Functions of several variables

In general, a function $f: A \rightarrow B$ is a correspondence that assigns to each element in A a unique element in B.

The set A, where the correspondence is defined is called the Domain of f, which we denote by D_{f}.

The Image of f is the subset of B defined by

$$
\operatorname{Im}\left(D_{f}\right)=\{y \in B: y=f(x), x \in A\}
$$

We will study the particular situation where both A and B are real
vectors of given dimensions

Functions of several variables

$$
f: A \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}, \quad\left(x_{1}, x_{2}, \cdots, x_{n}\right) \stackrel{f}{\longrightarrow}\left(y_{1}, y_{2}, \cdots, y_{n}\right)
$$

Example $\left(f(x, y)=x^{2}+y^{2}\right)$

This expression can be computed for any x, y, and so the domain is $D_{f}=\mathbb{R}^{2}$. Because f can take any nonnegative value, the image of f is $\operatorname{Im}\left(D_{f}\right)=\mathbb{R}_{0}^{+}$.

Example $\left(f(x, y)=\sqrt{x^{2}+y^{2}-9}\right)$

$$
D_{f}=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2}-9 \geq 0\right\}=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2} \geq 9\right\}
$$

The values of f can only be computed if (x, y) is in a circle of radius 3 centered in $(0,0) . \operatorname{Im}\left(D_{f}\right)=\mathbb{R}_{0}^{+}$.

Geometric representation

The Graphic of a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is the subset of \mathbb{R}^{n+1} defined by

$$
\operatorname{Graph}(f)=\left\{(\boldsymbol{x}, f(\boldsymbol{x})) \in \mathbb{R} \times \mathbb{R}^{n}: \boldsymbol{x} \in D_{f}\right\}
$$

Levelsets

$$
L_{\alpha}(f)=\left\{x \in D_{f}: f(\boldsymbol{x})=\alpha\right\}
$$

The function f has a constant values on each line on the graphic. The color codes are related to the value of f.

Levelsets in real world applications

Levelsets in real world applications

Cobb-Douglas utility function

$$
\begin{gathered}
u\left(x_{1}, x_{2}\right)=x_{1}^{c} x_{2}^{d} \\
c, d>0
\end{gathered}
$$

- Gives monotone, convex preferences
- Easy to work with

Other examples

$f: \mathbb{R} \rightarrow \mathbb{R}^{3}$
$t \longmapsto(\cos t, \sin t, t)$

$f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$
$(x, y) \longmapsto(2 \sin x, x+y)$

Topology in \mathbb{R}^{n}

Definition (Distance)

An application $d: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}_{0}^{+}$is a distance if

- $d(x, y)=0 \Leftrightarrow x=y$.
- $d(x, y)=d(y, x)$.
- $d(x, z) \leq d(x, y)+d(y, z)$.

We will use the Euclidean distance, given by

$$
d(x, y)=\left(\sum_{i=1}^{n}\left(x_{i}-y_{i}\right)^{2}\right)^{1 / 2}
$$

Other definitions of distance

$$
\begin{aligned}
& d_{1}(x, y)=\left|x_{1}-y_{1}\right|+\left|x_{2}-y_{2}\right|+\cdots+\left|x_{n}-y_{n}\right|=\sum_{i=1}^{n}\left|x_{i}-y_{i}\right| \\
& d_{\infty}(x, y)=\max \left\{\left|x_{1}-y_{1}\right|,\left|x_{2}-y_{2}\right|, \cdots,\left|x_{n}-y_{n}\right|\right\}=\max _{i=1, \cdots, n}\left|x_{i}-y_{i}\right|
\end{aligned}
$$

Example $(x=(1,3), \quad y=(-1,5))$

$$
\begin{gathered}
d_{1}(x, y)=|1-(-1)|+|3-5|=4 \\
d_{\infty}(x, y)=\max \{|1-(-1)|,|3-5|\}=\max \{2,2\}=2 \\
d_{2}(x, y)=\sqrt{(1-(-1))^{2}+(3-5)^{2}}=\sqrt{8}=2 \sqrt{2}
\end{gathered}
$$

Definition

We define a ball (or neighborhood) centered in \boldsymbol{x} and with radius $\varepsilon>0$ as

$$
B_{\varepsilon}(\boldsymbol{x})=\left\{\boldsymbol{y} \in \mathbb{R}^{n}: d(\boldsymbol{x}, \boldsymbol{y})<\varepsilon\right\} .
$$

$B_{\varepsilon}(\boldsymbol{x})$ is also called an open ball.

Example

The open balls in \mathbb{R} are given by

$$
\left.B_{\varepsilon}(x)=\{y \in \mathbb{R}:|x-y|<\varepsilon\}=\right] x-\varepsilon, x+\varepsilon[
$$

and the open balls in \mathbb{R}^{2} are given by

$$
B_{\varepsilon}(\boldsymbol{x})=\left\{\boldsymbol{y} \in \mathbb{R}^{2}:\left(x_{1}-y_{1}\right)^{2}+\left(x_{2}-y_{2}\right)^{2}<\varepsilon\right\}
$$

Definition

Let $\Omega \subseteq \mathbb{R}^{n}$ and $\boldsymbol{a} \in \mathbb{R}^{n}$.

- \boldsymbol{a} is an interior point to Ω if there exists some $\varepsilon>0$ such that $B_{\varepsilon}(\boldsymbol{a}) \subset \Omega$.
- \boldsymbol{a} is an exterior point to Ω if there exists some $\varepsilon>0$ such that $B_{\varepsilon}(\boldsymbol{a}) \subset \Omega^{C}$.
- \boldsymbol{a} is a boundary point to Ω if for every $\varepsilon>0$ the open ball $B_{\varepsilon}(\boldsymbol{a})$ contains points of both Ω and Ω^{C}.

Definition (Interior, exterior, boundary)

Let $\Omega \subseteq \mathbb{R}^{n}$, we define the sets:

- $\operatorname{Int}(\Omega)=\left\{\boldsymbol{x} \in \mathbb{R}^{n}: \boldsymbol{x}\right.$ is interior to $\left.\Omega\right\}$
- $\operatorname{Ext}(\Omega)=\left\{\boldsymbol{x} \in \mathbb{R}^{n}: \boldsymbol{x}\right.$ is exterior to $\left.\Omega\right\}$
- $B d y(\Omega)=\left\{\boldsymbol{x} \in \mathbb{R}^{n}: \boldsymbol{x}\right.$ is a boundary point to $\left.\Omega\right\}$

Proposition

Let $\Omega \subseteq \mathbb{R}^{n}$. Then, every point $\boldsymbol{x} \in \mathbb{R}^{n}$ belongs exactly to one of the sets $\operatorname{Int}(\Omega, \operatorname{Ext}(\Omega)$ or $B d y(\Omega)$. We have

$$
\begin{gathered}
\operatorname{Int}(\Omega) \cup \operatorname{Ext}(\Omega) \cup B d y(\Omega)=\mathbb{R}^{n} \\
\operatorname{Int}(\Omega) \cap \operatorname{Ext}(\Omega)=\emptyset, \operatorname{Int}(\Omega) \cap B d y(\Omega)=\emptyset, \operatorname{Ext}(\Omega) \cap B d y(\Omega)=\emptyset .
\end{gathered}
$$

Definition (Closure)

We define the closure or adherence of a set $\Omega \subseteq \mathbb{R}^{n}$, and denote it by $\bar{\Omega}$, as the set of all interior and boundary points:

$$
\bar{\Omega}:=\operatorname{Int}(\Omega) \cup B d y(\Omega)
$$

Open and closed sets

Definition

Let $\Omega \subseteq \mathbb{R}^{n}$.

- Ω is an open set if it coincides with its interior, $\operatorname{Int}(\Omega)=\Omega$.
- Ω is an closed set if it coincides with its adherence, $\bar{\Omega}=\Omega$.

Remark

- Some sets are neither open nor closed.
- Some sets are both open and closed.

Definition (Limit points, limit set)

Let $\Omega \subseteq \mathbb{R}^{n}$. The limit set of Ω, denoted by Ω^{\prime}, is the set of all points \boldsymbol{x} that have elements of Ω in every neighbourhood, i.e.

$$
\boldsymbol{x} \in \Omega^{\prime} \text { if } \forall \varepsilon>0\left(B_{\varepsilon}(\boldsymbol{x}) \backslash \boldsymbol{x}\right) \cap \Omega \neq \emptyset
$$

Definition (Isolated point)

Let $\Omega \subseteq \mathbb{R}^{n}$ and $\boldsymbol{x} \in \Omega$. We say that \boldsymbol{x} is an isolated point if for some $\varepsilon>0$ we have $B_{\varepsilon}(\boldsymbol{x}) \cap \Omega=\{x\}$.

Proposition

$$
\bar{\Omega}=\Omega^{\prime} \cup\{\boldsymbol{x}: \boldsymbol{x} \text { is an isolated point }\}
$$

Definition (Bounded set)

A set $\Omega \subseteq \mathbb{R}^{n}$ is bounded if it is contained in some open ball, i.e. if there exist $\boldsymbol{x} \in \mathbb{R}^{n}$ and $\varepsilon>0$ such that $\Omega \subset B_{\varepsilon}(\boldsymbol{x})$.

Definition (Compact set)

A set $\Omega \subseteq \mathbb{R}^{n}$ is compact if it is closed and bounded.

Sequences in \mathbb{R}^{m}

Definition (Sequence)

A sequence in \mathbb{R}^{m} is an ordered (infinite) list of elements of \mathbb{R}^{m} :

$$
\begin{aligned}
\boldsymbol{u}_{1} & =\left(u_{1,1}, u_{i, 2}, \cdots, u_{1, m}\right) \\
\boldsymbol{u}_{2} & =\left(u_{2,1}, u_{2,2}, \cdots, u_{2, m}\right) \\
\cdots & \\
\boldsymbol{u}_{n} & =\left(u_{n, 1}, u_{n, 2}, \cdots, u_{n, m}\right)
\end{aligned}
$$

Example

$$
\boldsymbol{u}_{n}=\left(\log n \cos \frac{n}{10}, \log n \sin \frac{n}{10}\right)
$$

Convergent sequences

Definition

A sequence $\left(\boldsymbol{u}_{n}\right) \subset \mathbb{R}^{m}$ is said to be convergent to $\boldsymbol{a} \in \mathbb{R}^{m}$ if

$$
\forall \varepsilon>0 \quad \exists p \in \mathbb{N}: n>p \Rightarrow d\left(\boldsymbol{u}_{n}, \boldsymbol{a}\right)<\varepsilon
$$

In this case we write $\boldsymbol{u}_{n} \rightarrow \boldsymbol{a}$ or $\lim \boldsymbol{u}_{n}=\boldsymbol{a}$ or $\lim _{n \rightarrow \infty} \boldsymbol{u}_{n}=\boldsymbol{a}$.

Proposition

A sequence $\left(\boldsymbol{u}_{n}\right) \subset \mathbb{R}^{m}$ converges to $\boldsymbol{a} \in \mathbb{R}^{m}$ if and only if the (real) sequence $\left\|\boldsymbol{u}_{n}-\boldsymbol{a}\right\|$ converges to zero in \mathbb{R}, i.e.

$$
\lim \boldsymbol{u}_{n}=\boldsymbol{a} \Leftrightarrow\left\|\boldsymbol{u}_{n}-\boldsymbol{a}\right\| \rightarrow 0
$$

Remark (Norm of a vector $x \in \mathbb{R}^{m}$)

$$
\|\boldsymbol{x}\|=d(\boldsymbol{x}, 0)=\sqrt{x_{1}^{2}+x_{2}^{2}+\cdots+x_{m}^{2}}
$$

Convergent sequences

The previous result is actually equilalent to the following:

Proposition

Let $\left(\boldsymbol{u}_{n}\right)$ be a sequence in \mathbb{R}^{m} such that
$\boldsymbol{u}_{n}=\left(u_{n, 1}, u_{n, 2}, \cdots, u_{n, m}\right)$. Then
$\lim \boldsymbol{u}_{n}=\boldsymbol{a} \Leftrightarrow \lim u_{n, 1}=a_{1}, \quad \lim u_{n, 2}=a_{2}, \cdots, \lim u_{n, m}=a_{m}$.

Example

The previou proposition tells us that the limit of a sequence ir \mathbb{R}^{m} can be computed component by component. For instance,

$$
\lim \left(\frac{n^{2}+1}{2 n^{2}+3},\left(1+\frac{1}{n}\right)^{n}\right)=\left(\lim \frac{n^{2}+1}{2 n^{2}+3}, \lim \left(1+\frac{1}{n}\right)^{n}\right)=\left(\frac{1}{2}, e\right)
$$

Limits of functions $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$

Definition (Heine)

Let $f: \Omega \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}$ and $\boldsymbol{a} \in \bar{\Omega}$. We say that f has limit b as \boldsymbol{x} tends to \boldsymbol{a}, and write it like $\lim _{\boldsymbol{x} \rightarrow \boldsymbol{a}} f(\boldsymbol{x})=b$, if for every sequence $\left(\boldsymbol{a}_{n}\right) \subset \Omega, a_{n} \neq \boldsymbol{a}$, such that $\lim \boldsymbol{a}_{n}=\boldsymbol{a}$ we have $\lim f\left(\boldsymbol{a}_{n}\right)=b$. More precisely,

$$
\lim _{\boldsymbol{x} \rightarrow \boldsymbol{a}} f(\boldsymbol{x})=b \Leftrightarrow \forall\left(\boldsymbol{a}_{n}\right), \boldsymbol{a}_{n} \neq \boldsymbol{a}: \lim \boldsymbol{a}_{n}=\boldsymbol{a} \Rightarrow \lim f\left(\boldsymbol{a}_{n}\right)=b .
$$

Definition (Cauchy)

Let $f: \Omega \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}$ and $\boldsymbol{a} \in \bar{\Omega}$. We say that f has limit b as \boldsymbol{x} tends to \boldsymbol{a}, and write it like $\lim _{\boldsymbol{x} \rightarrow \boldsymbol{a}} f(\boldsymbol{x})=b$ if

$$
\forall_{\varepsilon>0} \quad \exists_{\delta>0}: \forall \boldsymbol{x} \in \Omega, \boldsymbol{x} \neq \boldsymbol{a},\|\boldsymbol{x}-\boldsymbol{a}\|<\delta \Rightarrow|f(\boldsymbol{x})-b|<\varepsilon
$$

Example (Show that $\lim _{(x, y) \rightarrow(0,0)}(2 x+y+1)=1$)

(1) Using Heine's definition. Let $\left(x_{n}, y_{n}\right)$ be a sequence such that $\left(x_{n}, y_{n}\right) \rightarrow(0,0)$. In that case we know that $\lim x_{n}=\lim y_{n}=0$. Now we just need to show that $\lim f\left(x_{n}, y_{n}\right)=1$.
$\lim f\left(x_{n}, y_{n}\right)=\lim \left(2 x_{n}+y-n+1\right)=2 \underbrace{\lim x_{n}}_{=0}+\underbrace{\lim y_{n}}_{=0}+1=1$
(2) Using Cauchy's definition. For each $\varepsilon>0$ we must provide a $\delta>0$ such that $\|(x, y)-(0,0)\|<\delta \Rightarrow|f(x, y)-1|<\varepsilon$.

$$
\begin{aligned}
& |f(x, y)-1|=|2 x+y| \leq 2|x|+|y|=2 \sqrt{x^{2}}+\sqrt{y^{2}} \\
& \quad \leq 2 \sqrt{x^{2}+y^{2}}+\sqrt{x^{2}+y^{2}}=3\|(x, y)-(0,0)\|
\end{aligned}
$$

Example (cont.)

Finally, given that $|f(x, y)-1|<3\|(x, y)-(0,0)\|$, we realize that if we set $\delta<\frac{\varepsilon}{3}$ we will have the desired inequality:

$$
|f(x, y)-1| \leq 3\|(x, y)-(0,0)\| \leq 3 \times \frac{\varepsilon}{3}=\varepsilon
$$

This shows that $\lim _{(x, y) \rightarrow(0,0)}(2 x+y+1)=1$.

Properties of limits

Proposition

Let $f, g: \Omega \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}, \boldsymbol{a} \in \bar{\Omega}$ such that

$$
b=\lim _{\boldsymbol{x} \rightarrow \boldsymbol{a}} f(\boldsymbol{x})=, \quad c=\lim _{\boldsymbol{x} \rightarrow \boldsymbol{a}} g(\boldsymbol{x}) .
$$

then,

- $\lim _{\boldsymbol{x} \rightarrow \boldsymbol{a}}(\alpha f(\boldsymbol{x}))=\alpha \lim _{\boldsymbol{x} \rightarrow \boldsymbol{a}} f(x)=\alpha b, \quad \alpha \in \mathbb{R}$.
- $\lim _{\boldsymbol{x} \rightarrow \boldsymbol{a}}(f(\boldsymbol{x})+g(\boldsymbol{x}))=\lim _{\boldsymbol{x} \rightarrow \boldsymbol{a}} f(\boldsymbol{x})+\lim _{\boldsymbol{x} \rightarrow \boldsymbol{a}} g(\boldsymbol{x})=b+c$.
- $\lim _{\boldsymbol{x} \rightarrow \boldsymbol{a}} f(x) g(x)=\left(\lim _{\boldsymbol{x} \rightarrow \boldsymbol{a}} f(\boldsymbol{x})\right)\left(\lim _{\boldsymbol{x} \rightarrow \boldsymbol{a}} g(\boldsymbol{x})\right)=b c$.
- $\lim _{\boldsymbol{x} \rightarrow \boldsymbol{a}} f(x) / g(x)=\left(\lim _{\boldsymbol{x} \rightarrow \boldsymbol{a}} f(\boldsymbol{x})\right) /\left(\lim _{\boldsymbol{x} \rightarrow \boldsymbol{a}} g(\boldsymbol{x})\right)=b / c$.

Properties of limits

Proposition (Limits of composite functions)

Consider $\boldsymbol{f}: A \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}, \boldsymbol{g}: B \subset \mathbb{R}^{m} \rightarrow \mathbb{R}^{p}$ such that A, B are open sets, $\boldsymbol{f}(A) \subseteq B, \boldsymbol{a} \in \bar{A}, \boldsymbol{b} \in \bar{B}$. If there exists $\lim _{x \rightarrow a} f(x)=b$ and $\lim _{y \rightarrow b} g(y)$ then we have,

$$
\lim _{x \rightarrow a}(g \circ f)(x)=\lim _{y \rightarrow b} g(y) .
$$

Example

The limit $\lim _{(x, y) \rightarrow(0,0)} \frac{\sin \left(x^{2}+y^{2}\right)}{x^{2}+y^{2}}$ cannot be immediately computed because it leads to an indetermination. However, if we consider a new variable $u=x^{2}+y^{2}$ we can rewrite the limit as

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{\sin \left(x^{2}+y^{2}\right)}{x^{2}+y^{2}}=\lim _{u \rightarrow 0} \frac{\sin u}{u}=1
$$

Remark

$$
\lim _{\boldsymbol{x} \rightarrow \boldsymbol{a}} f(\boldsymbol{x})=b \Longleftrightarrow \lim _{\boldsymbol{x} \rightarrow \boldsymbol{a}}|f(\boldsymbol{x})-b|=0
$$

Proposition

Let $g, f, h: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be defined in a neighborhood a. If $\lim _{\boldsymbol{x} \rightarrow \boldsymbol{a}} g(\boldsymbol{x})=\lim _{\boldsymbol{x} \rightarrow \boldsymbol{a}} h(\boldsymbol{x})=b$ then $\lim _{\boldsymbol{x} \rightarrow \boldsymbol{a}} f(\boldsymbol{x})$ exists and is equal to b.

Some useful inequalities

$$
\begin{gathered}
|a|=\sqrt{a^{2}} \leq \sqrt{a^{2}+b^{2}} \\
|a+b| \leq|a|+|b| \\
|a-b| \leq|a|+|b| \\
||a|-|b|| \leq|a-b| \\
|\sin a| \leq 1 \\
|\cos a| \leq 1
\end{gathered}
$$

Example

$$
\begin{gathered}
\lim _{(x, y) \rightarrow(0,0)} \frac{x y}{\sqrt{x^{2}+y^{2}}}=? \\
\left|\frac{x y}{\sqrt{x^{2}+y^{2}}}-0\right|=\frac{|x||y|}{\sqrt{x^{2}+y^{2}}} \leq \frac{\sqrt{x^{2}+y^{2}} \cdot \sqrt{x^{2}+y^{2}}}{\sqrt{x^{2}+y^{2}}}=\sqrt{x^{2}+y^{2}}
\end{gathered}
$$

So, the previous result applies with $g(x, y)=0$ and $h(x, y)=\sqrt{x^{2}+y^{2}}$. Since $|f(x, y)|$ is bounded from bellow and from above by functions that tend to zero as $(x, y) \rightarrow 0$, we conclude that the limit under anlysis is in fact zero.

Limits along given sets

Definition

Let $f: \Omega \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$ and consider a set $B \subset \Omega$ such that
$\boldsymbol{a} \in \Omega^{\prime} \cap B^{\prime}$. The limit of f as $\boldsymbol{x} \rightarrow \boldsymbol{a}$ by points of B exists and is equal to b if

$$
\forall_{\varepsilon>0} \exists_{\delta>0}: \boldsymbol{x} \in B, \boldsymbol{x} \neq \boldsymbol{a},\|\boldsymbol{x}-\boldsymbol{a}\|<\delta \Rightarrow|f(\boldsymbol{x})-b|<\varepsilon
$$

Example

Let $B=\left\{(x, y) \in \mathbb{R}^{2}: y=2 x\right\}$ and $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ given by $f(x, y)=\frac{x y^{2}}{x^{2}+y}$. Then

$$
\lim _{\substack{(x, y) \rightarrow(0,0) \\(x, y) \in B}} f(x, y)=\lim _{\substack{(x, y) \rightarrow(0,0) \\ y=2 x}} f(x, y)=\lim _{x \rightarrow 0} f(x, 2 x)
$$

Limits along sets

Proposition

Let $f: \Omega \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$ and consider any set $B \subset \Omega$ such that $a \in \Omega^{‘} \cap B^{\prime}$. Then
(1) If $\lim _{\boldsymbol{x} \rightarrow \boldsymbol{a}} f(\boldsymbol{x})$ exists and is equal to b then, for all B,

$$
\lim _{\substack{x \rightarrow a \\ x \in B}} f(x)=b
$$

2 If we there exist sets B_{1}, B_{2} such that

$$
\lim _{\substack{x \rightarrow a \\ \boldsymbol{x} \in B_{1}}} f(\boldsymbol{x}) \neq \lim _{\substack{x \rightarrow a \\ x \in B_{2}}} f(\boldsymbol{x}) \text {, then } \lim _{\substack{x \rightarrow a \\ \boldsymbol{x} \in B}} f(\boldsymbol{x}) \text { does not exist. }
$$

What can go wrong?

Lets considerer $f(x, y)=\frac{x y}{x^{2}+y^{2}}$ e compute some limits, as $(x, y) \rightarrow(0,0)$, along different sets.

- $\lim _{\substack{(x, y) \rightarrow(0,0) \\ y=x}} \frac{x y}{x^{2}+y^{2}}=\lim _{x \rightarrow 0} \frac{x^{2}}{2 x^{2}}=\frac{1}{2}$.
- $\lim _{\substack{(x, y) \rightarrow(0,0) \\ y=2 x}} \frac{x y}{x^{2}+y^{2}}=\lim _{x \rightarrow 0} \frac{2 x^{2}}{5 x^{2}}=\frac{1}{5}$.
- $\lim _{\substack{(x, y) \rightarrow(0,0) \\ y=3 x}} \frac{x y}{x^{2}+y^{2}}=\lim _{x \rightarrow 0} \frac{3 x^{2}}{10 x^{2}}=\frac{3}{10}$.
- $\lim _{\substack{(x, y) \rightarrow(0,0) \\ y=x^{2}}} \frac{x y}{x^{2}+y^{2}}=\lim _{x \rightarrow 0} \frac{x^{3}}{x^{2}+x^{4}}=0$.

Since the limit along different sets has different values, the limit does not exist!

Proposition

Let $\Omega=B_{1} \cup B_{2} \cup \cdots \cup B_{k}$, for some $k \in \mathbb{N}$, with $B_{i} \cap B_{j}=\emptyset, i \neq j$ and $\boldsymbol{a} \in B_{1}^{\prime} \cap B_{2}^{\prime} \cap \cdots B_{k}^{\prime}$.

$$
\lim _{\boldsymbol{x} \rightarrow \boldsymbol{a}} f(\boldsymbol{x})=b \Leftrightarrow \lim _{\substack{x \rightarrow a \\ \boldsymbol{x} \in B_{i}}} f(\boldsymbol{x})=b, \quad i=1, \cdots, k .
$$

Example

Check that if $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is defined by

$$
f(x, y)=\left\{\begin{array}{cc}
x^{2}+y^{2} & , y \geq 0 \\
x y & , y<0
\end{array}\right.
$$

then we have that $\lim _{(x, y) \rightarrow(0,0)} f(x, y)=0$.

Extension to vector functions

Definition (Cauchy)

Let $f: \Omega \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ and $\boldsymbol{a} \in \Omega^{\prime}$. We say that f has limit $\boldsymbol{b} \in \mathbb{R}^{m}$ as \boldsymbol{x} tends to \boldsymbol{a}, and write it like $\lim _{\boldsymbol{x} \rightarrow \boldsymbol{a}} \boldsymbol{f}(\boldsymbol{x})=\boldsymbol{b}$ if

$$
\forall_{\varepsilon>0} \quad \exists_{\delta>0}: \forall \boldsymbol{x} \in \Omega, \boldsymbol{x} \neq \boldsymbol{a},\|\boldsymbol{x}-\boldsymbol{a}\|<\delta \Rightarrow\|\boldsymbol{f}(\boldsymbol{x})-\boldsymbol{b}\|<\varepsilon
$$

Proposition

Let $f: \Omega \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ and $\boldsymbol{a} \in \Omega^{\prime}$, such that $f(\boldsymbol{x})=\left(f_{1}(\boldsymbol{x}), \ldots, f_{m}(\boldsymbol{x})\right)$. Then the limit $\lim _{\boldsymbol{x} \rightarrow \boldsymbol{a}} \boldsymbol{f}(\boldsymbol{x})=\boldsymbol{b}$ if and only if

$$
\lim _{\boldsymbol{x} \rightarrow \boldsymbol{a}} \boldsymbol{f}_{\mathbf{1}}(\boldsymbol{x})=b_{1}, \quad \lim _{\boldsymbol{x} \rightarrow \boldsymbol{a}} \boldsymbol{f}_{\mathbf{2}}(\boldsymbol{x})=b_{2}, \ldots, \lim _{\boldsymbol{x} \rightarrow \boldsymbol{a}} \boldsymbol{f}_{\boldsymbol{m}}(\boldsymbol{x})=b_{m}
$$

Continuous functions

Definition (Continuity)

Let $f: \Omega \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ and $\boldsymbol{a} \in \Omega$. Se say that \boldsymbol{f} is continuous at $\boldsymbol{x}=\boldsymbol{a}$ if

$$
\lim _{x \rightarrow a} f(x)=f(a)
$$

Reasons for not being continuous:

$$
\lim _{\boldsymbol{x} \rightarrow \boldsymbol{a}} \boldsymbol{f}(\boldsymbol{x}) \text { does not exist. }
$$

$$
\begin{gathered}
\lim _{x \rightarrow a} f(\boldsymbol{x}) \text { exists but is not } \\
\text { equal to } \boldsymbol{f}(\boldsymbol{a})
\end{gathered}
$$

Example

$f(x, y)=x^{2}+y^{2}$ is continuous at $(0,0)$ because

$$
f(0,0)=0=\lim _{(x, y) \rightarrow(0,0)} f(x, y)
$$

Example

$$
f(x, y)=\left\{\begin{array}{cl}
\frac{x y}{x^{2}+y^{2}} & ,(x, y) \neq(0,0) \\
0 & ,(x, y)=(0,0)
\end{array}\right.
$$

is not continuous because $\lim _{(x, y) \rightarrow(0,0)} f(x, y)$ does not exist.

Continuous functions: first properties

The definition of a continuous functions is so closely related to the definition of limit that most properties of limits translate directly to continuous functions.

Proposition

Let $f, g: \Omega \subset \mathbb{R}^{n} \rightarrow \mathbb{R}, \boldsymbol{a} \in \Omega$. If f, g are continuous at $\boldsymbol{x}=\boldsymbol{a}$ then the same is true for
i. $\alpha f, \alpha \in \mathbb{R}, f+g$ and $f g$.
ii. f / g, if $g(\boldsymbol{a}) \neq 0$.

Example

Since $f\left(x_{1}, \ldots, x_{n}\right)=x_{i}$ is continuous (check!), any polynomial on the variables x_{1}, \ldots, x_{n} is continuous at any point in \mathbb{R}^{n}. For instante, $f(x, y, z)=x^{2} z+y^{2}+y z$ is a continuous function.

Composition of continuous functions

Proposition

Let $g: D_{g} \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{p}, f: D_{f} \subset \mathbb{R}^{p} \rightarrow \mathbb{R}^{m}$. If g is continuous at $\boldsymbol{a} \in D_{g}$ and f is continuous at $\boldsymbol{b}=g(\boldsymbol{a})$, then the composite function $f \circ g: D_{g} \rightarrow \mathbb{R}^{m}$ is continuous at \boldsymbol{a}.

Example

Justify that $f(x, y)=\frac{e^{x y+1}}{x^{2}+y^{2}+1}$ is continuous everywhere in \mathbb{R}^{2}.

- $x y+1$ and $x^{2}+y^{2}+1$ are polynomials and are therefore continuous.
- $e^{x y+1}$ is a composition of two continuous functions: a polynomial and an exponential, and is therefore continuous.
- Both $e^{x y+1}$ and $x^{2}+y^{2}+1$ are continuous and $x^{2}+y^{2}+1 \neq 0$ and so $\frac{e^{x y+1}}{x^{2}+y^{2}+1}$ is continuous.

Weierstrass' theorem

Theorem

Let $\Omega \subset \mathbb{R}^{n}$ be a compact set and $f: \Omega \rightarrow \mathbb{R}$ a continuous everywhere in Ω. Then f has a global minimum and maximum over the set Ω.

- This result is very important in optimization.
- Is does not give any hint on where to look for the minimum or maximum points.

