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Syllabus

• Complements of linear algebra. Eigenvalues and
eigenvectors. Quadratic forms.

• Functions of several variables. General concepts, domain,
image, geometric representation. Topology in Rn. Continuity.
Partial derivatives and differentiability. Constrained and
unconstrained optimization. Multiple integrals.

• Differential equations.Generalities. Existence and
uniqueness results. First order equations (linear, separable).
Higher order equations (linear, with constant coefficients).

• Difference equations.Generalities. First and second order
difference equations with constant coefficients.
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Assessment

• Normal period
MT: Midterm exam covering the first half of the syllabus.
F: Final exam, covering the second half of the syllabus.
ON: Online quizzes along the semester.
Grade = 0.40 * MT + 0.40 * F + 0.20 * ON
During the final exam students are given the chance of
improving (MT).

• Repeat period Students can choose to be evaluated as in
the normal exem period or just by a final exam covering the
whole syllabus.

• NOTE 1: Attendance to classes is mandatory for students
using assessment during the semester. Only students
attending at least 75% of both theoretical and exercise classes
will be scored at (MT) and (ON).

• NOTE 2: (MT) and (F) have a minimum grade of 8.0/20
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Eigenvectors and eigenvalues

If we fix a basis on Rn, a square matrix A ∈ Rn×n can be seen as
an application from Rn to Rn.

Example

Let A =

(
2 1
0 4

)
. If we consider any vector u and compute its

image Au, this new vector may or may not have the same
direction as u.
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Eigenvectors and eigenvalues

When u and Au have the same direction, we say that u is an
eigenvector of A. If u and Au have the same direction, there
exists λ such that Au = λu. The number λ is an amplification or
reduction factor called an eigenvalue of A.

Definition

Let A be a square matrix of order n. if there exists λ ∈ R and
u ∈ Rn \ {0} such that Au = λu we say that λ is an eigenvalue
of A and u is an eigenvector associated to that eigenvalue.

Proposition

Given an eigenvector of a square matrix A, there is one and only
one eigenvalue associated to it.
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Eigenvectors and eigenvalues

Proposition

If u is an eigenvector associated to an eigenvalue λ, any multiple
of u is also an eigenvector associated to λ.

If u 6= 0 is an eigenvalue of A and λ is its eigenvalue, then
Au = λu ⇔ (A− λI)u = 0 This homogeneous system can only
have nonzero solutions if the system matrix is not invertible.

Proposition

λ is an eigenvalue of A ∈ Rn×n if and only if

p(λ) := det(A− λI) = 0

p(λ) is a polynomial of degree n in λ and is called the
characteristic polynomial of A.
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Definition (Algebraic multiplicity)

The algebraic multiplicity of an eigenvalue is its multiplicity as a
root of p(λ).

Example

Consider the matrix A =

(
1 4
0 1

)
.

The eigenvalues of A are the solutions of the equation

det(A− λI) = 0⇔ (1− λ)2 = 0⇔ λ = 1 ∨ λ = 1.

The eigenvalue λ = 1 has multiplicity 2 as a root of the polynomial
characteristic e so we say that it has algebraic multiplicity 2.
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Computing eigenvectors

We compute the eigenvectors associated to an eigenvalue λ by
solving the undetermined system (A− λI)u = 0.

The degree of indetermination of this system, given by
gm = n− rank(A− Iλ), corresponds to the maximum number of
linearly independent eigenvector that can be associated to λ.

Definition (Geometric multiplicity)

The geometric multiplicity of an eigenvalue λ is given by
gm = n− rank(A− Iλ).

Remark

If 1 ≤ gm ≤ n the eigenspace of λ has dimension gm. This means
that any eigenvector associated to λ can be obtained as a linear
combination of gm fixed eigenvectors associated to λ.
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Example

Let us determine the eigenvalues and eigenvectors of the matrix

A =

 4 −10 10
0 6 −2
0 −2 6


We start by determining the eigenvalues as the solutions of

det(A− λI) = 0⇔ (4− λ)
[
(6− λ)2 − 4

]
λ = 4 ∨ λ = 8 ∨ λ = 4

The eigenvalues are λ = 4 (with alg. multiplicity 2) and λ = 8 (a.
m. = 1). The eigenvectors associated to λ = 4 are the nontrivial
solutions of (A− 4I)u = 0.

J. Janela slides Math 2 - 2016/2017 9 / 150



Complements of linear algebra
Functions of several variables

Differential calculus ISEG

Example (cont.)

(A− 4I)u = 0⇔


−10u2 + 10u3 = 0

2u2 − 2u3 = 0
−2u2 + 2u3 = 0

⇔ u2 = u3

This means that any vector (u1, u2, u3) such that u2 = u3 is an
eigenvector associated to λ = 4. The value of u1 can be choosen
arbitralily, say u1 = t, and if the choose u2 = s then we must also
set u3 = s. So u is an eigenvector if

u = (t, s, s), t, s ∈ R ⇔ u = t(1, 0, 0)+s(0, 1, 1), s2+t2 6= 0

The geometric multiplicity of λ = 4 is two. Any eigenvector
associated to λ = 4 can be writen as a linear combination of the
vectors (1, 0, 0) and (0, 1, 1).
Running similar calculations we can check that the eigenvectors
associated to λ = 8 are of the form u = t(5,−1, 1), t 6= 0.
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Properties

Proposition

Let A ∈ Rn×n.

• If A is an upper or lower triangular matrix, the eigenvalues are
the diagonal elements of A.

• If λ1, · · ·λn are n real eigenvalues of A then
det(A) = λ1 × · · · × λn.

• λ is an eigenvalue of A if and only if λ is an eigenvalue of the
transposed matrix A′.

• If A in invertible λ is an eigenvalue of A if and only if 1/λ is
an eigenvalue of A−1.

• Any two eigenvectors associated to the same eigenvalue are
linearly independent.

• A set of k eigenvectors associated to k distinct eigenvalues is
linearly independent.
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Quadratic forms

Definition

A quadratic form in n variables is any function Q : Rn → R
expressed as a sum of second order terms in the variables
x1, · · · , xn.

Q(x) = c11x1x1 + c12x1x2 + · · ·+ c1nx1xn

+c21x2x1 + c22x2x2 + · · ·+ c2nx2xn
...

cn1xnx1 + cn2xnx2 + · · ·+ cnnxnxn

=

n∑
i,j=1

cijxixj =

n∑
i≤j

bijxixj

where bij = cij + cji if i 6= j and bii = cii.
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Proposition

Any quadratic form in n variables can be writen in the form
Q(x) = xTAx, where A is a square matrix of order n, where
aii = bii and aij + aji = bij . If we require that AT = A this
representation is unique and we have aii = bii, aij = bij/2, i < j
and aij = aji.

Example

Let Q(x1, x2, x3) = 2x21 + 3x1x3 + 3x22 + 2x2x3 + 4x23. We have

Q(x1, x2, x3) = (x1x2x3)

 2 0 3
2

0 3 2
2

3
2

2
2 4

 x1
x2
x3


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Classification of quadratic forms

It is of great importance in many applications to classify quadratic
forms with respect to their sign.

Q(x1, x2) = x21 + x22

Positive for all x 6= 0.

Q(x1, x2) = x21−x22

Sign is not fixed.

Q(x1, x2) = x21−2x1x2+x22

Positive or null.
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Definition

Let Q : Rn → R be a quadratic form. We say it is:

• Positive definite if Q(x) > 0, ∀x 6= 0.

• Negative definite if Q(x) < 0, ∀x 6= 0.

• Positive semi-definite if Q(x) ≥ 0, ∀x and there is some
y 6= 0 such that Q(y) = 0.

• Negative semi-definite if Q(x) ≤ 0,∀x and there is some
y 6= 0 such that Q(y) = 0.

• Indefinite if there are x,y such that Q(x) > 0 and Q(y) < 0.

These definitions extend naturally to symmetric matrices.
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Definition

Let A ∈ Rn×n be a symmetric matrix. We say it is:

• Positive definite if xtAx > 0, ∀x 6= 0.

• Negative definite if xtAx < 0, ∀x 6= 0.

• Positive semi-definite if xtAx ≥ 0, ∀x and there is some
y 6= 0 such that ytAy = 0.

• Negative semi-definite if xtAx ≤ 0,∀x and there is some
y 6= 0 such that ytAy = 0

• Indefinite if there are x,y such that xtAx > 0 and
ytAy < 0.
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Classification of Quadratic forms

Theorem

Let A ∈ Rn×n be a symmetric matrix with real eigenvalues
λi, i = 1, · · ·n. Then

• A is Positive definite iif all eigenvalues are positive.

• A is Negative Definite iif all eigenvalues are negative.

• A is Positive semi-definite iif there is at least one null
eigenvalue, while others are nonnegative.

• A is Negative semi-definite iif there is at least one null
eigenvalue, while others are nonpositive.

• A is Indefinite if there are eigenvalues of different signs.

Note

The eigenvalues symmetric matrices are always real numbers.
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Classification of Quadratic forms

Definition (Principal submatrix)

B ∈ Rk×k(k < n) is called a principal submatrix of A ∈ Rn×n if it
is obtained by removing k rows of A, together with the columns
having the same index.

Definition (Primary principal submatrix)

A primary principal submatrix is a principal submatrix obtained by
removing the last k rows and columns (k = 0, · · · , n− 1)

Definition (Principal minors)

We define the principal minors of a matrix A ∈ Rn×n as the
determinants of the primary principal minors.
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Principal Minors

∆1 = det (a11) , ∆2 = det

(
a11 a12
a21 a22

)
,

∆3 = det

 a11 a12 a13
a21 a22 a23
a31 a32 a33

 , ∆4 = det


a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

 ,

· · · , ∆n = detA
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Classification of Quadratic forms

Theorem (Classification by principal minors)

Let A be a symmetric matrix of order n. Then

• A is positive definite if and only if
∆1 > 0,∆2 > 0, · · · ,∆n > 0.

• A is negative definite if and only if
∆1 < 0,∆2 > 0,∆3 < 0, · · · .

• If ∆n = detA 6= 0 and the principal minors do not verify the
previous conditions, the matrix is indefinite.

If detA = 0 the previous result does not help us classifying the
matrix and it can be either semi-definite or indefinite. In that case
we must compute the eigenvalues.
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Example

Let us classify the quadratic form

Q(x, y, z) = x2 + 2xy + 4xz − 6yz + 3z2.

The associated symmetric ma-
trix is

A =

 1 1 2
1 0 −3
2 −3 3



The principal minors are given
by

∆1 = 1 > 0

∆2 =

∣∣∣∣ 1 1
1 0

∣∣∣∣ = −1 < 0

∆3 = |A| = −24 6= 0

We are in the third case mentioned in the previous proposition and
the quadratic form is therefore undetermined. In fact we can
directly check that Q(0, 0, 1) = 3 > 0 and Q(0, 1, 1) = −3 < 0.
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