Mathematics 2

João Janela

jjanela@iseg.ulisboa.pt

version (October 17, 2016)

Fall 2016

Syllabus

- **Complements of linear algebra**. Eigenvalues and eigenvectors. Quadratic forms.
- Functions of several variables. General concepts, domain, image, geometric representation. Topology in ℝⁿ. Continuity. Partial derivatives and differentiability. Constrained and unconstrained optimization. Multiple integrals.
- **Differential equations**. Generalities. Existence and uniqueness results. First order equations (linear, separable). Higher order equations (linear, with constant coefficients).
- **Difference equations**.Generalities. First and second order difference equations with constant coefficients.

ISEG LISBOA UNIVERSIDADI

Assessment

• Normal period

- MT: Midterm exam covering the first half of the syllabus.
- F: Final exam, covering the second half of the syllabus.

ON: Online quizzes along the semester.

Grade = 0.40 * MT + 0.40 * F + 0.20 * ON

During the final exam students are given the chance of improving (MT).

- **Repeat period** Students can choose to be evaluated as in the normal exem period or just by a final exam covering the whole syllabus.
- NOTE 1: Attendance to classes is mandatory for students using assessment during the semester. Only students attending at least 75% of both theoretical and exercise classes will be scored at (MT) and (ON).
- NOTE 2: (MT) and (F) have a minimum grade of 8.0/20

Eigenvectors and eigenvalues

If we fix a basis on \mathbb{R}^n , a square matrix $A \in \mathbb{R}^{n \times n}$ can be seen as an application from \mathbb{R}^n to \mathbb{R}^n .

Example

Let $A = \begin{pmatrix} 2 & 1 \\ 0 & 4 \end{pmatrix}$. If we consider any vector \boldsymbol{u} and compute its image $\boldsymbol{A}\boldsymbol{u}$, this new vector may or may not have the same direction as \boldsymbol{u} .

Eigenvectors and eigenvalues

When u and Au have the same direction, we say that u is an **eigenvector** of A. If u and Au have the same direction, there exists λ such that $Au = \lambda u$. The number λ is an amplification or reduction factor called an **eigenvalue** of A.

Definition

Let A be a square matrix of order n. if there exists $\lambda \in \mathbb{R}$ and $u \in \mathbb{R}^n \setminus \{0\}$ such that $Au = \lambda u$ we say that λ is an **eigenvalue** of A and u is an **eigenvector** associated to that eigenvalue.

Proposition

Given an eigenvector of a square matrix A, there is one and only one eigenvalue associated to it.

ISEG LISBOA UNIVERSIDADI

ISEG ULISBOA UNIVERSIDADE

Eigenvectors and eigenvalues

Proposition

If u is an eigenvector associated to an eigenvalue λ , any multiple of u is also an eigenvector associated to λ .

If $\boldsymbol{u} \neq 0$ is an eigenvalue of A and λ is its eigenvalue, then $A\boldsymbol{u} = \lambda \boldsymbol{u} \quad \Leftrightarrow (A - \lambda I)\boldsymbol{u} = 0$ This homogeneous system can only have nonzero solutions if the system matrix is not invertible.

Proposition

 λ is an eigenvalue of $A \in \mathbb{R}^{n \times n}$ if and only if

$$p(\lambda) := \det(A - \lambda I) = 0$$

 $p(\lambda)$ is a polynomial of degree n in λ and is called the characteristic polynomial of A.

Definition (Algebraic multiplicity)

The algebraic multiplicity of an eigenvalue is its multiplicity as a root of $p(\lambda).$

Example

Consider the matrix
$$A = \begin{pmatrix} 1 & 4 \\ 0 & 1 \end{pmatrix}$$

The eigenvalues of A are the solutions of the equation

$$\det(A - \lambda I) = 0 \Leftrightarrow (1 - \lambda)^2 = 0 \Leftrightarrow \lambda = 1 \lor \lambda = 1.$$

The eigenvalue $\lambda = 1$ has multiplicity 2 as a root of the polynomial characteristic e so we say that it has **algebraic multiplicity** 2.

Computing eigenvectors

We compute the eigenvectors associated to an eigenvalue λ by solving the undetermined system $(A-\lambda I)u=0.$

The degree of indetermination of this system, given by $gm = n - \operatorname{rank}(A - I\lambda)$, corresponds to the maximum number of linearly independent eigenvector that can be associated to λ .

Definition (Geometric multiplicity)

The geometric multiplicity of an eigenvalue λ is given by $gm=n-\mathrm{rank}(A-I\lambda).$

Remark

If $1 \leq gm \leq n$ the eigenspace of λ has dimension gm. This means that any eigenvector associated to λ can be obtained as a linear combination of gm fixed eigenvectors associated to λ .

Example

Let us determine the eigenvalues and eigenvectors of the matrix

$$A = \left(\begin{array}{rrrr} 4 & -10 & 10\\ 0 & 6 & -2\\ 0 & -2 & 6 \end{array}\right)$$

We start by determining the eigenvalues as the solutions of

$$det(A - \lambda I) = 0 \Leftrightarrow (4 - \lambda) \left[(6 - \lambda)^2 - 4 \right]$$
$$\lambda = 4 \lor \lambda = 8 \lor \lambda = 4$$

The eigenvalues are $\lambda = 4$ (with alg. multiplicity 2) and $\lambda = 8$ (a. m. = 1). The eigenvectors associated to $\lambda = 4$ are the nontrivial solutions of (A - 4I)u = 0.

Example (cont.)

$$(A-4I)u = 0 \Leftrightarrow \begin{cases} -10u_2 + 10u_3 = 0\\ 2u_2 - 2u_3 = 0\\ -2u_2 + 2u_3 = 0 \end{cases} \Leftrightarrow u_2 = u_3$$

This means that any vector (u_1, u_2, u_3) such that $u_2 = u_3$ is an eigenvector associated to $\lambda = 4$. The value of u_1 can be choosen arbitralily, say $u_1 = t$, and if the choose $u_2 = s$ then we must also set $u_3 = s$. So u is an eigenvector if

$$u = (t, s, s), \quad t, s \in \mathbb{R} \quad \Leftrightarrow \quad u = t(1, 0, 0) + s(0, 1, 1), s^2 + t^2 \neq 0$$

The geometric multiplicity of $\lambda = 4$ is two. Any eigenvector associated to $\lambda = 4$ can be writen as a linear combination of the vectors (1, 0, 0) and (0, 1, 1).

Running similar calculations we can check that the eigenvectors associated to $\lambda = 8$ are of the form $u = t(5, -1, 1), t \neq 0$.

ISEG LISBOA UNIVERSIDAD

ISEG ULISBOA UNIVERSIDAD

Properties

Proposition

Let $A \in \mathbb{R}^{n \times n}$.

- If A is an upper or lower triangular matrix, the eigenvalues are the diagonal elements of A.
- If λ₁, · · · λ_n are n real eigenvalues of A then det(A) = λ₁ × · · · × λ_n.
- λ is an eigenvalue of A if and only if λ is an eigenvalue of the transposed matrix A'.
- If A in invertible λ is an eigenvalue of A if and only if $1/\lambda$ is an eigenvalue of A^{-1} .
- Any two eigenvectors associated to the same eigenvalue are linearly independent.
- A set of k eigenvectors associated to k distinct eigenvalues is linearly independent.

ISEG U LISBOA UNIVERSIDADE

Quadratic forms

Definition

A quadratic form in n variables is any function $Q : \mathbb{R}^n \to \mathbb{R}$ expressed as a sum of second order terms in the variables x_1, \dots, x_n .

$$Q(\mathbf{x}) = c_{11}x_1x_1 + c_{12}x_1x_2 + \dots + c_{1n}x_1x_n + c_{21}x_2x_1 + c_{22}x_2x_2 + \dots + c_{2n}x_2x_n$$

$$\vdots \\ c_{n1}x_nx_1 + c_{n2}x_nx_2 + \dots + c_{nn}x_nx_n + c_{n2}x_nx_2 + \dots + c_{nn}x_nx_n$$

$$= \sum_{i,j=1}^n c_{ij}x_ix_j = \sum_{i \le j}^n b_{ij}x_ix_j$$

where $b_{ij} = c_{ij} + c_{ji}$ if $i \neq j$ and $b_{ii} = c_{ii}$.

Proposition

Any quadratic form in n variables can be writen in the form $Q(\mathbf{x}) = \mathbf{x}^T A \mathbf{x}$, where A is a square matrix of order n, where $a_{ii} = b_{ii}$ and $a_{ij} + a_{ji} = b_{ij}$. If we require that $A^T = A$ this representation is unique and we have $a_{ii} = b_{ii}$, $a_{ij} = b_{ij}/2$, i < j and $a_{ij} = a_{ji}$.

Example

Let
$$Q(x_1, x_2, x_3) = 2x_1^2 + 3x_1x_3 + 3x_2^2 + 2x_2x_3 + 4x_3^2$$
. We have

$$Q(x_1, x_2, x_3) = (x_1 x_2 x_3) \begin{pmatrix} 2 & 0 & \frac{3}{2} \\ 0 & 3 & \frac{2}{2} \\ \frac{3}{2} & \frac{2}{2} & 4 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$

Classification of quadratic forms

It is of great importance in many applications to classify quadratic forms with respect to their sign.

Positive for all $x \neq 0$.

Sign is not fixed.

Positive or null.

LISBOA UNIVERSIDADI

ISEG

Definition

Let $Q: \mathbb{R}^n \to \mathbb{R}$ be a quadratic form. We say it is:

- **Positive definite** if $Q(\boldsymbol{x}) > 0$, $\forall \boldsymbol{x} \neq 0$.
- Negative definite if Q(x) < 0, $\forall x \neq 0$.
- **Positive semi-definite** if $Q(x) \ge 0, \forall x$ and there is some $y \ne 0$ such that Q(y) = 0.
- Negative semi-definite if $Q(x) \le 0, \forall x$ and there is some $y \ne 0$ such that Q(y) = 0.
- Indefinite if there are x, y such that Q(x) > 0 and Q(y) < 0.

These definitions extend naturally to symmetric matrices.

Definition

Let $A \in \mathbb{R}^{n \times n}$ be a symmetric matrix. We say it is:

- Positive definite if $x^t A x > 0$, $\forall x \neq 0$.
- Negative definite if $x^t A x < 0$, $\forall x \neq 0$.
- Positive semi-definite if $x^t A x \ge 0, \forall x$ and there is some $y \ne 0$ such that $y^t A y = 0$.
- Negative semi-definite if $x^t A x \le 0, \forall x$ and there is some $y \ne 0$ such that $y^t A y = 0$
- Indefinite if there are x, y such that $x^t A x > 0$ and $y^t A y < 0$.

ISEG U LISBOA UNIVERSIDADE

Classification of Quadratic forms

Theorem

Let $A \in \mathbb{R}^{n \times n}$ be a symmetric matrix with real eigenvalues λ_i , $i = 1, \cdots n$. Then

- A is Positive definite iif all eigenvalues are positive.
- A is Negative Definite iif all eigenvalues are negative.
- A is Positive semi-definite if there is at least one null eigenvalue, while others are nonnegative.
- A is Negative semi-definite iif there is at least one null eigenvalue, while others are nonpositive.
- A is Indefinite if there are eigenvalues of different signs.

Note

The eigenvalues symmetric matrices are always real numbers.

ISEG U LISBOA UNIVERSIDADE

Classification of Quadratic forms

Definition (Principal submatrix)

 $B \in \mathbb{R}^{k \times k} (k < n)$ is called a principal submatrix of $A \in \mathbb{R}^{n \times n}$ if it is obtained by removing k rows of A, together with the columns having the same index.

Definition (Primary principal submatrix)

A primary principal submatrix is a principal submatrix obtained by removing the last k rows and columns ($k = 0, \dots, n-1$)

Definition (Principal minors)

We define the principal minors of a matrix $A \in \mathbb{R}^{n \times n}$ as the determinants of the primary principal minors.

Complements of linear algebra Functions of several variables

ISEG ULISBOA UNIVERSIDADE

Principal Minors

$$\Delta_1 = \det(a_{11}), \quad \Delta_2 = \det\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix},$$

$$\Delta_3 = \det \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}, \quad \Delta_4 = \det \begin{pmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{pmatrix}$$

$$\cdots, \quad \Delta_n = \det A$$

١

,

ISEG U LISBOA UNIVERSIDADE

Classification of Quadratic forms

Theorem (Classification by principal minors)

Let A be a symmetric matrix of order n. Then

- A is positive definite if and only if $\Delta_1 > 0, \Delta_2 > 0, \dots, \Delta_n > 0.$
- A is negative definite if and only if $\Delta_1 < 0, \Delta_2 > 0, \Delta_3 < 0, \cdots$.
- If $\Delta_n = \det A \neq 0$ and the principal minors do not verify the previous conditions, the matrix is indefinite.

If $\det A = 0$ the previous result does not help us classifying the matrix and it can be either semi-definite or indefinite. In that case we must compute the eigenvalues.

Example

Let us classify the quadratic form

$$Q(x, y, z) = x^{2} + 2xy + 4xz - 6yz + 3z^{2}.$$

The associated symmetric matrix is

 $\Delta_1 = 1 > 0$

$$A = \begin{pmatrix} 1 & 1 & 2 \\ 1 & 0 & -3 \\ 2 & -3 & 3 \end{pmatrix} \qquad \Delta_2 = \begin{vmatrix} 1 & 1 \\ 1 & 0 \end{vmatrix} = -1 < 0$$
$$\Delta_3 = |A| = -24 \neq 0$$

We are in the third case mentioned in the previous proposition and the quadratic form is therefore undetermined. In fact we can directly check that Q(0,0,1)=3>0 and Q(0,1,1)=-3<0.