GAME THEORY

Exercise list 2

Exercise 1

Find all Bayesian-Nash equilibria of the following game with incomplete information:
(a) Nature chooses J_{1} and J_{2} with 50% probability.
(b) Player 1 observes Nature's choice, but player 2 does not.
(c) Player 1 chooses C or B; simultaneously, player 2 chooses E or D.

J_{1}	E	D
C	1,1	0,0
B	0,0	0,0
$\mathrm{~J}_{2}$	E	D
C	0,0	0,0
B	0,0	2,2

Exercise 2

Consider a Cournot duopoly with market demand given by $\mathrm{P}(\mathrm{Q})=\mathrm{a}-\mathrm{Q}$, where $\mathrm{Q}=$ $\mathrm{q}_{1}+\mathrm{q}_{2}$. Firm 1's cost function, given the quantity produced, is $\mathrm{C}_{1}\left(\mathrm{q}_{1}\right)=\mathrm{cq}_{1}$ and firm 2's cost function is $\mathrm{C}_{2}\left(\mathrm{q}_{2}\right)=\mathrm{c}_{\mathrm{H}} \mathrm{q}_{2}$ with probability a and $\mathrm{C}_{2}\left(\mathrm{q}_{2}\right)=\mathrm{c}_{\mathrm{L}} \mathrm{q}_{2}$ with probability $1-a$. All of this is common knowledge. However, information is asymmetric: firm 2 knows its cost function, but firm 1 does not.
i. Formulate this situation as game in strategic form.
ii. Compute a Bayesian-Nash equilibrium.

Exercise 3

Consider the Battle of Sexes:

	Bach	Stravinski
Bach	3,1	0,0
Stravinski	0,0	1,3

i. Find all Nash equilibria of this game.
ii. Now assume that this game has incomplete information:

	Bach	Stravinski
Bach	$3+\mathrm{t}_{\mathrm{c}}, 1$	0,0
Stravinski	0,0	$1,3+\mathrm{t}_{\mathrm{p}}$

Where t_{c} and t_{p} follow a uniform distribution in [0, x]. Determine the Bayesian-Nash equilibrium in pure strategies and show that as x goes to 0 , the Bayesian-Nash equilibrium tens to the mixed strategies equilibrium of the complete information game.

