{t}=\sum_{j=1}^{n} \phi_{j} \mathbf{1}_{\left(t_{j-1}, t_{j}\right]}(t) \tag{3}
\end{equation*}
$$

where $0=t_{0}<t_{1}<\cdots<t_{n}=T$, and the r.v. ϕ_{j} are square-integrables $\left(E\left[\phi_{j}^{2}\right]<\infty\right)$ and $\mathcal{F}_{t_{j-1}}$-measurable

Definition

If u is a simple process of form (3) $(u \in \mathcal{S})$ then the stochastic Itô integral of u with respect to $\operatorname{Bm} B$ is:

$$
\int_{0}^{T} u_{t} d B_{t}:=\sum_{j=1}^{n} \phi_{j}\left(B_{t_{j}}-B_{t_{j-1}}\right) .
$$

Example

Consider the simple process

$$
u_{t}=\sum_{j=1}^{n} B_{t_{j-1}} \mathbf{1}_{\left(t_{j-1}, t_{j}\right]}(t)
$$

Then

$$
\int_{0}^{T} u_{t} d B_{t}=\sum_{j=1}^{n} B_{t_{j-1}}\left(B_{t_{j}}-B_{t_{j-1}}\right) .
$$

Then (why?)

$$
\begin{aligned}
E\left[\int_{0}^{T} u_{t} d B_{t}\right] & =\sum_{j=1}^{n} E\left[B_{t_{j-1}}\left(B_{t_{j}}-B_{t_{j-1}}\right)\right] \\
& =\sum_{j=1}^{n} E\left[B_{t_{j-1}}\right] E\left[B_{t_{j}}-B_{t_{j-1}}\right]=0 .
\end{aligned}
$$

Proposition: (Isometry property or norm preservation property). Let $u \in \mathcal{S}$. Then:

$$
\begin{equation*}
E\left[\left(\int_{0}^{T} u_{t} d B_{t}\right)^{2}\right]=E\left[\int_{0}^{T} u_{t}^{2} d t\right]=\int_{0}^{T} E\left[u_{t}^{2}\right] d t \tag{4}
\end{equation*}
$$

Proof.
With $\Delta B_{j}:=B_{t_{j}}-B_{t_{j-1}}$, we have (Exercise (homework): justify all the steps in this proof):

$$
\begin{aligned}
E\left[\left(\int_{0}^{T} u_{t} d B_{t}\right)^{2}\right] & =E\left[\left(\sum_{j=1}^{n} \phi_{j} \Delta B_{j}\right)^{2}\right] \\
& =\sum_{j=1}^{n} E\left[\phi_{j}^{2}\left(\Delta B_{j}\right)^{2}\right]+2 \sum_{i<j}^{n} E\left[\phi_{i} \phi_{j} \Delta B_{i} \Delta B_{j}\right]
\end{aligned}
$$

Proof.

(cont.) Note that since $\phi_{i} \phi_{j} \Delta B_{i}$ is \mathcal{F}_{j-1}-measurable and ΔB_{j} is indepedent of $\mathcal{F}_{j-1,}$, then

$$
\sum_{i<j}^{n} E\left[\phi_{i} \phi_{j} \Delta B_{i} \Delta B_{j}\right]=\sum_{i<j}^{n} E\left[\phi_{i} \phi_{j} \Delta B_{i}\right] E\left[\Delta B_{j}\right]=0
$$

On the other hand, since ϕ_{j}^{2} is \mathcal{F}_{j-1}-measurable and ΔB_{j} is independent of \mathcal{F}_{j-1},

$$
\begin{aligned}
\sum_{j=1}^{n} E\left[\phi_{j}^{2}\left(\Delta B_{j}\right)^{2}\right] & =\sum_{j=1}^{n} E\left[\phi_{j}^{2}\right] E\left[\left(\Delta B_{j}\right)^{2}\right] \\
& =\sum_{j=1}^{n} E\left[\phi_{j}^{2}\right]\left(t_{j}-t_{j-1}\right)= \\
& =E\left[\int_{0}^{T} u_{t}^{2} d t\right]
\end{aligned}
$$

- Other properties of $\int_{0}^{T} u_{t} d B_{t}$ for $u \in \mathcal{S}$:
(1) Linearity: If $u, v \in \mathcal{S}$:

$$
\begin{equation*}
\int_{0}^{T}\left(a u_{t}+b v_{t}\right) d B_{t}=a \int_{0}^{T} u_{t} d B_{t}+b \int_{0}^{T} v_{t} d B_{t} . \tag{5}
\end{equation*}
$$

(2) Zero mean:

$$
\begin{equation*}
E\left[\int_{0}^{T} u_{t} d B_{t}\right]=0 \tag{6}
\end{equation*}
$$

Exercise: Prove the property 2.
Exercise: Compute $\int_{0}^{5} f(s) d B_{s}$ with $f(s)=1$ if $0 \leq s \leq 2$ and $f(s)=4$ if $2<s \leq 5$ and what is the distribution of the resulting r.v.?

Itô integral

Lemma

If $u \in L_{a, T}^{2}$ then exists a sequence of simple processes $\left\{u^{(n)}\right\}$ such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} E\left[\int_{0}^{T}\left|u_{t}-u_{t}^{(n)}\right|^{2} d t\right]=0 \tag{7}
\end{equation*}
$$

Proof: see the book of Oksendal or the Nualart lecture notes: http://www.math.ku.edu/ ${ }^{\text {nualart/StochasticCalculus.pdf }}$

Definition

The Itô stochastic integral of $u \in L_{a, T}^{2}$ is defined as the limit (in the $L^{2}(\Omega)$ sense):

$$
\begin{equation*}
\int_{0}^{T} u_{t} d B_{t}=\lim _{n \rightarrow \infty}\left(L^{2}\right) \int_{0}^{T} u_{t}^{(n)} d B_{t} \tag{8}
\end{equation*}
$$

where $\left\{u^{(n)}\right\}$ is a sequence of simple processes satisfying (7).

Properties of the Itô integral

- Properties of the Itô integral $\int_{0}^{T} u_{t} d B_{t}$ for $u \in L_{a, T}^{2}$.
(1) Isometry (or norm preservation):

$$
\begin{equation*}
E\left[\left(\int_{0}^{T} u_{t} d B_{t}\right)^{2}\right]=E\left[\int_{0}^{T} u_{t}^{2} d t\right]=\int_{0}^{T} E\left[u_{t}^{2}\right] d t \tag{9}
\end{equation*}
$$

(2) Zero mean:

$$
\begin{equation*}
E\left[\int_{0}^{T} u_{t} d B_{t}\right]=0 \tag{10}
\end{equation*}
$$

(3) Linearity:

$$
\begin{equation*}
\int_{0}^{T}\left(a u_{t}+b v_{t}\right) d B_{t}=a \int_{0}^{T} u_{t} d B_{t}+b \int_{0}^{T} v_{t} d B_{t} . \tag{11}
\end{equation*}
$$

(4) The process $\left\{\int_{0}^{t} u_{s} d B_{s}, t \geq 0\right\}$ is a martingale.
(5) The sample paths of $\left\{\int_{0}^{t} u_{s} d B_{s}, t \geq 0\right\}$ are continuous.

Example

Let us show that

$$
\int_{0}^{T} B_{t} d B_{t}=\frac{1}{2} B_{T}^{2}-\frac{1}{2} T .
$$

Since $u_{t}=B_{t}$, let us consider the sequence of simple processes

$$
u_{t}^{n}=\sum_{j=1}^{n} B_{t_{j-1}^{n}} \mathbf{1}_{\left(t_{j-1}^{n}, t_{j}^{n}\right]}(t)
$$

with $t_{j}^{n}:=\frac{j}{n} T$.

Example

(cont.)

$$
\begin{aligned}
\int_{0}^{T} B_{t} d B_{t} & =\lim _{n \rightarrow \infty}\left(L^{2}\right) \int_{0}^{T} u_{t}^{(n)} d B_{t}= \\
& =\lim _{n \rightarrow \infty}\left(L^{2}\right) \sum_{j=1}^{n} B_{t_{j-1}^{n}}\left(B_{t_{j}^{n}}-B_{t_{j-1}^{n}}\right) \\
& =\lim _{n \rightarrow \infty}\left(L^{2}\right) \frac{1}{2} \sum_{j=1}^{n}\left[\left(B_{t_{j}^{n}}^{2}-B_{t_{j-1}^{n}}^{2}\right)-\left(B_{t_{j}^{n}}-B_{t_{j-1}^{n}}\right)^{2}\right] \\
& =\frac{1}{2}\left(B_{T}^{2}-T\right)
\end{aligned}
$$

where we used: $E\left[\left(\sum_{j=1}^{n}\left(\Delta B_{t_{j}^{n}}\right)^{2}-T\right)^{2}\right]=0$ and $\frac{1}{2} \sum_{j=1}^{n}\left(B_{t_{j}^{n}}^{2}-B_{t_{j-1}^{n}}^{2}\right)=\frac{1}{2} B_{T}^{2}$.

- Let us prove that $E\left[\left(\sum_{j=1}^{n}\left(\Delta B_{t_{j}^{\prime}}\right)^{2}-T\right)^{2}\right]=0$. Using the independence of increments and $E\left[\left(\Delta B_{t_{j}^{n}}\right)^{2}\right]=\Delta t_{j}^{n}$, then

$$
\begin{aligned}
& E\left[\left(\sum_{j=1}^{n}\left(\Delta B_{t_{j}^{n}}\right)^{2}-T\right)^{2}\right]=E\left[\left(\sum_{j=1}^{n}\left[\left(\Delta B_{t_{j}^{n}}\right)^{2}-\Delta t_{j}^{n}\right]\right)^{2}\right] \\
& =\sum_{j=1}^{n} E\left[\left(\Delta B_{t_{j}^{n}}\right)^{2}-\Delta t_{j}^{n}\right]^{2} .
\end{aligned}
$$

Using the fact that $E\left[\left(B_{t}-B_{s}\right)^{2 k}\right]=\frac{(2 k)!}{2^{k} \cdot k!}(t-s)^{k}$, then

$$
\begin{aligned}
& E\left[\left(\sum_{j=1}^{n}\left(\Delta B_{t_{j}^{n}}\right)^{2}-T\right)^{2}\right]=\sum_{j=1}^{n}\left[3\left(\Delta t_{j}^{n}\right)^{2}-2\left(\Delta t_{j}^{n}\right)^{2}+\left(\Delta t_{j}^{n}\right)^{2}\right] \\
& =2 \sum_{j=1}^{n}\left(\Delta t_{j}^{n}\right)^{2}=2 T \sup _{j}\left|\Delta t_{j}^{n}\right| \underset{n \rightarrow \infty}{\rightarrow} 0 .
\end{aligned}
$$

- Note: By formula $E\left[\left(B_{t}-B_{s}\right)^{2 k}\right]=\frac{(2 k)!}{2^{k} \cdot k!}(t-s)^{k}$ we have that

$$
\begin{aligned}
& \operatorname{Var}\left[(\Delta B)^{2}\right]=E\left[(\Delta B)^{4}\right]-\left(E\left[(\Delta B)^{2}\right]\right)^{2} \\
& =3(\Delta t)^{2}-(\Delta t)^{2}=2(\Delta t)^{2}
\end{aligned}
$$

We also know that

$$
E\left[(\Delta B)^{2}\right]=\Delta t
$$

Therefore, if Δt is small, the variance of $(\Delta B)^{2}$ is very small when compared with its expected value \Longrightarrow therefore when $\Delta t \rightarrow 0$ or " $\Delta t=d t$ ", we have:

$$
\begin{equation*}
\left(d B_{t}\right)^{2} \approx d t \tag{12}
\end{equation*}
$$

