Answer to 4 Groups only

2 hours

Group 1

1. Consider a consumer whose utility function is $u\left(x_{1}, x_{2}\right)=\ln \left(x_{1}+3 x_{2}\right)$, where x_{1} represents the quantity of good 1 and x_{2} represents the quantity of good 2 .
a) (0.5 marks) Formulate the consumer choice problem.

R: $\operatorname{Max} u\left(x_{1}, x_{2}\right)=\ln \left(x_{1}+3 x_{2}\right)$, s.t. $p_{1} x_{1}+p_{2} x_{2} \leq m, x_{1} \geq 0, x_{2} \geq 0$.
b) (2 marks) Find this consumer's demand for goods 1 and 2 .
R : The goods are perfect substitutes. $x\left(p_{1}, p_{2}, m\right)=\left(m / p_{1}, 0\right)$ if $p_{1}<p_{2} / 3 ;\left(0, m / p_{2}\right)$ if $p_{1}>p_{2} / 3$; $\left(x_{1}, x_{2}\right)$ s. t. $p_{1} x_{1}+p_{2} x_{2}=m$ if $3 p_{1}=p_{2}$
c) (0.5 marks) Determine the indirect utility function.
$R: v(p, m)=\ln \left(m / p_{1}\right)$, if $p_{1}<p_{2} / 3 ; v(p, m)=\ln \left(3 m / p_{2}\right)$, if $p_{1} \geq p_{2} / 3$.
d) (1 mark) Determine the expenditure function.
$R: e(p, u)=p_{1} e^{u}$ if $p_{1}<p_{2} / 3 ; e(p, u)=p_{2} e^{u} / 3$ if $p_{1} \geq p_{2} / 3$.
2. (1 mark) Let \succcurlyeq be a preference relation on $R^{n}+$ and suppose $u(\cdot)$ is a utility function that represents it. Show that $u(x)$ is quasiconcave if and only if \succcurlyeq is convex.
R : Immediate from the definition of a quasiconcave function: $u()$ is quasiconcave if and only if the upper contour set of each of its level curves is convex.

Group 2

1. (1.25 marks) The consumer buys bundle x^{0} at prices p^{0} and bundle x^{1} at prices p^{1}. State whether the following choices staisfy the Weak Axiom of Revealed Preferences (WARP): $p^{0}=$ $(1,3), x^{0}=(4,2), p^{1}=(3,5), x^{1}=(3,1)$.
R : Yes. We have $p^{0} * x^{0}=10$ and $p^{0} * x^{1}=6$, which means that x^{0} is revealed preferred to x^{1}. On the other hand, $p^{1} * x^{1}=14$ and $p^{1} * x^{0}=22>14$, which means that x^{1} is not revealed preferred to x^{0}.
2. (1.25 marks) A consumer's utility function is given by $u\left(x_{1}, x_{2}\right)=\min \left\{x_{1}, x_{2}\right\}$, where x_{1} represents the quantity of good 1 and x_{2} represents the quantity of good 2 . The consumer's income is $€ 30$ and the price of each unit of good 1 and 2 is $€ 2$. Compute the compensating varation associated with a reduction in the price of good 1 to $€ 1$.

R: Initially, the uitility maximizer consumer buys the bundle (x_{1}, x_{2}) such that $x_{1}=x_{2}$ and $p_{1} x_{1}+$ $p_{2} x_{2}=m$, i.e., $\left(x_{1}, x_{2}\right)=(7.5,7.5)$. After the price change, we have $\left(x_{1}, x_{2}\right)=(10,10)$. At the final prices, the amount of income needed to buy the bundle $(7.5,7.5)$ is $1 * 7.5+2 * 7.5=22.5$. Therefore, the compensating variation is $22.5-30=-7.5$.
3. (2.5 marks) An expected utility maximizaer with wealth w may invest $B, B<w$, in an asset that has a rate of return $a>0$ with probability p and a rate of return $b<0$ with probability $1-$ p (investing B, with probability p he receives $(1+a) B$; with probability 1-p he receives $(1+$ b)B). Show that if the expected rate of return is 0 , the agent will invest $B=0$ if he is risk averse.
R : Solve the utility maximization problem Max $p u(w+a B)+(1-p) u(w+b B)$ s.t. $B \geq 0$. The KuhnTucker condition for $B>0$ gives $a p u^{\prime}(w+a B)+b(1-p) u^{\prime}(w+b B)=0$. Since $u^{\prime}(w+b B)>u^{\prime}(w+a B)$ from risk aversion, we must have $a p+b(1-p)>0$, for $B>0$ to be a solution. Since we have the expected rate of return equal to 0 , i.e., $a p+b(1-p)=0, B>=$ is not a solution. Therefore, the solution is $\mathrm{B}=0$.

Group 3

1. In a perfectly competitive market, let a firm's production function be given by $f(k, I)=k^{2} I$, where k denotes the quantity of capital and I denotes the quantity of labour used in the production process.
a) (2 marks) Compute the conditional input demand function and the cost function.
R : Solve the cost minimization problem, i.e., find $I, k \geq 0$ that solve Min $w l+r k s . t . k^{2} I \geq y$, to obtain: $\mathrm{I}(\mathrm{y}, \mathrm{w}, \mathrm{r})=\sqrt[3]{4 y^{5} w^{2} / r^{2}}$ and $\mathrm{k}(\mathrm{y}, \mathrm{w}, \mathrm{r})=\sqrt[3]{r / 2 w y}$ The cost function is $\mathrm{c}(\mathrm{y}, \mathrm{w}, \mathrm{r})=$ $\sqrt[3]{4 y^{5} w^{5} / r^{2}}+\sqrt[3]{r^{4} / 2 w y}$.
b) (0.5 marks) Evaluate this technology's returns to scale.

R: Since $f(t k, t l)=(t k)^{2}(t \mid)=t^{3} f(k, l)$, we have $f(t k, t l)>t f(k, I)$, for all $t>1$, so that returns to scale are increasing.
c) (1 marks) Now assume that, in the short run, the firm has $k=1$. Find the conditional demand of labour and the short run cost function
$R: I(y, w, r, k)=y / k^{2}=y$ and $c^{s}(y, w, r, k)=w y+r$.
2. (1,5 marks) A technology has non-decreasing returns to scale. For some prices it is posible to obtain positive profits. At these prices, does the profit maximization problem have a finite solution? And does the cost minimization problem to produce a given amount have a finite solution? Explain.
R : The profit maximization problem does not have a finite solution because the returns to scale are non-decreasing. However, we can always solve the cost minimization.

Group 4

1. (2,5 marks) Duopolists producing substitute goods q_{1} and q_{2} face inverse demand schedules:

$$
\mathrm{p}_{1}=20+\mathrm{p}_{2} / 2-\mathrm{q}_{1} \text { and } \mathrm{p}_{2}=20+\mathrm{p}_{1} / 2-\mathrm{q}_{2},
$$

respectively. Each firm has constant marginal costs of 20 and no fixed costs. Each firm is a Cournot competitor in price (not in quantity!). Compute the Cournot equilibrium in this market, giving equilibrium price and output for each good.
R : Firm i finds p_{i} such that $\operatorname{Max}\left(p_{i}-20\right)\left(20+p_{j} / 2-p_{i}\right), i=1,2$. The solution is $p_{1}=p_{2}=30$, so that $q_{1}=q_{2}=5$.
2. A monopolist faces linear demand $p=a-b q$ and has $\operatorname{cost} C=c q+F$, where all parameters are positive, $a>c$, and $(a-c)^{2}>4 b F$.
a) (1,25 marks) Solve for the monopolist's output, price, and profits.
R : The monopolist finds q such that $\operatorname{Max} q(a-b q)-(c q+F)$. Therefore, $q=(a-c) / 2 b, p=(a+c) / 2$, and Profit $=(a-c)^{2} / 4 b-F$.
b) (1,25 marks) Calculate the deadweight loss.
R : in a perfectly competitive market, $p=c$ and $q=(a-c) / b$. Then, DWL $=(a-c)^{2} / 8 b$.

Group 5

1. (5 marks) Compute the weak perfect Bayesian Nash equilibria of the following game.

$R: W P B N=\{[(L, L),(u a, u b), p=0.5, q \geq 3 / 4],[(R, R),(d a, d b), p \geq 2 / 3, q=0.5]\}$.

Group 6

1. (2.5 marks) Comment on the following statement: "A mixed strategy can strictly dominate a pure strategy, but a mixed strategy cannot be strictly dominant."
R: True. A mixed strategy can strictly dominate a pure strategy. However, since the payoffs of a mixed strategy are a convex combination of the payoffs of pure strategies, a mixed strategy cannot be strictly dominant.
2. (2.5 marks) Players 1 and 2 face an incomplete information game. Player 1 does not know the type of player 2 , believing that he is type I with probability $1 / 3$ and type II with probability $2 / 3$. Compute all Bayes-Nash equilibria in pure strategies.
Type I

	L	R
	1,2	1,5
	1,3	2,0

Type II

	L	R
	R	1,3
	1,4	
	$-1,2$	2,3

$R: B N E=\{[U,(L, R)],[D,(R, R)]\}$.

