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Functions of several variables

In general, a function f: A — B is a correspondence that assigns
to each element in A a unique element in B.

The set A, where the correspondence is defined is called the
Domain of f, which we denote by Dy.

The Image of f is the subset of B defined by
Im(Dy) ={y€ B:y= f(z),z € A}
We will study the particular situation where both A and B are real

vectors of given dimensions
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Example ( f(z,y) = 22 + ¢?)
This expression can be computed for any z,y, and so the domain

is Dy = R2. Because f can take any nonnegative value, the image
of fis Im(Dy) =R{.

Example ( f(z,y) =

Di ={(z,y) €R?: 22 +4? -9 > 0} = {(z,y) € R? : 2® +4% > 9}

The values of f can only be computed if (z,y) is in a circle of
radius 3 centered in (0,0). Im(Dy) = R{.
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Geometric representation

The Graphic of a function f : R” — R is the subset of R"+!
defined by

Graph(f) = {(z, f(x)) e RxR" : & € Dy}
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Levelsets

The function f has a
constant values on each
line on the graphic. The
color codes are related to
the value of f.
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Levelsets in real world applications
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Levelsets in real world applications

Cobb-Douglas utility function

u(xi,x) = xF x4

c,d>0

» Gives monotone, convex
preferences

» Easy to work with
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Other examples

t — (cost,sint,t)
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0 Topology in R"

Definition (Distance)

An application d : R" x R" — Rf{ is a distance if
e d(z,y) =0z =y.
e d(z,y) = d(y, z).
e d(z,2) < d(z,y) +d(y, 2).

We will use the Euclidean distance, given by

Zn:(fﬂi - yi)2> "

i=1
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7Other definitions of distance

n
dy(2,y) = o1 — w1l + w2 — yol + -+ 20 —ynl = D |2 — wil
=1

doo(2,y) = maxi|zi—y1], |z2a—gl, -, [Tn—ynl} = max |-y

Example (x = (1,3), y=(-1,5))
di(z,y) =1 = (=) +[3-5[=4
doo(z,y) = max{|l — (—1)|,|3 — 5|} = max{2,2} =2
do(a,y) = V= (D) + (B-57 = VB=2V2
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Definition
We define a ball (or neighborhood) centered in  and with radius

e >0 as
B.(x) ={y € R" : d(xz,y) < €}.

B.(x) is also called an open ball.

Example
The open balls in R are given by

Bi(x)={yeR:|lz—y|<e} =]z —e,x+¢|

and the open balls in R? are given by

Be(z) ={y eR*: (w1 —1)* + (22 — y2)* < &}
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Let Q C R™ and a € R™.

e @ is an interior point to (2 if there exists some € > 0 such
that B.(a) C Q.

e a is an exterior point to (2 if there exists some & > 0 such
that B.(a) C Q°.

e a is a boundary point to € if for every € > 0 the open ball

B_.(a) contains points of both Q and Q°.

Definition (Interior, exterior, boundary)
Let 2 C R"”, we define the sets:
o Int() = {x € R : x is interior to O}
o Ext(Q) = {x € R": x is exterior to Q}
e Bdy(Q?) = {x € R" : x is a boundary point to Q}

J. Janela slides Math 2 - 2016/2017



Functions of several variables |SEG U LISBOA ‘ [t

Proposition
Let Q C R™. Then, every point x € R" belongs exactly to one of
the sets Int(Q, Ext(Q2) or Bdy(S). We have

Int(Q) U Ext(Q2) U Bdy(2) =R"

Int(Q)NExt(Q) = 0, Int(Q)NBdy(Q) = 0, Ext(Q)NBdy(R2) = 0.

Definition (Closure)

We define the closure or adherence of a set {2 C R™, and denote
it by ), as the set of all interior and boundary points:

Q := Int(Q) U Bdy(Q)
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Open and closed sets

Let Q@ C R™.
e Q) is an open set if it coincides with its interior, Int(Q) = Q.

e () is an closed set if it coincides with its adherence, 2 = (.

e Some sets are neither open nor closed.

e Some sets are both open and closed.

Definition (Limit points, limit set)

Let Q C R™. The limit set of 2, denoted by €V, is the set of all
points & that have elements of ) in every neighbourhood, i.e.

z€Q if Ve > 0(B(x) \ ) NQ#D
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Definition (Isolated point)

Let Q C R™ and « € ). We say that « is an isolated point if for
some € > 0 we have B.(z) N Q = {x}.

Q=Q U{x:x is an isolated point}

Definition (Bounded set)

A set 2 C R" is bounded if it is contained in some open ball, i.e.
if there exist & € R™ and ¢ > 0 such that Q C B.(x).

Definition (Compact set)
A set 0 C R"™ is compact if it is closed and bounded.
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Sequences in R™

Definition (Sequence)

A sequence in R™ is an ordered (infinite) list of elements of R™:

wy = (u1,1, %2, ,ULm)

uy = (u2,1,u22, - ,U2,m)

U, = (un,h Up, 2, - 7un,m)

Wy, = (log 7, COS 107 log n sin E)
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Convergent sequences

A sequence (u,) C R™ is said to be convergent to a € R™ if
Ve>0 dpeN:n>p=duya)<e.

In this case we write u,, — a or limu,, = a or lim wu, = a.
n—oo

Proposition

A sequence (u,) C R™ converges to a € R™ if and only if the
(real) sequence ||u,, — a|| converges to zero in R, i.e.

limu, =a < ||u, —al|| = 0.

Remark (Norm of a vector € R™)

H£B||:d(a:,0):\/33%-1-1»%4_..._1_963”.
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Convergent sequences

The previous result is actually equilalent to the following:

Let (u,,) be a sequence in R™ such that

Un = (Un,la Up,2, 7un,m)- Then

limu, =a & limu,; = a1, limuy2=a, -, limu,.m = an.

Example
The previou proposition tells us that the limit of a sequence ir R™

can be computed component by component. For instance,

2 n 2 n
im (2 (1)) = (i 2L i (14 L
n 2n2 +3 n

2n2 + 3’

Math 2 - 2016/2017
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Limits of functions f : R" — R

Definition (Heine)

Let f: QCR"” =R and a € Q. We say that f has limit b as =
tends to a, and write it like lim f(x) = b, if for every sequence
r—a

(an) C Q, ap # a, such that lima,, = a we have lim f(a,) = b.
More precisely,

lim f(x) =b< Y(a,),a, # a:lima, = a = lim f(a,) = b.

r—a

Definition (Cauchy)

Let f: QCR"™ — R and a € Q. We say that f has limit b as «
tends to a, and write it like lim f(x) = b if

r—a

\V/5>0 E|§>0:V.’L’EQ,£B7§(I,HCC*(1H<5:>|f(ili)*b|<5
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Example (Show that lim (2z+y+1)=1)
(z,y)—(0,0) ‘
@ Using Heine's definition. Let (z,,,y,) be a sequence such that
(Tn,Yn) — (0,0). In that case we know that
lim z,, = limy,, = 0. Now we just need to show that

hmf(xnayn) =1

lim f(xp,yn) = im(2z,+y—n+1) = 2limx,, +limy, +1 =1

=0 —0

® Using Cauchy's definition. For each € > 0 we must provide a
d > 0 such that ||(z,y) — (0,0)|| < d = |f(x,y) — 1] <e.

1f(z,y) — 1] = |22 +y| < 2|z + |y| = 2V22 + /42
<2V 32 + Va? +42 = 3| (,y)  (0,0)]
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Example (cont.)

Finally, given that |f(z,y) — 1| < 3||(z,y) — (0,0)]|, we realize
that if we set 6 < § we will have the desired inequality:

£@,5) = 1] < 3l(z,y) - (0,0 <3x £ =

This shows that lim (2z+y+1)=1.

(z,y)—(0,0)
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Properties of limits

Let f,g: Q CR"™ -+ R, a € Q such that

b= lim f(x) =, ¢ = lim g(x).

r—a r—a

then,
. iﬁr}l(o‘f(x)) — ail_rgf(:l;) =ab, acR.

lim (f(z) + g(@)) = lim f() + lim g(x) =b+c.

lim f(z)g(z) = (lim f(a:)) (;%g(w)) = be.

r—a r—a

lim f(z)/g(z) = (Jim f(x))/ (Jim g()) = b

r—a

Math 2 - 2016/2017
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Properties of limits

Proposition (Limits of composite functions)
Consider f : ACR"™ - R™, g: BCR™ — RP such that A, B
are open sets, f(A) C B, a € A, b € B. If there exists

lim f(x) = b and lim g(y) then we have,
T—a y—b

r—a

lim (g o f)(x) = iig})g(y)-

Example
(2 2
- . sin(z* +
The limit  lim %
(zy)=(0,0) T°+Y
because it leads to an indetermination. However, if we consider a
new variable u = 22 4+ y? we can rewrite the limit as

cannot be immediately computed

. sin(z? + y?)
o
(z.y)=(00)  Z°+Y
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lim f(z) = b <= lim |f(x)— b =0

r—a

Proposition

Let g, f,h : R®™ — R be defined in a neighborhood a. If
li_1>n g(x) = liin h(x) = b then liin f(x) exists and is equal to b.

g(x) /() — 0l h(z)
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Some useful inequalities

la) = Va2 < Va2 + b2
|+ 0] <af + [b]
la — b <af + [b]
lla| = [b]] < la — b|
[sinal <1

|cosal <1
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Example

. Y
lim — =7
(@,9)=(0,0) /22 + 12

2 2, 2 2
ol = lzllyl Vel ty? Ve Y Ei g

_n

So, the previous result applies with g(x,y) = 0 and

h(z,y) = \/2? + y?. Since |f(z,y)| is bounded from bellow and
from above by functions that tend to zero as (z,y) — 0, we

conclude that the limit under anlysis is in fact zero.
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Limits along given sets

Definition

Let f:Q C R®™ — R and consider a set B C 2 such that

a € Q' NB'. Thelimit of f as * — a by points of B exists and is
equal to b if

VesoJss0:x € Byz £ a, |z —al <d=|f(x)-b <e
Example

Let B = {(z,y) € R? : y = 22} and f : R? — R given by
2

zy
= . Th
fl@y) = — oy Then

lim r,y) = lim z,y) = lim f(z,2x
(z,y)—(0,0) f( Z/) (z,y)—(0,0) f( y) —0 f( )
(x,y)EB y=2m
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Limits along sets

Let f:Q C R®™ — R and consider any set B C () such that
a€ Q' NB'. Then

oI liin f(x) exists and is equal to b then, for all B,

lim f() =
xeB
® If we there exist sets By, By such that
Jim f(x) # Jim f(x), then Jim f(x) does not exist.
xEBy € B> xEB
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~ What can go wrong?

Lets considerer f(x,y) = e compute some limits, as

Ly
2 + y2
(z,y) — (0,0), along different sets.

z? 1

li 77— lim — = =,
(m,y)lam(o,()) 2 + 92 250222 2
y=x

. Ty . 222 1

lim — <  =lim— = —.

(zy)—(0,0) 22 +y2  2-0522 5
y=2x

Ty 322
lim —_ "7 — lim —
(@,)—(0,0) 22 + y%> 20 1022
y=3x

lim ny 5 =
(z,y)—(0,0) T« + Y
y=a?
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Since the limit along different sets has different values, the limit
does not exist!

o
\\“',A"(
S

o

R

| B
50

e
“ N
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Proposition
Let Q = By U By U---U By, for some k € N, with
BiNBj=0,i# janda € BiNB,N---By.

lim f(z)=be lim f(z)=b, i=1--,k

r—a
xEDB;

Example
Check that if f : R? — R is defined by

?+y? y>0
Ty ,y<0 '’

f(fv,y)Z{

then we have that  lim z,y) = 0.
carson ! Y
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Extension to vector functions

Definition (Cauchy)

Let f: Q CR" - R™ and a € 2. We say that f has limit
b € R™ as x tends to a, and write it like lim f(x) =bif

r—a

Veso Jsso:Vez eQzFa,llr—al <= f(z) bl <e

Proposition

Let f: QCR" — R™ and a € V, such that

f(x) = (fi(x),..., fm(x)). Then the limit lil>n f(z) =0bif and
r—a

only if

mhl}}l.fl(az):bh gﬂf2(m):b2aaiﬂfm(m):bmv
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Continuous functions

Definition (Continuity)

Let f: Q CR™ — R™ and a € (). Se say that f is continuous at
xz=aif

lim f(z) = f(a).

r—a

Reasons for not being continuous:

lim f(x) does not exist. il_r}r}lf(m) exists but is not

r—a equal to f(a)
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Example

f(z,y) = 2% + 42 is continuous at (0, 0) because

0,0)=0=  lim z,y).
10,0 (w,y)—>(070)f( v)

Example

W (x,y) # (0,0)

f(z,y) :{ 2% +y?
0 ,(l’,y) = (070)

is not continuous because  lim  f(x,y) does not exist.
(z,y)—(0,0)
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Continuous functions: first properties

The definition of a continuous functions is so closely related to the
definition of limit that most properties of limits translate directly
to continuous functions.
Proposition
Let f,g: QCR" >R, acQ. If f,g are continuous at x = a
then the same is true for

i. af, a € R, f+g and fg.

i. f/g, if g(a) # 0.

Example

Since f(z1,...,%,) = z; is continuous (check!), any polynomial
on the variables x1, ..., x, is continuous at any point in R™. For
instante, f(z,y, z) = 222 + y? + yz is a continuous function.
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Composition of continuous functions

Proposition

Letg: Dy CR" = RP, f: Dy CRP — R™. If g is continuous at
a € Dy and f is continuous at b = g(a), then the composite
function f o g: D, — R™ is continuous at a.

AN |
N
|

/\ |
/ Vo \ |
( 1 |

|
N [ |
a- |

/
N
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Example

ewy—l—l

22+y2+1

Justify that f(z,y) = is continuous everywhere in R?.

e 2y + 1 and 22 + y? + 1 are polynomials and are therefore
continuous.

e %Y1 is a composition of two continuous functions: a
polynomial and an exponential, and is therefore continuous.

e Both e®¥*! and 22 + y% + 1 are continuous and

exy—&-l
22+ y*+1+#0 and so

————— is continuous.
$2 AL y2 i 1
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Weierstrass' theorem

Theorem

Let €2 C R™ be a compact set and f : Q0 — R a continuous

everywhere in Q). Then f has a global minimum and maximum
over the set ().

e This result is very important in optimization.

e |s does not give any hint on where to look for the minimum or
maximum points.
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