GAME THEORY

Exercise list 1

Exercise 1

Solve the following games using (iterative) elimination of (weakly) domied strategies.
1.

	L	$C L$	$C R$	R
U	5,10	0,11	1,10	10,20
$M U$	4,0	1,0	2,0	20,1
$M D$	3,2	0,4	4,3	50,1
D	2,93	0,92	0,91	100,90

2.

	L	C	R
U	3,3	0,3	0,0
M	3,0	2,2	0,2
D	0,0	2,0	1,1

Exercise 2

Consider a second-price sealed-bid auction with two bidders denoted by $\mathrm{i}=1$, 2, with valuations $\mathrm{v}_{1}>\mathrm{v}_{2}$. Valuations are common knowledge. Formalize this auction as a startegic-form game and find the equilibrium in weakly dominant strategies.

Exercise 3

oPlayers 1 and 2 simultaneously choose a positive integer smaller or equal to K. If both players choose the same number, player 2 pays $1 €$ to player 1 ; otherwise no payment occurs. Determine the unique Nash equilibrium of this game.

Exercise 4

Determine the set of Nash equilibria of the following games:
1.

	L	R
U	0,1	0,2
D	2,2	0,1

2.

	L	R
U	6,0	0,6
D	3,2	6,0

3.

| | $M 1$ | | | $M 2$ | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | L | R | | L | R |
| | U | $1,1,1$ | $0,0,0$ | U | $0,0,0$ | $0,0,0$ |
| | D | $0,0,0$ | $0,0,0$ | D | $0,0,0$ | $2,2,2$ |

Exercise 5

Consider a first-price sealed-bid auction with two bidders denoted by $\mathrm{i}=1,2$, with valuations $v_{1}>v_{2}$. Valuations are common knowledge. Formalize this auction as a startegic-form game and determine the set of Nash equilibria.

Exercise 6

Consider the Cournot model with n firms, which simultaneously choose how much to produce. Let q_{i} be the quantity produced by firm i and let $Q=q_{1}+\ldots+q_{n}$ be total quantity produced. Let p be the equilibrium price and assume that the inverse market demand is: $p(Q)=\max \{0, a-Q\}$. Total cost of producing q_{i} by firm i is $c_{i}\left(q_{i}\right)=c_{i} q_{i}$, with $c_{i}<a$ for all $i=1, \ldots, n$. All of this is common knowledge.
i. Assume $c_{i}=c$ for all $i=1, \ldots, n$. Determine, as a function of n, the quantities produced, the price, and the profits in Nash equilibrium (Cournot equilibrium).
ii. Determine the limits of the functions obtained in i. when n goes to infinity. Explain.
iii. Assume $n=2$. Determine the Nash equilibrium when $0<c_{i}<\frac{a}{2}$ for each firm? What if $c_{1}<c_{2}<a$, but $2 c_{2}>a+c_{1}$?

Exercise 7

Find the Nash equilibrium of a Bertrand duopoly where the two firms in the market have the same cost structure.

