Mathematics 2

João Janela
jjanela@iseg.ulisboa.pt
version (October 17, 2016)

Fall 2016

Syllabus

- Complements of linear algebra. Eigenvalues and eigenvectors. Quadratic forms.
- Functions of several variables. General concepts, domain, image, geometric representation. Topology in \mathbb{R}^{n}. Continuity. Partial derivatives and differentiability. Constrained and unconstrained optimization. Multiple integrals.
- Differential equations.Generalities. Existence and uniqueness results. First order equations (linear, separable). Higher order equations (linear, with constant coefficients).
- Difference equations.Generalities. First and second order difference equations with constant coefficients.

Assessment

- Normal period

MT: Midterm exam covering the first half of the syllabus.
F: Final exam, covering the second half of the syllabus.
ON: Online quizzes along the semester.
Grade $=0.40$ * MT +0.40 * F +0.20 * ON
During the final exam students are given the chance of improving (MT).

- Repeat period Students can choose to be evaluated as in the normal exem period or just by a final exam covering the whole syllabus.
- NOTE 1: Attendance to classes is mandatory for students using assessment during the semester. Only students attending at least 75% of both theoretical and exercise classes will be scored at (MT) and (ON).
- NOTE 2: (MT) and (F) have a minimum grade of 8.0/20

Eigenvectors and eigenvalues

If we fix a basis on \mathbb{R}^{n}, a square matrix $A \in \mathbb{R}^{n \times n}$ can be seen as an application from \mathbb{R}^{n} to \mathbb{R}^{n}.

Example

Let $A=\left(\begin{array}{ll}2 & 1 \\ 0 & 4\end{array}\right)$. If we consider any vector \boldsymbol{u} and compute its image $\boldsymbol{A} \boldsymbol{u}$, this new vector may or may not have the same direction as \boldsymbol{u}.

Eigenvectors and eigenvalues

When \boldsymbol{u} and $\boldsymbol{A} \boldsymbol{u}$ have the same direction, we say that \boldsymbol{u} is an eigenvector of A. If \boldsymbol{u} and $A \boldsymbol{u}$ have the same direction, there exists λ such that $A \boldsymbol{u}=\lambda \boldsymbol{u}$. The number λ is an amplification or reduction factor called an eigenvalue of A.

Definition

Let A be a square matrix of order n. if there exists $\lambda \in \mathbb{R}$ and $u \in \mathbb{R}^{n} \backslash\{0\}$ such that $A u=\lambda u$ we say that λ is an eigenvalue of A and u is an eigenvector associated to that eigenvalue.

Proposition

Given an eigenvector of a square matrix A, there is one and only one eigenvalue associated to it.

Eigenvectors and eigenvalues

Proposition

If u is an eigenvector associated to an eigenvalue λ, any multiple of u is also an eigenvector associated to λ.

If $\boldsymbol{u} \neq 0$ is an eigenvalue of A and λ is its eigenvalue, then $A \boldsymbol{u}=\lambda \boldsymbol{u} \quad \Leftrightarrow(A-\lambda I) \boldsymbol{u}=0$ This homogeneous system can only have nonzero solutions if the system matrix is not invertible.

Proposition

λ is an eigenvalue of $A \in \mathbb{R}^{n \times n}$ if and only if

$$
p(\lambda):=\operatorname{det}(A-\lambda I)=0
$$

$p(\lambda)$ is a polynomial of degree n in λ and is called the characteristic polynomial of A.

Definition (Algebraic multiplicity)

The algebraic multiplicity of an eigenvalue is its multiplicity as a root of $p(\lambda)$.

Example

Consider the matrix $A=\left(\begin{array}{cc}1 & 4 \\ 0 & 1\end{array}\right)$.
The eigenvalues of A are the solutions of the equation

$$
\operatorname{det}(A-\lambda I)=0 \Leftrightarrow(1-\lambda)^{2}=0 \Leftrightarrow \lambda=1 \vee \lambda=1 .
$$

The eigenvalue $\lambda=1$ has multiplicity 2 as a root of the polynomial characteristic e so we say that it has algebraic multiplicity 2.

Computing eigenvectors

We compute the eigenvectors associated to an eigenvalue λ by solving the undetermined system $(A-\lambda I) u=0$.

The degree of indetermination of this system, given by $g m=n-\operatorname{rank}(A-I \lambda)$, corresponds to the maximum number of linearly independent eigenvector that can be associated to λ.

Definition (Geometric multiplicity)

The geometric multiplicity of an eigenvalue λ is given by $g m=n-\operatorname{rank}(A-I \lambda)$.

Remark

If $1 \leq g m \leq n$ the eigenspace of λ has dimension $g m$. This means that any eigenvector associated to λ can be obtained as a linear combination of gm fixed eigenvectors associated to λ.

Example

Let us determine the eigenvalues and eigenvectors of the matrix

$$
A=\left(\begin{array}{ccc}
4 & -10 & 10 \\
0 & 6 & -2 \\
0 & -2 & 6
\end{array}\right)
$$

We start by determining the eigenvalues as the solutions of

$$
\begin{aligned}
\operatorname{det}(A-\lambda I)=0 \Leftrightarrow & (4-\lambda)\left[(6-\lambda)^{2}-4\right] \\
& \lambda=4 \vee \lambda=8 \vee \lambda=4
\end{aligned}
$$

The eigenvalues are $\lambda=4$ (with alg. multiplicity 2) and $\lambda=8$ (a. $\mathrm{m} .=1$). The eigenvectors associated to $\lambda=4$ are the nontrivial solutions of $(A-4 I) u=0$.

Example (cont.)

$$
(A-4 I) u=0 \Leftrightarrow\left\{\begin{array}{r}
-10 u_{2}+10 u_{3}=0 \\
2 u_{2}-2 u_{3}=0 \\
-2 u_{2}+2 u_{3}=0
\end{array} \Leftrightarrow u_{2}=u_{3}\right.
$$

This means that any vector $\left(u_{1}, u_{2}, u_{3}\right)$ such that $u_{2}=u_{3}$ is an eigenvector associated to $\lambda=4$. The value of u_{1} can be choosen arbitralily, say $u_{1}=t$, and if the choose $u_{2}=s$ then we must also set $u_{3}=s$. So u is an eigenvector if
$u=(t, s, s), \quad t, s \in \mathbb{R} \quad \Leftrightarrow \quad u=t(1,0,0)+s(0,1,1), s^{2}+t^{2} \neq 0$
The geometric multiplicity of $\lambda=4$ is two. Any eigenvector associated to $\lambda=4$ can be writen as a linear combination of the vectors $(1,0,0)$ and ($0,1,1$).
Running similar calculations we can check that the eigenvectors associated to $\lambda=8$ are of the form $u=t(5,-1,1), t \neq 0$.

Properties

Proposition

Let $A \in \mathbb{R}^{n \times n}$.

- If A is an upper or lower triangular matrix, the eigenvalues are the diagonal elements of A.
- If $\lambda_{1}, \cdots \lambda_{n}$ are n real eigenvalues of A then $\operatorname{det}(A)=\lambda_{1} \times \cdots \times \lambda_{n}$.
- λ is an eigenvalue of A if and only if λ is an eigenvalue of the transposed matrix A^{\prime}.
- If A in invertible λ is an eigenvalue of A if and only if $1 / \lambda$ is an eigenvalue of A^{-1}.
- Any two eigenvectors associated to the same eigenvalue are linearly independent.
- A set of k eigenvectors associated to k distinct eigenvalues is linearly independent.

Quadratic forms

Definition

A quadratic form in n variables is any function $Q: \mathbb{R}^{n} \rightarrow \mathbb{R}$ expressed as a sum of second order terms in the variables x_{1}, \cdots, x_{n}.

$$
\begin{array}{rc}
Q(\boldsymbol{x})= & c_{11} x_{1} x_{1}+c_{12} x_{1} x_{2}+\cdots+c_{1 n} x_{1} x_{n} \\
& +c_{21} x_{2} x_{1}+c_{22} x_{2} x_{2}+\cdots+c_{2 n} x_{2} x_{n} \\
\vdots \\
& c_{n 1} x_{n} x_{1}+c_{n 2} x_{n} x_{2}+\cdots+c_{n n} x_{n} x_{n} \\
= & \sum_{i, j=1}^{n} c_{i j} x_{i} x_{j}=\sum_{i \leq j}^{n} b_{i j} x_{i} x_{j}
\end{array}
$$

where $b_{i j}=c_{i j}+c_{j i}$ if $i \neq j$ and $b_{i i}=c_{i i}$.

Proposition

Any quadratic form in n variables can be writen in the form $Q(\boldsymbol{x})=\boldsymbol{x}^{T} A \boldsymbol{x}$, where A is a square matrix of order n, where $a_{i i}=b_{i i}$ and $a_{i j}+a_{j i}=b_{i j}$. If we require that $A^{T}=A$ this representation is unique and we have $a_{i i}=b_{i i}, a_{i j}=b_{i j} / 2, i<j$ and $a_{i j}=a_{j i}$.

Example

Let $Q\left(x_{1}, x_{2}, x_{3}\right)=2 x_{1}^{2}+3 x_{1} x_{3}+3 x_{2}^{2}+2 x_{2} x_{3}+4 x_{3}^{2}$. We have

$$
Q\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1} x_{2} x_{3}\right)\left(\begin{array}{ccc}
2 & 0 & \frac{3}{2} \\
0 & 3 & \frac{2}{2} \\
\frac{3}{2} & \frac{2}{2} & 4
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)
$$

Classification of quadratic forms

It is of great importance in many applications to classify quadratic forms with respect to their sign.

$Q\left(x_{1}, x_{2}\right)=x_{1}^{2}+x_{2}^{2}$
Positive for all $\boldsymbol{x} \neq 0$.

$Q\left(x_{1}, x_{2}\right)=x_{1}^{2}-x_{2}^{2}$
Sign is not fixed.

$Q\left(x_{1}, x_{2}\right)=x_{1}^{2}-2 x_{1} x_{2}+x_{2}^{2}$
Positive or null.

Definition

Let $Q: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a quadratic form. We say it is:

- Positive definite if $Q(\boldsymbol{x})>0, \quad \forall x \neq 0$.
- Negative definite if $Q(\boldsymbol{x})<0, \quad \forall x \neq 0$.
- Positive semi-definite if $Q(\boldsymbol{x}) \geq 0, \forall x$ and there is some $\boldsymbol{y} \neq 0$ such that $Q(\boldsymbol{y})=0$.
- Negative semi-definite if $Q(\boldsymbol{x}) \leq 0, \forall x$ and there is some $\boldsymbol{y} \neq 0$ such that $Q(\boldsymbol{y})=0$.
- Indefinite if there are $\boldsymbol{x}, \boldsymbol{y}$ such that $Q(\boldsymbol{x})>0$ and $Q(\boldsymbol{y})<0$.

These definitions extend naturally to symmetric matrices.

Definition

Let $A \in \mathbb{R}^{n \times n}$ be a symmetric matrix. We say it is:

- Positive definite if $\boldsymbol{x}^{t} A \boldsymbol{x}>0, \quad \forall \boldsymbol{x} \neq 0$.
- Negative definite if $\boldsymbol{x}^{t} A \boldsymbol{x}<0, \quad \forall \boldsymbol{x} \neq 0$.
- Positive semi-definite if $\boldsymbol{x}^{t} A \boldsymbol{x} \geq 0, \forall \boldsymbol{x}$ and there is some $\boldsymbol{y} \neq 0$ such that $\boldsymbol{y}^{t} A \boldsymbol{y}=0$.
- Negative semi-definite if $\boldsymbol{x}^{t} A \boldsymbol{x} \leq 0, \forall \boldsymbol{x}$ and there is some $\boldsymbol{y} \neq 0$ such that $\boldsymbol{y}^{t} A \boldsymbol{y}=0$
- Indefinite if there are $\boldsymbol{x}, \boldsymbol{y}$ such that $\boldsymbol{x}^{\boldsymbol{t}} A \boldsymbol{x}>0$ and $\boldsymbol{y}^{t} A \boldsymbol{y}<0$.

Classification of Quadratic forms

Theorem

Let $A \in \mathbb{R}^{n \times n}$ be a symmetric matrix with real eigenvalues
$\lambda_{i}, \quad i=1, \cdots n$. Then

- A is Positive definite iif all eigenvalues are positive.
- A is Negative Definite iif all eigenvalues are negative.
- A is Positive semi-definite iif there is at least one null eigenvalue, while others are nonnegative.
- A is Negative semi-definite iif there is at least one null eigenvalue, while others are nonpositive.
- A is Indefinite if there are eigenvalues of different signs.

Note

The eigenvalues symmetric matrices are always real numbers.

Classification of Quadratic forms

Definition (Principal submatrix)

$B \in \mathbb{R}^{k \times k}(k<n)$ is called a principal submatrix of $A \in \mathbb{R}^{n \times n}$ if it is obtained by removing k rows of A, together with the columns having the same index.

Definition (Primary principal submatrix)

A primary principal submatrix is a principal submatrix obtained by removing the last k rows and columns $(k=0, \cdots, n-1)$

Definition (Principal minors)

We define the principal minors of a matrix $A \in \mathbb{R}^{n \times n}$ as the determinants of the primary principal minors.

Principal Minors

$$
\begin{gathered}
\Delta_{1}=\operatorname{det}\left(a_{11}\right), \quad \Delta_{2}=\operatorname{det}\left(\begin{array}{cc}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right) \\
\Delta_{3}=\operatorname{det}\left(\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right), \quad \Delta_{4}=\operatorname{det}\left(\begin{array}{llll}
a_{11} & a_{12} & a_{13} & a_{14} \\
a_{21} & a_{22} & a_{23} & a_{24} \\
a_{31} & a_{32} & a_{33} & a_{34} \\
a_{41} & a_{42} & a_{43} & a_{44}
\end{array}\right) \\
\cdots, \quad \Delta_{n}=\operatorname{det} A
\end{gathered}
$$

Classification of Quadratic forms

Theorem (Classification by principal minors)

Let A be a symmetric matrix of order n. Then

- A is positive definite if and only if

$$
\Delta_{1}>0, \Delta_{2}>0, \cdots, \Delta_{n}>0
$$

- A is negative definite if and only if $\Delta_{1}<0, \Delta_{2}>0, \Delta_{3}<0, \cdots$.
- If $\Delta_{n}=\operatorname{det} A \neq 0$ and the principal minors do not verify the previous conditions, the matrix is indefinite.

If $\operatorname{det} A=0$ the previous result does not help us classifying the matrix and it can be either semi-definite or indefinite. In that case we must compute the eigenvalues.

Example

Let us classify the quadratic form

$$
Q(x, y, z)=x^{2}+2 x y+4 x z-6 y z+3 z^{2} .
$$

The associated symmetric matrix is

$$
A=\left(\begin{array}{ccc}
1 & 1 & 2 \\
1 & 0 & -3 \\
2 & -3 & 3
\end{array}\right)
$$

The principal minors are given by

$$
\begin{gathered}
\Delta_{1}=1>0 \\
\Delta_{2}=\left|\begin{array}{cc}
1 & 1 \\
1 & 0
\end{array}\right|=-1<0 \\
\Delta_{3}=|A|=-24 \neq 0
\end{gathered}
$$

We are in the third case mentioned in the previous proposition and the quadratic form is therefore undetermined. In fact we can directly check that $Q(0,0,1)=3>0$ and $Q(0,1,1)=-3<0$.

