
1

Introducing R

Germán Rodríguez (grodri@princeton.edu)
Princeton University

 Spring 2001, last updated Fall 2012
Online version at http://data.princeton.edu/R

Table of Contents

1 Introduction
 1.1 The R Language and Environment
 1.2 Bibliographic Remarks

2 Getting Started
 2.1 The R Console
 2.2 Expressions and Assignments
 2.3 Vectors and Matrices
 2.4 Simple Graphs

3 Reading Data
 3.1 Lists and Data Frames
 3.2 Free-Format Input
 3.3 Fixed-Format Input
 3.4 Printing Data and Summaries
 3.5 Plotting Data

4 Linear Models
 4.1 Fitting a Model
 4.2 Examining a Fit
 4.3 Extracting Results
 4.4 Factors and Covariates
 4.5 Regression Splines
 4.6 Other Options

5 Generalized Linear Models
 5.1 Variance and Link Families
 5.2 Logistic Regression
 5.3 Updating Models
 5.4 Model Selection

6 Conclusion
References

1 Introduction

R is a powerful environment for statistical computing which runs on several platforms. These
notes are written especially for users running the Windows version, but most of the material
applies to the Mac and Linux versions as well.

1.1 The R Language and Environment

R was first written as a research project by Ross Ihaka and Robert Gentleman, and is now under
active development by a group of statisticians called 'the R core team', with a home page at
www.r-project.org.

R was designed to be 'not unlike' the S language developed by John Chambers and others at
Bell Labs. A commercial version of S with additional features was developed and marketed as S-

http://data.princeton.edu/R
http://www.r-project.org/

2

Plus by Statistical Sciences, which later become Insightful and is now TIBCO Spotfire. R and S-
Plus can best be viewed as two implementations of the S language.

R is available free of charge and is distributed under the terms of the Free Software
Foundation's GNU General Public License. You can download the program from the
Comprehensive R Archive Network (CRAN). Ready-to-run 'binaries' are available for Windows,
Mac OS X, and Linux. The source code is also available for download and can be compiled for
other platforms.

These notes are organized in several sections, as shown in the Table of Contents. I have tried to
introduce key features of R as they are needed by students in my statistics classes. As a result, I
often postpone (or altogether omit) discussion of some of the more powerful features of R as a
programming language.

Notes of local interest, such as where to find R at Princeton University, appear in framed boxes
and are labeled as such. Permission is hereby given to reproduce these pages freely and host
them in your own server if you wish. You may add, edit or delete material in the local notes as
long as the rest of the text is left unchanged and due credit is given. Obviously I welcome
corrections and suggestions for enhancement.

1.2 Bibliographic Remarks

S was first introduced by Becker and Chambers (1984) in what's known as the 'brown' book.
The new S language was described by Becker, Chambers and Wilks (1988) in the 'blue' book.
Chambers and Hastie (1992) edited a book discussing statistical modeling in S, called the 'white'
book. The latest version of the S language is described by Chambers (1998) in the 'green' book,
but R is largely an implementation of the versions documented in the blue and white books.
Chamber's (2008) latest book focuses on Programming with R.

Venables and Ripley (1994, 1997, 1999, 2002) have written an excellent book on Modern
Applied Statistics with S-PLUS that is now in its fourth edition. The latest edition is particularly
useful to R users because the main text explains differences between S-Plus and R where
relevant. A companion volume called S Programming appeared in 2000 and applies to both S-
Plus and R. These authors have also made available in their website an extensive collection of
complements to their books, follow the links at MASS 4.

There is now an extensive and rapidly growing literature on R. Good introductions include the
books by Krause and Olson (1987), Dalgaard (2002), and Braun and Murdoch (2007). Beginners
will probably benefit from working through the examples in Everitt and Hothorn's (2006) A
Handbook of Statistical Analyses Using R or Fox's (2002, 2011) An R Companion to Applied
Regression. Among more specialized books my favorites include Murrell (2005), an essential
reference on R graphics, Pinheiro and Bates (2000), a book on mixed models, and Therneau and
Grambsh's (2000) Modeling Survival Data, which includes many analyses using S-Plus as well as

http://www.insightful.com/
http://www.gnu.org/
http://www.gnu.org/
http://www.gnu.org/copyleft/gpl.html
http://lib.stat.cmu.edu/R/CRAN/mirrors.html
file:///D:/R/toc.html
http://www.stats.ox.ac.uk/pub/MASS4/

3

SAS. (Therneau wrote the survival analysis code used in S-Plus and R.) For additional references
see the annotated list at R Books.

The official R manuals are available as PDF files that come with the R distribution. These include
An Introduction to R (a nice 100-page introduction), a manual on R Data Import/Export
describing facilities for transferring data to and from other packages, and useful notes on R
installation and Administration. More specialized documents include a draft of the R Language
Definition, a guide to Writing R Extensions, documentation on R Internals including coding
standards, and finally the massive R Reference Index (~3000 pages). The online help facility is
excellent. When you install R you get a choice of various help formats. I recommend compiled
html help because you get a nice tree-view of the contents, an index, a pretty decent search
engine, and nicely formatted help pages. (On Unix you should probably choose html help.)

2 Getting Started

Obviously the first thing you need to do is download a copy of R. The current version is 2.15.1
and was released in June 2012. New releases occur every six months often around April and
October. You will find binaries for Windows in the Comprehensive R Archive Network. Find the
mirror nearest you and follow the links. The Windows installer is fairly easy to use and, after
agreeing to the license terms, lets you choose which components you want to install. Additional
packages can always be installed directly from R at a later time. The download website has
special notes for users who may have permission issues when installing R in Windows.

Local Notes. R has been installed on OPR's Windows and Unix servers. Just logon to coale or
lotka and compute away.

We recommend that you create a shortcut to start R as part of the installation. If you skipped
that step just right clicking on the executable RGui.exe, drag it to your desktop, and choose
'Create a shotcut here'. It is also a good idea to set R's working directory at this time. Right click
on the shortcut, choose 'Properties' and enter your default working directory on the 'Start in'
field. The working directory can also be set from within R as explained later. It's a good idea to
have a separate folder for each research project.

2.1 The R Console

When R starts you will see a window called the RConsole. This is where you type your
commands and see the text results. (Graphs appear in a separate window.) You are prompted
to type commands with the greater than symbol. To quit R type

> q()

http://www.r-project.org/doc/bib/R-publications.html
http://lib.stat.cmu.edu/R/CRAN/
http://lib.stat.cmu.edu/R/CRAN/mirrors.html

4

Note the parentheses after the q; this is because in R you don't type commands but rather
call functions to achieve results, even quit! To call a function you type the name followed by the
arguments in parentheses. If the function takes no arguments you just type the name followed
by left and right parenthesis. (If you forget the parentheses and type just the name of the
function, R will list it.)

You should also know about the help function, which opens a help window. This function can
be called with arguments to obtain help about specific features of R, for example help(plot).
A shortcut for help on a topic is a question mark followed by the topic as in ?plot. If you picked
compiled html help during the installation you should get that by default; if not you can always
type options(chmhelp=TRUE).

The RConsole allows command editing. You will find that the left and right arrow keys, home,
end, backspace, insert, and delete work exactly as you would expect. You also get a command
history: the up and down arrow keys can be used to scroll through recent commands. Thus, if
you make a mistake all you need to do is press the up key to recall your last command and edit
it.

It is possible to prepare commands in a file and then have R execute them using
the source function. You can send the output to a file instead of the RConsole by using
the sink function. Both functions take a filename (in quotes) as argument.

Warning: The backslash character has a special meaning to R. When you specify a Windows
path in the RConsole you have to: (1) double-up your backslashes, or (2) use forward slashes
instead. Thus, if you want to read R code (or data) from a USB drive available as drive E, say, do
not type E:\myprogram.r. You have to type E:\\myprogram.r or E:/myprogram.r. (However,
when you specify a path in a file open or file save dialog you have to use the native format, with
a single backward slash.)

Alternatively, you may prefer to use R interactively and rely on cut and paste to transfer output
from the RConsole to a word processing document.

2.2 Expressions and Assignments

R works like a calculator, you type an expression and get the answer:

> 1+2
[1] 3

The standard arithmetic operators are +, -, *, and / for add, subtract, multiply and divide,
and ^ for exponentiation, so 2^3=8. These operators have the standard precedence, with
exponentiation highest and addition/subtraction lowest, but you can always control the order

5

of evaluation with parentheses. You can use mathematical functions, such as sqrt, exp,
and log. For example

> log(0.3/(1-0.3))
[1] -0.8472979

R also understands the relational operators <=, <, ==, >, >= and != for less than or equal,
less than, equal, greater than, greater than or equal, and not equal. These can be used to create
logical expressions that take values TRUE and FALSE (or T and F for short). Logical expressions
may be combined with the logical operators | for OR and & for AND, as shown further below.

The results of a calculation may be assigned to a named object. The assignment operator in R
is <-, read as "gets", but by popular demand R now accepts the equal sign as well, so x <-
2 and x = 2 both assign the value 2 to a variable (technically an object) named x.

Typing a name prints its contents. The name pi is used for the constant . Thus,

> s <- pi/sqrt(3)
> s
[1] 1.813799

assigns to the variable s and then prints the result.

Names may contain letters, numbers or periods, and (starting with 1.9.0) the underscore
character, but must start with a letter or period. (I recommend you always start names with a
letter.) Thus, v.one and v_one are valid names but v one is not (because it includes a space).

Warning: R is case sensitive, v.one, V.one and v.One are all different names.

R objects exist during your session but vanish when you exit. However, you will be asked if you
want to save an image of your workspace before you leave. You can also save individual objects
to disk, see help(save). (In contrast, S-Plus objects are permanent; they populate--and often
overpopulate--your hard disk, staying there until you explicitly remove them.)

Note that assignments are expressions too, you can type x <- y <- 2 and both x and y will get
2. This works because the assignment y <- 2 is also an expression that takes the value 2.

Exercise: What's the difference between x == 2 and x = 2? Use the console to find out.

6

2.3 Vectors and Matrices

So far we have worked with scalars (single numbers) but R is designed to work with vectors as
well. The function c, which is short for catenate (or concatenate if you prefer) can be used to
create vectors from scalars or other vectors:

> x <- c(1,3,5,7)
> x
[1] 1 3 5 7

The colon operator : can be used to generate a sequence of numbers

> x <- 1:10
> x
[1] 1 2 3 4 5 6 7 8 9 10

You can also use the seq function to create a sequence given the starting and stopping points
and an increment. For example here are eleven values between 0 and 1 in steps of 0.1:

> seq(0, 1, 0.1)
 [1] 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Another function that is useful in creating vectors is rep for repeat or replicate. For
example rep(3,4) replicates the number three four times. The first argument can be a vector,
so rep(x,3) replicates the entire vector x three times. If both arguments are vectors of
the same size, then each element of the first vector is replicated the number or times indicated
by the corresponding element in the second vector. Consider this example:

> rep(1:3, 2)
[1] 1 2 3 1 2 3
> rep(1:3, c(2,2,2))
[1] 1 1 2 2 3 3

The first call repeats the vector 1:3 twice. The second call repeats each element of 1:3 twice,
and could have been written rep(1:3, rep(2,3)), a common R idiom.

R operations are vectorized. If x is a vector, then log(x) is a vector with the logs of the
elements of x. Arithmetic and relational operators also work element by element. If x and y are
vectors of the same length, then x + y is a vector with elements equal to the sum of the
corresponding elements of x and y. If y is a scalar it is added to each element of x. If x and y are
vectors of different lengths, the shorter one is recycled as needed, perhaps a fractional number
of times (in which case you get a warning).

7

The logical operators | for or and & for and also work element by element. (The double
operators || for or and && for and work only on the first element of each vector and use
shortcut evaluation; they are used mostly in writing R functions and will not be discussed
further.)

> a = c(TRUE, TRUE, FALSE, FALSE)
> b = C(TRUE, FALSE, TRUE, FALSE)
> a & b
[1] TRUE FALSE FALSE FALSE

The number of elements of a vector is returned by the function length. Individual elements are
addressed using subscripts in square brackets, so x[1] is the first element of x, x[2] is the
second, and x[length(x)] is the last.

The subscript can be a vector itself, so x[1:3] is a vector consisting of the first three elements
of x. A negative subscript excludes the corresponding element, so x[-1] returns a vector with
all elements of x except the first one.

Interestingly, a subscript can also be a logical expression, in which case you get the elements for
which the expression is TRUE. For example to list the elements of x that are less than 5 we use

> x[x < 5]
1] 1 2 3 4

I read this expression 'x such that x is less than 5'. This works because the subcript x < 5 is this
vector:

> x < 5
 [1] TRUE TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE

R's (and of course S-Plus's) subscripting facility is extremely powerful. You may find that it takes
a while to get used to it, but eventually the language becomes natural.

R also understands matrices and higher dimensional arrays. The following function creates a 3
by 4 matrix and fills it by columns with the numbers 1 to 12:

> M = matrix(1:12, 3, 4)
> M
 [,1] [,2] [,3] [,4]
[1,] 1 4 7 10
[2,] 2 5 8 11
[3,] 3 6 9 12

8

The elements of a matrix may be addressed using the row and column subscripts in square
brackets, separated by a comma. Thus, M[1,1] is the first element of M.

A subscript may be left blank to select an entire row or column: M[1,] is the first row
and M[,1] is the first column of M. Any of the subscripts can be a vector, so M[1:2,1:2] is the
upper-left 2 by 2 corner of M. Try it.

The number of rows and columns of a matrix are returned by the functions nrow and ncol. To
transpose a matrix use the function t. The matrix multiplication operator is %*%. Matrix
inversion is done by the function solve. See the linear regression section for an example.

Exercise: How do you list the last element of a matrix?

2.4 Simple Graphs

R has very extensive and powerful graphic facilities. In the example below we use seq to create
equally spaced points between -3 and 3 in steps of 0.1 (that’s 61 points). Then we call the
function dnorm to calculate the standard normal density evaluated at those points, we plot it,
and add a title in a nice shade of blue. Note that we are able to add the title to the current plot
in a separate call.

> z <- seq(-3,3,.1)
> d <- dnorm(z)
> plot(z,d,type="l")
> title("The Standard Normal
Density",col.main="cornflowerblue")

Arguments to a function can be specified by
position or by name. The plot function expects the
first two arguments to be vectors giving the x and y
coordinates of the points to be plotted. We also
specified the type of plot. Since this is one of many
optional parameters (type ?plot for details), we
specified it by name as type="l" (the letter el).
This indicates that we want the points joined to
form a line, rather than the default which is to plot discrete points. Note that R uses the equal
sign to specify named arguments to a function.

The title function expects a character string with the title as the first argument. We also
specified the optional argument col.main="cornflowerblue" to set the color of the title.
There are 657 named colors to choose from, type colors() to see their names.

9

The next example is based on a demo included in the R distribution
and is simply meant to show off R's use of colors. We use the pie
function to create a chart with 16 slices. The slices are all the same
width, but we fill them with different colors obtained using the
rainbow function.

> pie(rep(1,16),col=rainbow(16))

Note the use of the rep function to replicate the number one 16
times. To see how one can specify colors and labels for the slices, try calling pie with
arguments 1:4, c("r", "g", "b","w") and col=c("red,"green","blue","white").

To save a graph make sure the focus is on the graph window and choose File | Save as, from the
menu. You get several choices of format, including postcript, which is good for printing, and
windows metafile, which is ideal for embedding your graph in another Windows document.

Most remarkably, you also get the png format, which makes it easy to include R graphs in web
pages such as this, particularly now that this format is supported by all major browsers. R also
supports jpeg, but I think png is better than jpeg for statistical plots. All graphs on these pages
are in png format.

Alternatively, you can copy the graph to the clipboard by choosing File | Copy to clipboard. You
get a choice of two formats. I recommend that you use the metafile format because it's more
flexible. You can then paste the graph into a word processing or spreadsheet document. You
can also print the graph using File | Print.

Exercise: Simulate 20 observations from the regression model using the
 vector generated above. Set and . Use standard normal errors generated as
rnorm(20), where 20 is the number of observations.

3 Reading and Examining Data

R can handle several types of data, including numbers, character strings, vectors and matrices,
as well as more complex data structures. In this section I describe data frames, the preferred
way to organize data for statistical analysis, explain how to read data from an external file into
a data frame, and show how to examine the data using simple descriptive statistics and
informative plots.

3.1 Lists and Data Frames

An important data structure that we have not discussed so far is the list. A list is a set of objects
that are usually named and can be anything: numbers, character strings, matrices or even lists.

10

Unlike a vector, whose elements must all be of the same type (all numeric, or all character), the
elements of a list may have different types. Here's a list with two components created using the
function list:

> person = list(name="Jane", age=24)

Typing the name of the list prints all elements. You can extract a component of a list using the
extract operator $. For example we can list just the name or age of this person:

> person$name
[1] "Jane"
> person$age
[1] 24

Individual elements of a list can also be accessed using their indices or their names as
subscripts. For example we can get the name using person[1] or person["name"]. (You can
use single or double square brackets depending on whether you want a list with the name,
which is what we did, or just the name, which would require double brackets as in
person[[1]] or person[["name"]]. The distinction is not important at this point.)

A data frame is essentially a rectangular array containing the values of one or more variables
for a set of units. The frame also contains the names of the variables, the names of the
observations, and information about the nature of the variables, including whether they are
numerical or categorical.

Internally, a data frame is a special kind of list, where each element is a vector of observations
on a variable. Data frames look like matrices, but can have columns of different types. This
makes them ideally suited for representing datasets, where some variables can be numeric and
others can be categorical.

Data frames (like matrices) can also accommodate missing values, which are coded using the
special symbol NA. Most statistical procedures, however, omit all missing values.

Data frames can be created from vectors, matrices or lists using the function data.frame, but
more often than not one will read data from an external file, as shown in the next two sections.

3.2 Free-Format Input

Free-format data are text files containing numbers or character strings separated by spaces.
Optionally the file may have a header containing variable names. Here's an example of a data
file containing information on three variables for 20 countries in Latin America:

11

setting effort change

Bolivia 46 0 1

Brazil 74 0 10

Chile 89 16 29

Colombia 77 16 25

CostaRica 84 21 29

Cuba 89 15 40

DominicanRep 68 14 21

Ecuador 70 6 0

ElSalvador 60 13 13

Guatemala 55 9 4

Haiti 35 3 0

Honduras 51 7 7

Jamaica 87 23 21

Mexico 83 4 9

Nicaragua 68 0 7

Panama 84 19 22

Paraguay 74 3 6

Peru 73 0 2

TrinidadTobago 84 15 29

Venezuela 91 7 11

This small dataset includes an index of social setting, an index of family planning effort, and the
percent decline in the crude birth rate between 1965 and 1975. The data are available on the
web at http://data.princeton.edu/wws509/datasets/ in a file called effort.dat which includes
a header with the variable names.

R can read the data directly from the web:

> fpe <- read.table("http://data.princeton.edu/wws509/datasets/effort.dat")

The function used to read data frames is called read.table. The argument is a character string
giving the name of the file containing the data, but here we have given it a fully qualified url
(uniform resource locator), and that's all it takes.

Alternatively, you could download the data and save them in a local file, or just cut and paste
the data from the browser to an editor such as Notepad, and then save them. Make sure the
file ends up in R's working directory, which you can find out by typing getwd(). If that is not the
case you can use a fully qualified path name or change R's working directory by calling setwd

http://data.princeton.edu/wws509/datasets/

12

with a string argument. Remember to double up your backward slashes (or use forward slashes
instead) when specifying paths.

The special symbol <-is R's assignment operator, which we have encountered already. Here we
assigned the data to an object named fpe. To print the data simply type the name of the object.

> fpe
 setting effort change
Bolivia 46 0 1
Brazil 74 0 10
 ... output edited ...
Venezuela 91 7 11

In this example R detected correctly that the first line in our file was a header with the variable
names. It also inferred correctly that the first column had the observation names. (Well, it did
so with a little help; I made sure the row names did not have embedded spaces, hence
CostaRica. Alternatively, I could have used "Costa Rica" in quotes as a row name.)

You can always tell R explicitly whether or not you have a header by specifying the optional
argument header=TRUE or header=FALSE to the read.table function. This is important if you
have a header but lack row names, because R's guess is based on the fact that the header line
has one less entry than the next row, as it did in our example.

If your file does not have a header line, R will use the default variable names V1, V2, ..., etc. To
override this default use read.table's optional argument col.names to assign variable names.
This argument takes a vector of names. So, if our file did not have a header we could have used
the command

> fpe = read.table("noheader.dat",
+ col.names=c("setting","effort","change"))

Incidentally this is the first time that our command did not fit in a line. R code can be continued
automatically in a new line simply by making it obvious that we are not done, for example
ending the line with a comma, or having an unclosed left parenthesis. R responds by prompting
for more with the continuation symbol + instead of the usual prompt >.

If your file does not have observation names, R will simply number the observations from 1 to
n. You can specify row names using read.table's optional argument row.names, which works
just like col.names; type ?data.frame for more information.

There are two closely related functions that can be used to get or set variable and observation
names at a later time. These are called names (for the variable names), and row.names (for the

13

observation names). Thus, if our file did not have a header we could have read the data and
then changed the default variable names using the names function:

> fpe = read.table("noheader.dat")
> names(fpe) = c("setting","effort","change")

Technical Note: If you have a background in other programming languages you may be
surprised to see a function call on the left hand side of an assignment. These are special
'replacement' functions in R. They extract an element of an object and then replace its value.

In our example all three-variables were numeric. R will handle string variables with no problem.
If one of our variables was sex, coded M for males and F for females, R would have created a
factor, which is basically a categorical variable that takes one of a finite set of values called
levels. In Section 5 we will use a data frame with categorical variables to illustrate logistic
regression. Another way to generate factors is by grouping a numeric covariate. An example
appears in Section 4 below.

Exercise: Use a text editor to create a small file with the following three lines:

a b c
1 2 3
4 5 6

Read this file into R so the variable names are a, b and c. Now delete the first row and read the
file again so the variable names are still a, b and c.

3.3 Fixed-Format Input*

Suppose the family planning effort data had been stored in a file containing only the actual data
(no country names or variable names) in a fixed format, with social setting in character
positions (often called columns) 1-2, family planning effort in positions 3-4 and fertility change
in positions 5-6. This is a fairly common way to organize large datasets.

The following call will read the data into a data frame and name the variables:

> fpe = read.table("fixedformat.dat",
+ col.names = c("setting", "effort", "change"),
+ sep=c(1, 3, 5))

Here I assume that the file in question is called fixedformat.dat. I assign column names just as
before, using the col.names parameter. The novelty lies in the next argument, called sep,
which is used to indicate how the variables are separated. The default is white space, which is
appropriate when the variables are separated by one or more blanks or tabs. If the data are

14

separated by commas, a common format with spreadsheets, you can specify sep=",". Here we
created a vector with the numbers 1, 3 and 5 to specify the character position (or column)
where each variable starts. Type ?read.table for more details.

3.4 Printing Data and Summaries

You can refer to any variable in the fpe data frame using the extract operator $. For example to
look at the values of the fertility change variable, type

> fpe$change

and R will list a vector with the values of change for the 20 countries. You can also define fpe as
your default dataset by "attaching" it to your session:

> attach(fpe)

If you now type the name effort by itself, R will look for it in the fpe data frame. If you are
done with a data frame you can detach it using detach(fpe).

To obtain simple descriptive statistics on these variables try the summary function:

> summary(fpe)
 setting effort change
 Min. :35.0 Min. : 0.00 Min. : 0.00
 1st Qu.:66.0 1st Qu.: 3.00 1st Qu.: 5.50
 Median :74.0 Median : 8.00 Median :10.50
 Mean :72.1 Mean : 9.55 Mean :14.30
 3rd Qu.:84.0 3rd Qu.:15.25 3rd Qu.:22.75
 Max. :91.0 Max. :23.00 Max. :40.00

As you can see, you get the min and max, 1st and 3rd quartiles, median and mean. For
categorical variables you get a table of counts. Alternatively, you may ask for a summary of a
specific variable. Or use the functions mean and var for the mean and variance of a variable, or
cor for the correlation between two variables, as shown below:

> mean(effort)
[1] 9.55
> cor(effort,change)
[1] 0.80083

Elements of data frames can be addressed using the subscript notation introduced in Section
2.3 for vectors and matrices. For example to list the countries that had a family planning effort
score of zero we can use

15

> fpe[effort == 0,]
 setting effort change
Bolivia 46 0 1
Brazil 74 0 10
Nicaragua 68 0 7
Peru 73 0 2

This works because the expression effort == 0 selects the rows (countries) where the effort
score is zero, while leaving the column subscript blank selects all columns (variables).

The fact that the rows are named allows yet another way to select elements: by name. Here's
how to print the data for Chile:

> fpe["Chile",]
 setting effort change
Chile 89 16 29

Exercise: Can you list the countries where social setting is high (say above 80) but effort is low
(say below 10)? Hint: recall the element-by-element logical operator &.

3.5 Plotting Data

Probably the best way to examine the data is by using graphs.
Here's a boxplot of setting. Inspired by a demo included in the R
distribution, I used custom colors for the box ("lavender",
specifyied using a name R recognizes) and the title (#3366CC,
which specifies the red, green and blue components of the color
in hexadecimal notation; this particular choice matches the
headings on this web page).

> boxplot(setting, col="lavender")
> title("Boxplot of Setting", col.main="#3366CC")

As noted earlier, R can save a plot as a png or jpeg file, so that it can be included directly on a
web page. Other formats available are postscript for printing and windows metafile for
embedding in other applications. Note also that you can cut and paste a graph to insert it in
another document.

Here's a scatterplot of change by effort, so you can see what a correlation of 0.80 looks like:

16

> plot(effort, change, pch=21, bg="gold")
> title("Scatterplot of Change by Effort", col.main="#3366CC")

I used two optional arguments that work well together: pch=21 selects a special plotting
symbol, in this case a circle, that can be colored and filled; and bf="gold" selects the fill color
for the symbol. I left the perimeter black, but you can change this color with the col argument.

To identify points in a scatterplot use the identify function. Try the following (assuming the
scatterplot is still the active graph):

> identify(effort, change, row.names(fpe), ps=9)

The first three parameters to this function are the x and y coordinates of the points and the
character strings to be used in labeling them. The ps optional argument specifies the size of the
text in points; here I picked 9-point labels.

Now click within a quarter of an inch of a point and the name of the country should appear in
the graph. Which country had the most effort but only moderate change? Which one had the
most change?

To quit identifying points right click on the graph and select Stop from the pop-up menu. The
function returns the indices of the units selected. (Click on the RConsole to make it the focused
window before you type more commands.)

Another interesting plot to try is pairs, which draws a scatterplot matrix. In our example try

17

> pairs(fpe)

and you will see a 3 by 3 matrix of scatterplots with the variable names down the diagonal and
a plot of each variable against every other one.

Before you quit this session consider saving the fpe data.frame. To do this use the save
function

> save(fpe, file="fpe.Rdata")
> load("fpe.rdata")

The first argument specifies the object to be saved, and the file argument provides the name of
a file, which will be in the working directory unless a full path is given. (Remember to double-up
your backslashes, or use forward slashes instead.)

By default R saves objet using a compact binary format which is portable across all R platforms.
There is an optional argument ascii that can be set to TRUE to save the object as ASCII text.
This option was handy to transfer R objects across platforms but is no longer needed.

The menu item File | Save Image and its companion File | Load Image can be used to save and
load an image of the entire workspace, including all objects that have been created (and not
removed) in the session.

Exercise: Use R to create a scatterplot of change by setting, cut and paste the graph into a
document in your favorite word processor, and try resizing and printing it. I recommend that
you use the windows metafile format for the cut and paste operation.

4 Linear Models

Let us try some linear models, starting with multiple regression and analysis of covariance
models, and then moving on to models using regression splines. In this section I will use the
data read in Section 3, so make sure the fpe data frame is attached to your current session.

4.1 Fitting a Model

To fit an ordinary linear model with fertility change as the response and setting and effort as
predictors, try

> lmfit = lm(change ~ setting + effort)

Note first that lm is a function, and we assign the result to an object that we choose to call lmfit
(for linear model fit). This stores the results of the fit for later examination.

18

The argument to lm is a model formula, which has the response on the left of the tilde ~ (read
"is modeled as") and a Wilkinson-Rogers model specification formula on the right. R uses

+ to combine elementary terms, as in A+B

: for interactions, as in A:B;

* for both main effects and interactions, so A*B = A+B+A:B

A nice feature of R is that it lets you create interactions between categorical variables, between
categorical and continuous variables, and even between numeric variables (it just creates the
cross-product).

4.2 Examining a Fit

Let us look at the results of the fit. One thing you can do with lmfit, as you can with any R
object, is print it.

> lmfit

Call:
lm(formula = change ~ setting + effort)

Coefficients:
(Intercept) setting effort
 -14.4511 0.2706 0.9677

The output includes the model formula and the coefficients. You can get a bit more detail by
requesting a summary:

> summary(lmfit)

Call:
lm(formula = change ~ setting + effort)

Residuals:
 Min 1Q Median 3Q Max
-10.3475 -3.6426 0.6384 3.2250 15.8530

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) -14.4511 7.0938 -2.037 0.057516 .
setting 0.2706 0.1079 2.507 0.022629 *
effort 0.9677 0.2250 4.301 0.000484 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

19

Residual standard error: 6.389 on 17 degrees of freedom
Multiple R-Squared: 0.7381, Adjusted R-squared: 0.7073
F-statistic: 23.96 on 2 and 17 DF, p-value: 1.132e-05

The output includes a more conventional table with parameter estimates and standard errors,
as well the residual standard error and multiple R-squared. (By default S-Plus includes the
matrix of correlations among parameter estimates, which is often bulky, while R sensibly omits
it. If you really need it, add the option correlation=TRUE to the call to summary.)

To get a hierarchical analysis of variance table corresponding to introducing each of the terms
in the model one at a time, in the same order as in the model formula, try the anova function:

> anova(lmfit)
Analysis of Variance Table

Response: change
 Df Sum Sq Mean Sq F value Pr(>F)
setting 1 1201.08 1201.08 29.421 4.557e-05 ***
effort 1 755.12 755.12 18.497 0.0004841 ***
Residuals 17 694.01 40.82

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

Alternatively, you can plot the results using

> plot(lmfit)

This will produce a set of four plots: residuals versus fitted values, a Q-Q plot of standardized
residuals, a scale-location plot (square roots of standardized residuals versus fitted values, and
a plot of residuals versus leverage that adds bands corresponding to Cook's distances of 0.5 and
1.

R will prompt you to click on the graph window or press Enter before showing each plot, but we
can do better. Type par(mfrow=c(2,2)) to set your graphics window to show four plots at
once, in a layout with 2 rows and 2 columns. Then redo the graph using plot(lmfit). To go
back to a single graph per window use par(mfrow=c(1,1)). There are many other ways to
customize your graphs by setting high-level parameters, type ?par to learn more.

20

Technical Note: You may have noticed that we have used the function plot with all kinds of
arguments: one or two variables, a data frame, and now a linear model fit. In R jargon plot is a
generic function. It checks for the kind of object that you are plotting and then calls the
appropriate (more specialized) function to do the work. There are actually many plot functions
in R, including plot.data.frame and plot.lm. For most purposes the generic function will do
the right thing and you don't need to be concerned about its inner workings.

4.3 Extracting Results

There are some specialized functions that allow you to extract elements from a linear model fit.
For example

> fitted(lmfit)

21

 1 2 3 4 5 6 7
8
-2.004026 5.572452 25.114699 21.867637 28.600325 24.146986 17.496913
10.296380
 ... output edited ...

extracts the fitted values. In this case it will also print them, because we did not asign them to
anything. (The longer form fitted.values is an alias.)

To extract the coefficients use the coef function (or the longer form coefficients)

> coef(lmfit)
(Intercept) setting effort
-14.4510978 0.2705885 0.9677137

To get the residuals, use the residuals function (or the abbreviation resid):

> residuals(lmfit)
 1 2 3 4 5 6
 3.0040262 4.4275478 3.8853007 3.1323628 0.3996747 15.8530144
 ... output edited ...

If you are curious to see exactly what a linear model fit produces, try the function

> names(lmfit)
 [1] "coefficients" "residuals" "effects" "rank"
 [5] "fitted.values" "assign" "qr" "df.residual"
 [9] "xlevels" "call" "terms" "model"

which lists the named components of a linear fit. All of these objects may be extracted using
the $ operator. However, whenever there is a special extractor function you are encouraged to
use it.

4.4 Factors and Covariates

So far our predictors have been continuous variables or covariates. We can also use categorical
variables or factors. Let us group family planning effort into three categories:

> effortg = cut(effort, breaks = c(-1, 4, 14, 100),
+ label=c("weak","moderate","strong"))

The function cut creates a factor or categorical variable. The first argument is an input vector,
the second is a vector of breakpoints, and the third is a vector of category labels. Note that

22

there is one more breakpoint than there are categories. All values greater than the i-th
breakpoint and less than or equal to the (i+1)-st breakpoint go into the i-th category. Any values
below the first breakpoint or above the last one are coded NA (a special R code for missing
values). If the labels are omitted, R generates a suitable default of the form "a thru b".

Try fitting the analysis of covariance model:

> covfit = lm(change ~ setting + effortg)
> covfit

Call:
lm(formula = change ~ setting + effortg)

Coefficients:
 (Intercept) setting effortgmoderate effortgstrong
 -5.9540 0.1693 4.1439 19.4476

As you can see, family planning effort has been treated automatically as a factor, and R has
generated the necessary dummy variables for moderate and strong programs treating weak as
the reference cell.

Choice of Contrasts: R codes unordered factors using the reference cell or "treatment contrast"
method. The reference cell is always the first category which, depending on how the factor was
created, is usually the first in alphabetical order. If you don't like this choice, R provides a
special function to re-order levels, check out help(relevel).

S codes unordered factors using the Helmert contrasts by default, a choice that is useful in
designed experiments because it produces orthogonal comparisons, but has baffled many a
new user. Both R and S-Plus code ordered factors using polynomials. To change to the
reference cell method for unordered factors use the following call

> options(contrasts=c("contr.treatment","contr.poly"))

Back on to our analysis of covariance fit. You can obtain a hierarchical anova table for the
analysis of covariance model using the anova function:

> anova(covfit)
Analysis of Variance Table

Response: change
 Df Sum Sq Mean Sq F value Pr(>F)
setting 1 1201.08 1201.08 36.556 1.698e-05 ***
effortg 2 923.43 461.71 14.053 0.0002999 ***

Residuals 16 525.69 32.86

23

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

Type ?anova to learn more about this function.

4.5 Regression Splines

The real power of R begins to shine when you consider some of the other functions you can
include in a model formula. First, you can include mathematical functions, for example
log(setting) is a perfectly legal term in a model formula. You don't have to create a variable
representing the log of setting and then use it, R will create it 'on the fly', so you can type

> lm(change ~ log(setting) + effort)

If you wanted to use orthogonal polynomials of degree 3 on setting, you could include a term of
the form poly(setting,3)

You can also get R to calculate a well-conditioned basis for regression splines. First you must
load the splines library (this step is not needed in S-Plus):

> library(splines)

This makes available the function bs to generate B-splines. For example the call

> setting.bs <- bs(setting, knots = c(66,74,84)) + effort)

will generate cubic B-splines with interior knots placed at 66, 74 and 84. This basis will use
seven degrees of freedom, four corresponding to the constant, linear, quadratic and cubic
terms, plus one for each interior knot. Alternatively, you may specify the number of degrees of
freedom you are willing to spend on the fit using the parameter df. For cubic splines R will
choose df-4 interior knots placed at suitable quantiles. You can also control the degree of the
spline using the parameter degree, the default being cubic.

If you like natural cubic splines, you can obtain a well-conditioned basis using the function ns,
which has exactly the same arguments as bs except for degree, which is always three. To fit a
natural spline with five degrees of freedom, use the call

> setting.ns <- ns(setting, df=5)

24

Natural cubic splines are better behaved than ordinary splines at the extremes of the range.
The restrictions mean that you save four degrees of freedom. You will probably want to use two
of them to place additional knots at the extremes, but you can still save the other two.

To fit an additive model to fertility change using natural cubic splines on setting and effort with
only one interior knot each, placed exactly at the median of each variable, try the following call:

> splinefit = lm(change ~ ns(setting, knot=median(setting)) +
+ ns(effort, knot=median(effort)))

Here we used the parameter knot to specify where we wanted the knot placed, and the
function median to calculate the median of setting and effort.

Do you think the linear model was a good fit? Natural cubic splines with exactly one interior
knot require the same number of parameters as an ordinary cubic polynomial, but are much
better behaved at the extremes.

4.6 Other Options

The lm function has several additional parameters that we have not discussed. These include

data to specify a dataset, in case it is not attached

subset to restrict the analysis to a subset of the data

weights to do weighted least squares

and many others; see help(lm) for further details. The args function lists the arguments used
by any function, in case you forget them. Try args(lm).

The fact that R has powerful matrix manipulation routines means that one can do many of
these calculations from first principles. The next couple of lines create a model matrix to
represent the constant, setting and effort, and then calculate the OLS estimate of the
coefficients as (X'X)-1X'y:

> X <- cbind(1,effort,setting)
> solve(t(X) %*% X) %*% t(X) %*% change

 [,1]
 [1,] -14.4510978
 [2,] 0.9677137
 [3,] 0.2705885

Compare these results with coef(lmfit).

25

5 Generalized Linear Models

Generalized linear models are just as easy to fit in R as ordinary linear model. In fact, they
require only an additional parameter to specify the variance and link functions.

5.1 Variance and Link Families

The basic tool for fitting generalized linear models is the glm function, which has the folllowing
general structure:

> glm(formula, family, data, weights, subset, ...)

where ... stands for more esoteric options. The only parameter that we have not encountered
before is family, which is a simple way of specifying a choice of variance and link functions.
There are six choices of family:

Family Variance Link

gaussian gaussian identity

binomial binomial logit, probit or cloglog

poisson poisson log, identity or sqrt

Gamma Gamma inverse, identity or log

inverse.gaussian inverse.gaussian 1/mu^2

quasi user-defined user-defined

As can be seen, each of the first five choices has an associated variance function (for binomial

the binomial variance (1-)), and one or more choices of link functions (for binomial the logit,
probit or complementary log-log).

As long as you want the default link, all you have to specify is the family name. If you want an
alternative link, you must add a link argument. For example to do probits you use

> glm(formula, family=binomial(link=probit))

The last family on the list, quasi, is there to allow fitting user-defined models by maximum
quasi-likelihood.

5.2 Logistic Regression

We will illustrate fitting logistic regression models using the contraceptive use data shown
below:

26

age education wantsMore notUsing using

<25 low yes 53 6

<25 low no 10 4

<25 high yes 212 52

<25 high no 50 10

25-29 low yes 60 14

25-29 low no 19 10

25-29 high yes 155 54

25-29 high no 65 27

30-39 low yes 112 33

30-39 low no 77 46

30-39 high no 68 78

40-49 low no 46 48

40-49 high yes 8 8

40-49 high no 12 31

The data are available from the datasets section of the website for my generalized linear
models course. Visit http://data.princeton.edu/wws509/datasets to read a short description
and follow the link to cuse.dat.

Of course the data can be downloaded directly from R:

> cuse <- read.table("http://data.princeton.edu/wws509/datasets/cuse.dat",
+ header=TRUE)
> cuse
 age education wantsMore notUsing using
1 <25 low yes 53 6
2 <25 low no 10 4
3 <25 high yes 212 52
4 <25 high no 50 10
5 25-29 low yes 60 14
 ... output edited ...
16 40-49 high no 12 31

I specified the header parameter as TRUE, because otherwise it would not have been obvious
that the first line in the file has the variable names. There are no row names specified, so the
rows will be numbered from 1 to 16. Print cuse to make sure you got the data in alright. Then
make it your default dataset:

> attach(cuse)

http://data.princeton.edu/wws509/datasets
http://data.princeton.edu/wws509/datasets/cuse.dat

27

Let us first try a simple additive model where contraceptive use depends on age, education and
wantsMore:

> lrfit <- glm(cbind(using, notUsing) ~
+ age + education + wantsMore , family = binomial)

There are a few things to explain here. First, the function is called glm and I have assigned its
value to an object called lrfit (for logistic regression fit). The first argument of the function is
a model formula, which defines the response and linear predictor.

With binomial data the response can be either a vector or a matrix with two columns.

 If the response is a vector, it is treated as a binary factor with the first level representing
"success" and all others representing "failure". In this case R generates a vector of ones
to represent the binomial denominators.

 Alternatively, the response can be a matrix where the first column shows the number of
"successes" and the second column shows the number of "failures". In this case R adds
the two columns together to produce the correct binomial denominator.

Because the latter approach is clearly the right one for us i used the function cbind to create a
matrix by binding the column vectors containing the numbers using and not using
contraception.

Following the special symbol ~ that separates the response from the predictors, we have a
standard Wilkinson-Rogers model formula. In this case we are specifying main effects of age,
education and wantsMore. Because all three predictors are categorical variables, they are
treated automatically as factors, as you can see by inspecting the results:

> lrfit

Call: glm(formula = cbind(using, notUsing) ~ age + education + wantsMore,
 family = binomial)

Coefficients:
 (Intercept) age25-29 age30-39 age40-49 educationlow
 -0.8082 0.3894 0.9086 1.1892 -0.3250
wantsMoreyes
 -0.8330

Degrees of Freedom: 15 Total (i.e. Null); 10 Residual
Null Deviance: 165.8
Residual Deviance: 29.92 AIC: 113.4

28

Recall that R sorts the levels of a factor in alphabetical order. Because <25 comes before 25-29,

30-39, and 40-49, it has been picked as the reference cell for age. Similarly, high is the reference
cell for education because high comes before low! Finally, R picked no as the base for
wantsMore.

If you are unhappy about these choices you can (1) use relevel to change the base category,
or (2) define your own indicator variables. I will use the latter approach by defining indicators
for women with high education and women who want no more children:

> noMore <- wantsMore == "no"
> hiEduc <- education == "high"

Now try the model again:

> glm(cbind(using,notUsing) ~ age + hiEduc + noMore, family=binomial)

Call: glm(formula = cbind(using, notUsing) ~ age + hiEduc + noMore,
 family = binomial)

Coefficients:
(Intercept) age25-29 age30-39 age40-49 hiEduc noMore
 -1.9662 0.3894 0.9086 1.1892 0.3250 0.8330

Degrees of Freedom: 15 Total (i.e. Null); 10 Residual
Null Deviance: 165.8
Residual Deviance: 29.92 AIC: 113.4

The residual deviance of 29.92 on 10 d.f. is highly significant:

> 1-pchisq(29.92,10)
[1] 0.0008828339

so we need a better model. One of my favorites introduces an interaction between age and
desire for no more children:

> lrfit <- glm(cbind(using,notUsing) ~ age * noMore + hiEduc ,
family=binomial)
> lrfit

Call: glm(formula = cbind(using, notUsing) ~ age * noMore + hiEduc,
 family = binomial)

Coefficients:
 (Intercept) age25-29 age30-39 age40-49
 -1.80317 0.39460 0.54666 0.57952
 noMore hiEduc age25-29:noMore age30-39:noMore

29

 0.06622 0.34065 0.25918 1.11266
age40-49:noMore
 1.36167

Degrees of Freedom: 15 Total (i.e. Null); 7 Residual
Null Deviance: 165.8
Residual Deviance: 12.63 AIC: 102.1

Note how R built the interaction terms automatically, and even came up with sensible labels for
them. The model's deviance of 12.63 on 7 d.f. is not significant at the conventional five per cent
level, so we have no evidence against this model.

To obtain more detailed information about this fit try the summary function:

> summary(lrfit)

Call:
glm(formula = cbind(using, notUsing) ~ age * noMore + hiEduc,
 family = binomial)

Deviance Residuals:
 Min 1Q Median 3Q Max
-1.30027 -0.66163 -0.03286 0.81945 1.73851

Coefficients:
 Estimate Std. Error z value Pr(>|z|)
(Intercept) -1.80317 0.18018 -10.008 < 2e-16 ***
age25-29 0.39460 0.20145 1.959 0.05013 .
age30-39 0.54666 0.19842 2.755 0.00587 **
age40-49 0.57952 0.34733 1.669 0.09522 .
noMore 0.06622 0.33064 0.200 0.84126
hiEduc 0.34065 0.12576 2.709 0.00676 **
age25-29:noMore 0.25918 0.40970 0.633 0.52699
age30-39:noMore 1.11266 0.37398 2.975 0.00293 **
age40-49:noMore 1.36167 0.48422 2.812 0.00492 **

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

(Dispersion parameter for binomial family taken to be 1)

 Null deviance: 165.772 on 15 degrees of freedom
Residual deviance: 12.630 on 7 degrees of freedom
AIC: 102.14

Number of Fisher Scoring iterations: 3

R follows the popular custom of flagging significant coefficients with one, two or three stars
depending on their p-values. Try plot(lrfit). You get the same plots as in a linear model, but

30

adapted to a generalized linear model; for example the residuals plotted are deviance residuals
(the square root of the contribution of an observation to the deviance, with the same sign as
the raw residual). The functions that can be used to extract results from the fit include

 residuals or resid, for the deviance residuals
 fitted or fitted.values, for the fitted values (estimated probabilities)
 predict, for the linear predictor (estimated logits)
 coef or coefficients, for the coefficients, and
 deviance, for the deviance.

Some of these functions have optional arguments; for example, you can extract five different
types of residuals, called "deviance", "pearson", "response" (response - fitted value), "working"
(the working dependent variable in the IRLS algorithm minus the linear predictor), and "partial"
(a matrix of working residuals formed by omitting each term in the model). You specify the one
you want using the type argument, for example residuals(lrfit,type="pearson").

5.3 Updating Models

If you want to modify a model you may consider using the special function update. For example
to drop the age:noMore interaction in our model one could use

> lrfit0 <- update(lrfit, ~ . - age:noMore)

The first argument is the result of a fit, and the second an updating formula. The place holder ~
separates the response from the predictors and the dot . refers to the right hand side of the
original formula, so here we simply remove age:noMore. Alternatively, one can give a new
formula as the second argument.

The update function can be used to fit the same model to different datasets, using the
argument data to specify a new data frame. Another useful argument is subset, to fit the
model to a different subsample. This function works with linear models as well as generalized
linear models.

If you plan to fit a sequence of models you will find the anova function useful. Given a series of
nested models, it will calculate the change in deviance between them. Try

> anova(lrfit0,lrfit)
Analysis of Deviance Table

Model 1: cbind(using, notUsing) ~ age + noMore + hiEduc
Model 2: cbind(using, notUsing) ~ age + noMore + hiEduc + age:noMore
 Resid. Df Resid. Dev Df Deviance
1 10 29.917

31

2 7 12.630 3 17.288

Adding the interaction has reduced the deviance by 17.288 at the expense of 3 d.f.

If the argument to anova is a single model, the function will show the change in deviance
obtained by adding each of the terms in the order listed in the model formula, just as it did for
linear models. Because this requires fitting as many models as there are terms in the formula,
the function may take a while to complete its calculations.

The anova function lets you specify an optional test. The usual choices will be "F" for linear
models and "Chisq" for generalized linear models. Adding the parameter test="Chisq" adds p-
values next to the deviances. In our case

> anova(lrfit,test="Chisq")

Analysis of Deviance Table
Model: binomial, link: logit
Response: cbind(using, notUsing)
Terms added sequentially (first to last)

 Df Deviance Resid. Df Resid. Dev P(>|Chi|)
NULL 15 165.772
age 3 79.192 12 86.581 4.575e-17
noMore 1 49.693 11 36.888 1.798e-12
hiEduc 1 6.971 10 29.917 0.008
age:noMore 3 17.288 7 12.630 0.001

We can see that all terms were highly significant when they were introduced into the model.

5.4 Model Selection

A very powerful tool in R is a function for stepwise regression that has three remarkable
features:

1. It works with generalized linear models, so it will do stepwise logistic regression, or
stepwise Poisson regression,

2. It understand about hierarchical models, so it will only consider adding interactions only
after including the corresponding main effects in the models, and

3. It understands terms involving more than one degree of freedom, so it it will keep
together dummy variables representing the effects of a factor.

The basic idea of the procedure is to start from a given model (which could well be the null
model) and take a series of steps by either deleting a term already in the model or adding a

32

term from a list of candidates for inclusion, called the scope of the search and defined, of
course, by a model formula.

Selection of terms for deletion or inclusion is based on Akaike's information criterion (AIC). R
defines AIC as

-2 maximized log-likelihood + 2 number of parameters

(S-Plus defines it as the deviance minus twice the number of parameters in the model. The two
definitions differ by a constant, so differences in AIC are the same in the two environments.)
The procedure stops when the AIC criterion cannot be improved.

In R all of this work is done by calling a couple of functions, add1 and drop1, that consider
adding or dropping a term from a model. These functions can be very useful in model selection,
and both of them accept a test argument just like anova.

Consider first drop1. For our logistic regression model,

> drop1(lrfit, test="Chisq")
Single term deletions

Model:
cbind(using, notUsing) ~ age + noMore + hiEduc + age:noMore
 Df Deviance AIC LRT Pr(Chi)
 12.630 102.137
hiEduc 1 20.099 107.607 7.469 0.0062755 **
age:noMore 3 29.917 113.425 17.288 0.0006167 ***

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

Obviously we can't drop any of these terms. Note that R considered dropping the main effect of
education and the age by want no more interaction, but did not examine the main effects of
age or want no more, because one would not drop these main effects while retaining the
interaction.

The sister function add1 requires a scope to define the additional terms to be considered. In our
example we will consider all possible two-factor interactions:

> add1(lrfit, ~.^2,test="Chisq")
Single term additions

Model:
cbind(using, notUsing) ~ age + noMore + hiEduc + age:noMore
 Df Deviance AIC LRT Pr(Chi)
 12.630 102.137

33

age:hiEduc 3 5.798 101.306 6.831 0.07747 .
noMore:hiEduc 1 10.824 102.332 1.806 0.17905

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

We see that neither of the missing two-factor interactions is significant by itself at the
conventional five percent level. (However, they happen to be jointly significant.) Note that the
model with the age by education interaction has a lower AIC than our starting model.

The step function will do an automatic search. Here we let it search in a scope defined by all
two-factor interactions:

> search <- step(additive, ~.^2)
 ... trace output supressed ...

The step function produces detailed trace output that we have supressed. The returned object,
however, includes an anova component that summarizes the search:

> search$anova
 Step Df Deviance Resid. Df Resid. Dev AIC
1 NA NA 10 29.917222 113.4251
2 + age:noMore -3 -17.287669 7 12.629553 102.1375
3 + age:hiEduc -3 -6.831288 4 5.798265 101.3062
4 + hiEduc:noMore -1 -3.356777 3 2.441488 99.9494

As you can see, the automated procedure introduced, one by one, all three remaining two-
factor interactions, to yield a final AIC of 99.9. This is an example where AIC, by requiring a
deviance improvement of only 2 per parameter, may have led to overfitting the data.

Some analysts prefer a higher penalty per parameter. In particular, using log(n) instead of 2 as a
multiplier yields BIC, the Bayesian Information Criterion. In our example log(1607) = 7.38, so we
would require a deviance reduction of 7.38 per additional parameter. The step function
accepts k as an argument, with default 2. You may verify that specifying k=log(1607) leads to
a much simpler model; not only are no new interactions introduced, but the main effect of
education is dropped (even though it is significant).

6 Conclusion

These notes have hardly scratched the surface of R, which has many more statistical functions.
These include functions to calculate the density, cdf, and inverse cdf of distributions such as chi-
squared, t, F, lognormal, logistic and others. The survival library includes methods for the
estimation of survival curves, tests of differences between survival curves, and Cox proportional
hazards models. The library nlme includes code for fitting linear mixed effect models (including

34

multilevel models) to normally distributed data. Many new statistical procedures are first made
available to the research community in the form of S-Plus and R functions.

In addition, R is a full-fledged programming language, with a rich complement of mathematical
functions, matrix operations and control structures. If you would like to have a function to
compute logits, for example, you can write one just like this:

logit <- function(p) {
 log(p/(1-p))
}

This function takes as argument a vector of proportions and returns the logits. (The last
quantity calculated in a function is returned by default.) Of course this is a very primitive
version, because there is no argument checking. A somewhat better version is this:

logit <- function(p) {
 if (!is.numeric(p) || any(p1))
 stop("argument must be probabilities between 0 and 1")
 log(p/(1-p))
}

The function any called with a logical vector returns true if any element of the vector is true. Of
course a value may be in the range (0,1) but so close to either extreme that calculation of the
logit could fail; bullet-proofing the function would require more sophisticated code, but the
version above is serviceable.

R is an interpreted language but it is reasonably fast, particularly if you take advantage of the
fact that operations are vectorized and try to avoid looping. Where efficiency is crucial you can
always write a function in a compiled language such as C or Fortran and then call it from R.
Some of my work on multilevel generalized linear models uses this approach. To learn more
about programming R read Venables and Ripley (2000), Chambers (2008), and the manual on
Writing R Extensions that comes with the R distribution.

References

Becker, Richard A. and John M. Chambers (1984). S: An Interactive Environment for Data
Analysis and Graphics Wadsworth, CA.

Becker, Richard A.; John M. Chambers and Allan R. Wilks (1988). The New S Language. Chapman
& Hall, London

Braun, W. John and Duncan J. Murdoch (2007). A First Course in Statistical Programming with R.
Cambridge University Press, Cambridge.

35

Chambers, John M. (1998). Programming with Data. Springer, New York.

Chambers, John M (2008). Software for Data Analysis: Programming with R. Springer, New
York.

Chambers, John M. and Trevor J. Hastie, Editors (1992). Statistical Models in S. Chapman & Hall,
London.

Dalgaard, Peter (2008). Introductory Statistics with R. 2nd Edition Springer, New York.

Everitt, Brian and Torsten Hothorn (2006). A Handbook of Statistical Analyses Using R. Chapman
& Hall/CRC, Boca Raton, FL.

Fox, John (2002). An R and S-Plus Companion to Applied Regression. Sage Publications,
Thousand Oaks, CA.

Murrell, Paul (2005). R Graphics. Chapman & Hall/CRC, Boca Raton, FL.

Pinheiro, Jose C. and Douglas M. Bates (2000). Mixed-Effects Models in S and S-Plus. Springer,
New York.

Therneau,Terry M. and Patricia M. Grambsch (2000). Modeling Survival Data: Extending the Cox
Model. Statistics for Biology and Health. Springer, New York.

Venables, William N. and Brian D. Ripley (2000). S Programming. Springer, New York.

Venables, William N. and Brian D. Ripley (2002). Modern Applied Statistics with S. Fourth
Edition. Springer, New York. (Earlier editions published in 1994, 1997 an 1999.)

