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Introduction and Concepts

© Ratemaking:

o "Pricing" insurance, calculation of Insurance Premia
o Building a tariff for a portfolio, or portfolios somehow
connected

@ Experience rating: adjust future premiums based on past
experience

© Prior and Posterior Ratemaking
Insurance Premium: Price for buying insurance (for a period).
Two components:

@ Economic criteria: market price, admin costs

@ Actuarial criteria:

e based on technical aspects of the risk
e Meant to cover future claims
e We only consider this here



Intro

Some concepts
o Tariff:

o It's a list of prices

o System of premiums for the risks of a portfolio (homogeneous)
o Sets a base premium (homogeneous)

e plus a set of bonus/malus (heterogeneous)

Exposure: Risk volume, in risk units, no.

Risk unit: Commonly, a policy; sometimes a set of policies
Claim: an accident generates a claim, monetary amount
Claim frequency: number of claims, distribution
Severity: amount of the claim

Loss reserving

Pure premium: Risk mean, loss mean

Loss ratio: paid claims/premiums



Credibility theory
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The credibility formula

Credibility formula

Let X be a given risk in a portfolio, with Pure Premium E(X),
unknown:

o If the risk is has been sufficiently observed
E(X) =~ X (Full Credibility)
@ If not, use Partial Credibility, Credibility Formula:

E(X) ~ zX+(1—-2z)M
n
n+k

z =

Credibility factor: z, 0 <z < 1
n: No. observations; k: some positive constant

M: Externally obtained mean (Manual rate).



Credibility theory
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The credibility formula

A given risk X|0 —~ Bin(1;0), obs'd 10 yrs, 20 risks. X = 0.0145.
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Credibility theory
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Classical and Bayesian approach

“Limited Fluctuation” and “Greatest Accuracy” theories

@ Limited Fluctuation: Classical approach

@ From some computed n: n > ng use Full credibility;
@ Otherwise: Use Partial credibility. But what M, k?

@ Greatest Accuracy: Bayesian approach.
Example (Ex. 20.1, Classical, Full credibility)
Past losses: X1, X2, ... Xy, estimate { = E[X;]. Find n:

Pr{—rE<X—-¢<ri} > p

P’{ j/ﬁ = gaf}

Suppose 10 obs: 6 “0's" and 253, 398, 439, 756, r = 0.05,p = 0.9

2 2
267.
n>Ag (g) = 1082.41 ( 1684869> = 2279.51

v

p




Credibility theory
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Classical and Bayesian approach

Example (Ex. 20.1 cont'd, Classical, Partial credibility)
10 obs: 6 “0's" and 253, 398, 439, 756, r = 0.05, p = 0.9

n > 2279.51
n = 10 does not deserve full credibility. Credibility Formula:

EX) ~ zX+(1—-2)M. (z=?)

, — n
 n+k

z = min{i,/):); 1}

z = 0.06623

P. = 0.06623(184.6) + 0.93377(225) = 222.32

Exercises 20.1. 20.3. pe 565
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Classical and Bayesian approach

Theory, outgrowth of Buhlman's (1967) paper

Example (Ex. 20.9, Bayesian approach)

Two types of drivers: Good and Bad. Good are 75% of the
population and in one year have have 0 claims w.p. 0.7, 1 w.p. 0.2
and 2 w.p. 0.1. Bad drivers, respectively, 25%, 0.5, 0.3, 0.2. when
a driver buys insurance insurer does not know it's category. We
assign an unknown risk parameter, 6.

Example (Ex. 20.9 cont.)

x PX=x|=G) PX=x|6=B) 6 PO©=0)=mn(h)
0 0.7 0.5 G 0.75

1 0.2 0.3 B 0.25

2 0.1 0.2
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Classical and Bayesian approach

Joint and conditional distribution and expectation

Some basics: Bivariate random variable: (X, Y). D.f. Fx y, pdf or
pf fx,v
o fx y(x,y), marginals fx, f,. If independent: fx y = fxfy.
o Conditional (Conditional ind.: fx y|z = fx|zfy|z):
fx|Y(X) = fX'fYEX'y) fY|x(}/> B
v(y) fx (x)
fxy(x,y) =fy()f(y)  fxyv(xy) = fyx(y)x(x)




Credibility theory
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Classical and Bayesian approach

e Marginals
fx = [fx,v(x,y)dy; fY = [ fxy(x, Y)d
ffx\v x)fy (y)dy; ffY\x fx (y)dx
@ Expectations, lterated expectation
E[E(X]Y)] = E[X]; E[E(Y[X)] = E[Y]
VIX] = E[V(X]Y)]+ VIE(X]|Y)]

Cov[X,Y] = E[Cov(X,Y|Z)]+ Cov[E(X|Z);E(Y|Z)]



Credibility theory
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Classical and Bayesian approach

Example (Ex. 20.9 cont'd)

Suppose we observed for a particular risk: X = (X1, X2) = (0;1).
Given 6 obs are independent.

x(0,1) = ;fx|,,(0'1|9)7f(9):;fx1|9(0|9)fxz\9(1|9)7f(9)

= 0.7(0.2)(0.75) + 0.5(0.3)(0.25) = 0.1425
x(0,1,x3) = Y fx,, (0.1, x3]0)7(6)
0

Y F16(010) fi, 0 (1]0) iy o (x3]6) 72(6)
9

£(0,1,0) = 0.09995; £(0,1,1) = 0.003225; £(0,1,2) = 0.01800

Predictive and Posterior distribution

£(0]0,1) = 0.647368; £(1|0,1) = 0.226316; f(2]0,1) = 0.126316
m(G|0,1) = 0.736842; 7(B|0, 1) = 0.263158
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Classical and Bayesian approach

Example (Ex. 20.11)

Let X |6 —~ Poisson(6) and
© —~ Gamma(a, B) = X —~ NBinomial(«, )

E(X|§) = 0= E(X)=E(E(X|®)) = E(®) = ap
V(X]8) = 8= V(X)=V(E(X|®))+E(V(X|®)) =ap(1+p)

o’

, mean 1/6, and ® —~ Gamma(4,0.001).

)
) = e ¥ x0>0
)

03e=100001000% /6, 0 > 0




Credibility theory
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Classical and Bayesian approach

Example (Ex. 20.10)
Suppose a risk had 3 claims of 100, 950, 450.

£(100,950,450) — / £(100, 950, 450|0) d72(6) d6
0

_ /Ooof(loo\é))f(950|9)f(450!9)d71(9)d9

1,000% 720
6 2,5007

Similarly,

1,000* 5040
6 (2,500 +x)®

£(100, 950, 450, x4) =
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Classical and Bayesian approach

Example (Ex. 20.10)

Predictive density, posterior density

7 (2500)"
(xa|100, 950, 450) — (25(005@)8% Pareto(7: 2500)
3 + Xa

77(0]100,950,450) = 6%e 2590925007 /T (7) — Gamma(7;1/2500)

(Conjugate distributions) Risk premium and potential estimates:

pa(0) E(X4]0) =?
E(X4|100,950,450) = 416,67
u = E(Xs) =E(1/©)=1000/3 = 333.3(3)
X = 500
i < E(X4]100,950,450) < X

Exercices 20.20, 20.23, p. 605.
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Classical and Bayesian approach

Bayesian approach

From now onwards, assume a Bayesian approach:

Let a portfolio of risks, homogeneous, but “different:
@ Homogeneous: risks follow the same distribution family
@ Heterogeneous: distribution parameter is different.

A given risk comes attached with a paramenter 6:

o Fixed, but unknown, not observable;

@ Only claims are observed: (X1, Xz, ..., Xj,) = X;

@ 0 is the hidden aspects of the risk, which differs from others;
@ Like classical statistics: Use past data X to predict X, 11

e Risk (pure) Premium: E(X,1+1]0) = pnt1(0).

e Opposed to Collective (pure) Premium: E(Xp11) = pnt1.
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Classical and Bayesian approach

H1 Given 0, X1|0, X260, ..., X,|0, X,+1|0 are (conditionally)
independent.
6 is realization of a random variable: ® —~ 7(0)

H2 The different risks in the portfolio are independent.

Premium for the next year:
e Risk Premium: E(X,11|0) = pn+1(6). Unknown.
e Collective Premium: E(E(Xp4+1]0)) = ppnt1. In general

Vn-&-l(e) 7& Hn+1
e Bayesian premium (mean of the predictive dist. and Bayes
estimate for the squared-error loss):

E(Xpi1|X) = / sy, x (x|x)dx

= [ Hor1(0) o (6]x)do



Credibility theory
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Classical and Bayesian approach

Some Basic concepts:

X = (X1, X2..., X,); Predictive distribution: fx x(x|x) ; Prior
distr.: 7e(0); and Posterior dist.: 7gx (0|x)
@ Posterior dist.:

Tox(0]x) = fox(0,x)  fxje(x|0)m(6)
ax(0lx) = k(x) [ xe(x(0)(0)do

o Preditive dist.:
Faaix (i %) _ [ Fxoaxj0 (X X[6) 0 (6) d6
fx (x) fx (x)
ffxn+1|®(X’9)fx|®(X|9)7T®(9)d9
fx(X)
= [ fu0(xl0)Tex (01x)d8

an+1‘X(X‘X)dX =
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Classical and Bayesian approach

Definition (Credibility Premium)

The Credibility (pure) Premium 1,1(6) = ao + ¥)_; a;X; is an
estimator of linear form, such that:

2

minQ = E [,‘I/ln+1(9) — (0‘0 + Z“J’Xj>
j=1

Solution: Find &g, a1, ..., &p :

a n
%Q = —2E {Vn+1(9) - (060 +J§a_j)<j>} =0

9 X,}:O,izl,...,n

3 Q = —2E{ [;I/ln+1(9) — (0&0 + ZDCij)
Xj j=1

0, X1, X2, ..., Xp, Xpt1 are all random variables.
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Classical and Bayesian approach

Solution from:

Normal equations

Qi) = Fo+ LHEW] = E (ri(0)):
j=1
(unbiasedness equation)

n
COV(X;,X,,+1) = EZjCOV [X;, XJ] , = 1, o N
j=1

J
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Classical and Bayesian approach

We know that
E [Xn+1] = E [E [Xnsa|X]] = E[E [Xp4+1|O]] = E [1n11(0)];
‘”n+1(9> =E [Xn+1‘9]-

Hni1(0) also minimises:

- 2
minQ = min E{ Unt1(0) — (uco + Zug)@) }
j=1
= min E{ E [Xn+1|X] — ((Xo <+ iog)@)
j=1

)

J

[ n
= minE { Xnt1 — ((xo + Zog)@-)
i j=1




Credibility theory

Biihlmann's model

Bihlmann's model

Initial hypothesis
@ Given 6, X160, X2|0, ..., X,|6, Xn1+1]0 are (conditionally)
independent.

6 is realization of a random variable: ® —~ 7(0)

@ The different risks in the portfolio are independent.

v

Addition to H1
@ Given 0, X110, X216, ..., X,|0, X,+1]0 have the same mean and
variance:

n@) = E(X6)
v(f) = Var(X;|0).

Let
p=E[u®)], v=_E[v()], a= Var[u(6)]



Credibility theory

Biihlmann's model

Solution:

() = @o+) X =zX+(1-2z)p
j=1

n-+k




Credibility theory

Biihlmann's model

o

2]
o
o

© 0

z: called Biihlmann's credibility factor
Credibility premium is a weighted average from X and u.
z — 1 when n — oo, more credit to sample mean

If portfolio is fairly homogeneous w.r.t. ©, then u(®) does
not vary much, hence small variability.

Thus a is small relative to v — k is large, z is closer to 0
Conversely, if the portfolio is heterogeneous, z is closer to 1

Biihimann's model is the simplest credibility model, no change
over time



Credibility theory

[e]e]e] ]
nn ode
Proof

Estimator proposed for given risk, say j : m; = a + X , so that

min R = minE [ (4(6)) — )] = minE [ (u(8)) — & — pX ;)]
Set
E|((1(6) - BX)]) —0)°] = VIu() - BX]]
+ (B [1(8) — BX ;] —)°

Minimizing &, such that:

a* = E
(




Credibility theory

Biihlmann's model

Proof (cont'd)
2nd part

Viu®;) - X, =

VIX;l6] =

Differentiating w.r.t. B and equating,

O000O™

E[V[u(6;) — B X ;16;]] + V[E[u(6;) — B X ;16}

EE[U@] + (1 B2VIu(6))].

’6—204—( — B)%a.

!
=V[X;16;]

¥U—2(1—,B)a:0,

a n

a+iv n+v/a




Credibility theory

Biihlmann's model

Example (Ex.20.9 cont'd)

‘113(G) =0.4 ]/13(8) :9.7
E[X3]0,1] = 0.478948 #3=0475 X =05
a= V[u(0)] = 0.016875 v = E[v(0)] = 0.4825
k =v/a= 285926 z=2(2+ k)" =0.0654

zX + (1 — z)u = 0.0654(0.5) + 0.9346(0.475) = 0.4766

v

Example (Ex. 20.10. Exact credibility example)

E(X4]100,950,450) = 416,67; X =500
u=E(Xq) =E(1/®) = 1000/3 =333.3(3)
zX+ (1 —z)u = E(X4]100,950,450).

Exercises 20.24-27, p. 606.
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Biihlmann-Straub’s model

Bihlmann-Straub’s model

Biihimann's H1 is changed:
@ Given 0, X110, X260, ..., Xp|6, X1+1|0 have the same mean,
variance:

E(Xlo) = u(o) (same)
v(0)

mj

Var (X;16) =

m;j is some known constant measuring exposure

Ex: group insurance where its size changes

Initially, the model was first presented for reinsurance.
Var (X;) = E [Var (X;|0)] + Var [E (X;|0)] = T2



Credibility theory

Biihlmann-Straub’s model

n
Pe=Go+ ) &Xj=zX+(1—2)u
=1

J
zZ= mi-s-k k=v/a
X = Y X m= Y71 m; (total exposure)
Obs.:
@ Factor z depends on m (total exposure)
o X is a weighted average, m;/m is the weight
e m;X; is the total loss of the group in year j
o (Total) Credibility premium for the group, next year:

Mpy1 [2X + (1 — 2)u]



Credibility theory

Biihlmann-Straub’s model

Example (Ex.20.19)

Nj: No. of claims in year j for a group policy holder with risk
parameter and mj individuals. N; —~ Poisson(m;@). Let
X; = N;j/mj. © ~ Gamma(a, B).

E(GI8) = 1(6) =6 VOx8) = V(ny/myle) = 20 —

= E(®)=aB; a=V(0O)=ap? v=EO®)=

_ _1p o, mpB
= U/a_l/'B'z_m,B—l—l

mpg -
P. = X
mp+1 +mﬁ+la‘3




Credibility theory

Exact credibility

Example (Ex.20.19)

N;: No. of claims in year j for a group policy holder with risk
parameter 6 and mj individuals, j =1, ..., n. N; ~ Poisson(m;0).
Let X; = N;j/mj. ® ~ Gamma(a, B). Bayesian premium (mean of
the preditive dist.):

E(Xa111X) = E(E(X211(0)0,X)) = E(pn+1(6)[X)

E(6]X)
Pr(N; =nl0] = Pr[Xjmj=n|0] =Pr[X; =n/m;|0], nec Ny
- 9a— 1 —9/[3
— (mJO) e Mi /n!; 7'[(9) = W

mox(01x) o [[T7, fige(x10)] 7(0);
figlo(16) = Pr [X; = x|6]




Credibility theory

Exact credibility

Example (Ex.20.19)

Nj: No. of claims in year j for a group policy holder with risk
parameter and mj individuals, j =1, ..., n. N; —~ Poisson(m;0).
Let X; = N;/mj. ® —~ Gamma(«, B).

n

O|x ~ Gamma <(X* =a+ Z mjxj; B« = (1/B+ m)_1>
i—1

Jj=

o+ Y7 mix
(1/B+ m)
mB - 1

mB+1 T mpE 1Y

E(Xp1|X=x) = a.p.=

p="Fe

Exercises 20.28, 29, p. 608



Credibility theory

Exact credibility

@ Recap Credibility Premium,

Hnr1(6): min {Q E { [Vn+1(9) - (“0 + Zn:“jxj>
j=1

@ Now, don't impose a linear estimator. Let m(X), some

1)

min <E {[,Hn+1(9) - m(X)]2} =E [E{[V"H(G) - m(X)]2 |X}]> '

E {#n+1(6) = mOO) X} = V [tn12(8)1X] + (€ [pns2(8)|X] — m(X))

*

m(X) = E [pn11(0)[X]

Bayes estimator, relative to Square Loss function and prior 77(0).

function of X, and find estimator m(X) such that:




Credibility theory

Exact credibility
Exact Credibility: When 71,71(0) = m(X) = E [in+1(0)|X], i.e
Credibility Premium=Bayesian Premium.

Stronger Biihlmann's H1
Change Biihlmann's H1, in addition, to:

H1: fio(|6) = £ (]0) Vi =1,...,n n+1.

/y 77(6]x)d6 = /y(@) fff();(’)‘) do

F(x|0) > J 1(6) T2y £(x10) (6 d6
/” TFxe)n @ = LTI F(gle)n(0)de
_ [uO)Le)r >
Jo L(0)7(0)d0
<e 7(0)

7(0)x) =



Credibility theory

Exact credibility

Example (Norberg [1979])

For a given risk X|6 —~ Bin(1;60), © —~ U(a, B), obs'd for
20 risks. X = 0.0145, pn11(0) = u(0) = 6.

f(x|0) =6*(1—-60)'>, x=0,1;, 0<f<1.

m(f) = gz 0<a<O<Bp<1l (B>a)

nx+k+2 7ani+k+2

* Zn = 1 g n—nx—k)!k!(nx
m(x) _ E[G‘X] . ( ) ( k)!k!(nx+k+2)

‘Bn)?+k+1 _an)'(+k+1

Z” ”X( 1) (n—nx—k)!k!(nx+k+1)

10 yrs,




Exact credibility

Example (Beta-Binomial model)
For a given risk X|6 —~ Bin(1;60), © —~ Beta(a, B), a, B > 0,

X =145

(f|x) =

7(6]x)

E[6]x]

Credibility theory

a—1(1 _ p\B—1
GB(ax,[f)); 0e(0;1), B(a, B) = /leal(l o
Iﬂlf(XJIG) — LF19(1 — 0)" T,
j=1

L@)()  6mital(1— g)nth-Tiy-l

fol L(6)7(6)d0 COB(Lixtainta—Y;x)’

Beta() xj +a; n+p—) x)
J 7

Zj><j+0é n ) atp

= % -
0(+ﬁ+n 0C+‘B—|—n UC+‘B—|—n‘u

—Lex



Credibility theory

Exact credibility

Example (Gamma-exponential model)

X|0 ~Exp(0),u(0) =1/6, f(x|0) = e~ x > 0;

© —~ Gamma(a, B = 1/B%),

(14
—)e’ﬁ%“’l; 0 > 0;

B
['(a
L) = f{mxﬂe):e"exp{—ezxj-}:

ERTOLG
O = =0y n(e)de

— (’B;_(%J_i_f)) p{ 95+2X }en—m 1
r(6lx) = X, = E

Gama(n—+w; B+ ) x)); V—E[
J

[1/6]




Credibility theory

Exact credibility

Example (Gamma-exponential model cont'd)

_ B e —BOpa—2 4y _ Fa—1) B
Ftwh T T
n S\ nta o
E[1/0]x] = (B “‘F(Z;—_: ;9)) /0+ o~ (BTE; x)0gnta=2 4y
(B Lx)T(n+a—-1)  BHY;x
I'(n+a) T on+a-—1
n a—1

n+uc—1x'j+n+g¢_1y




Credibility theory

Parameter estimation

Bithlmann's Empirical Bayes.. Unbiased and consistent estimators.

=
Il
I
Il

V[Y,] = a-+ ;U
. 1& 2 1 (Xij — Xi )
— - 5/ _ - ly
v :; ! r :;J; n—1

W
Il
3
[«5)
X
—N—
=
| | =
—
1~
—~
|
|
SN—
N
|
S|
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(e}
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Credibility theory

Parameter estimation

BithImann-Straub’s Empirical Bayes.

1 r 1 r n;
po=X==Y mXi==Y ) mX;
m &= m —~ =
i=1 i=1j=1
r r n; Zr Y,
— _ ~ =1 <17\l
mo= Ym=Yimp p-E
i=1 i=1j=1 i=1%i

r n; VAL
-1 Ly mi (X — XG)

0 — i=1 —j
Yici(ni—1)
r =Ly . 5
2 = max m—m 12m,2 Zm,(X,—X) —0(r—1)
i=1 i=1




Credibility theory

Problems

Example (A Bonus-Malus system)
Let X;: claims in year j, X; —~ Poisson(8), u(0) = v(6) =6

a  EEVE
= T EE Ve T nr e/ vl

Data: Portfolio of 106974 policies in one year (stable period):

x| 0 1 2 3 4 >5
nc | 96978 9240 704 43 9 0

o E[0] = E[X] = (1/106974) z‘,ﬁ Oxknxk = 0.1011.
o V[X] =s? (1/106974) Y ko Xk2ny, — X2 = 0.1074.
o V[X] =E[6] + V[f]. V[f] = 0.1074 — 0.1011 = 0.0063.




Credibility theory

Problems

Example (A Bonus-Malus system cont'd)

Py 1(Xi): 100x Risk premium/Collective premium

) n _ 0.1011/0.0063
_ X 0.1011
4 - 0.1011/0, 0063 © n+0.1011/0.0063 *

= | ) x +16,047 (0.1011)> / (n+ 16.0476)
j=1

Y0 X+ 1.6224 1 Xij +1.6224
v 1(X;) =100 d =100 x ==1°0
1 (X7) " 0.1011(n + 16.0476) 0.1011 n + 1.6224




Credibility theory

Problems

No. of claims
no years 0 1 2 3 4
100 - - - -
94,13 152,16 210,18 268,20 326,22
88,92 143,72 198,53 253,34 308,14
84,25 136,18 188,11 240,04 291,97
80,06 129,39 178,73 228,06 277,40
76,24 123,24 170,23 217,23 264,22
72,79 117,65 162,51 207,38 252,24
69,63 112,54 155,46 198,38 241,29
66,73 107,86 149,00 190,13 231,26
64,07 103,56 143,05 182,54 222,03
61,61 99,58 137,56 175,53 213,50

o

O© 0O ~NO 1 b WN

—
(@)

Table: Relative premium for a Bonus-malus system



Credibility theory

Problems

Example (Life group insurance)

Nisij: No. people dying, with ins. capital xi, age s, group j, year i.
Nij = Y k.s Nisij - -..in group j year i

Xk insured capital

gs: mortality rate, age s, known.

gs0;: mortality, age s, group j (unknown)

nysii: No. people group j, capital xi, age s, year i.

Sii = Lk (xk Ls Nisij): aggregate claims, group j, year i

Nisij|l@  —  Poisson(nsjj X gs x 0;) =

ENksij|9 ~  Poisson <91'Eq$’7ksij|9j>




Credibility theory

Problems

Example (Life group insurance, cont’d)

S0 = 2<szwk5,j>
k s

. Y5 GsNksij
Siil0 —~ CPoisson | 0; Y  nusiigs; fi(x) = ===
J| < ’ g v J( ) Zk,s Qs Nisij

E[Snr1l0] = Y xk Y ElNks(n1);10i] = 6 ) XkGsks(n1);
k s k,s

P. = éjzxkqsnks(n—i-l)jv
k,s

~ mJ

E[0;]/V[6;] ,
= m; +E[§;]/V[e]" 7 m; +E[9j]/V[9j]E[GJ]




Credibility theory

Problems

Example (Life group insurance, cont’d)

E[Sni1l0] = Y xik Y ElNks(n1);16i] = 6 Y XkGsks(n1);
k s k,s

Pe = 6; ) XkGsks(ns1))
k,s

m; X+ E[0;]/V[6)]
m; +E[6;]/V[6;]" 7~ m; +E[6)]/VI[6]]
Xj = Ng/my; myj=} qsnis;
k,s

E[0;]




Problems

Problem 1

Consider a motor insurance portfolio where the population is classified into
categories A B and C, respectively, where A is Good drivers, B is Bad drivers
and C is Sports drivers. The population of drivers is split as follows: 70% is in
category A, 25% in B and 5% in C. For each driver in category A, there is a
probability of 0.75 of having no claims in a year, a probability of 0.2 of having
one claim and a probability of 0.05 of having two or more claims in a year. For
each driver in category B these probabilities are 0.25, 0.4 and 0.35,
respectively. For each driver in category C these probabilities are 0.3, 0.4 and
0.3, respectively.

Risk parameter representing the kind of driver is denoted by 6, which is a
realization of the random variable ®. The insurer does not know the value of
that parameter. Let X be the (observable) number of claims per year for a risk
taken out at random from the whole portfolio. For a given ® = 6 yearly

observations X, X5, ..., make a random sample from risk X. The insurer finds
crucial that the annual premium for a given risk might be adjusted by its claim
record.

Consider a risk X taken out at random from the portfolio.

@ Calculate the mean and variance of X.

@ Compute the probability function of X.




Credibility theory

Problems

Problem 1 (cont'd)

For a particular risk of the portfolio we observed in the last two years
X1:x1:Oand X2=X2:2.

© For a given ® = 0 of risk X observations, X1, Xo, ..., are a random
sample but X; and X3 are not independent. Comment briefly.

@ Compute Cov[X7, X2]. [Note: For r.v.'s X, Y and Z,
Cov[X, Y] = E[Cov[X, Y|Z]] + Cov[E[X|Z]; E[Y|Z]] ]

© Compute the posterior probability function of ® given (X3 =0, X = 2).

@ You do not know from which risk category the above sample comes.
Carry out appropriate calculations to determine from which category the
sample is most likely to have come.

We need to compute a (pure) premium for the next year:
@ Compute the collective pure premium.
© Compute the Bayes premium E[X3|X = (0,2)] = E(u (®) | X = (0,2)).
© Compute Biihimann's credibility premium, say, E(X3]6).
@ Can we talk here on Exact Credibility? Comment appropriately.
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Ratemaking and Experience Rating concepts, Recap...

Ratemaking portfolios/groups:
@ Similar risks grouping in collectives of risks for ratemaking.
Tariff:
@ Set of premia, for each risk in a (homogeneous) portfolio. A
basic premium plus a system of bonus or malus.
Tariff structure:
@ System of bonus/malus applied to a basic premium.
“Prior’ and “Posterior’ ratemaking:

e First rate following given prior variables, then make a posterior
re-evaluation/readjustment, according to the reported
accidents/claims by the risk/policy.

Bonus-malus systems, use of GLM's, ..

@ Bonus systems are in general based on claim counts, not
amounts. This is explained by the usual assumption of
independence between number and severity of claims. The
base model is Markovian.
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Bonus-malus (or bonus) systems

Common tariff in motor insurance;
Usually based on a counting variable, not the amounts
A Markov chain model (discret time) is often used:

Basic idea:

e year(s) with no claim: bonus
e year with 1 claims: malus; 2 claims: + malus...

Study Long Term behaviour
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Example (Markov chain, T&K, p.102, Ex. 2.2)

A particle travels through states {0, 1,2} according to a Markov
chain
0 1 2
0 0 1/2 1/2
pP=1(1/2 0 1/2
2\1/2 1/2 0
r1 1 1 1 3 3 3 5 5 7
2 1 3% 12 8 8 g 15 16
P2 — I i i ,P3 — 3 1 3 ;p4 — 5 3 5
N §i1 28 Y
L2 2 2 8 8 4 16 16 8 A
rS5 11 11 171 341 341
16 32 32 512 1024 1024
5 _ 11 5 11 |.plo 341 171 341
PP= 15 1% 2 [P =|1m 2 i
11 11 5 341 341 171
L 32 32 16 1024 1024 512




Example (co

p100 _

211275100038038233582783867563
633825300114114700748351602688

422550200076 076 467 165 567 735 125

1267650600 228229401496 703 205 376

22550200076 076467 165567 735 125

4
1267 650 600 228 229401 496 703 205 376

Bonus-malus systems
00®00000

422550200076 076467 165567 735125

1267 650 600 228 220401 496 703 205 376

211275100038038233582783867563
633825300114114700748351602688

422550200076 076467 165567 735125

1267 650 600 228 220401 496 703 205 376

0.33333 0.33333 0.33333
= 0.33333 0.33333 0.33333
0.33333 0.33333 0.33333

422550200076 076 467

422550200076 076 467

165567 7

1267650 600 228229401496 703

165567 1

1267650 600228229401496 703

211275100038038 23.
63382530011411470

582783 ¢
748351 ¢
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Let a Markov chain with transition matrix:

0 1 2 3 4 5 6

0/09 01 O 0 0 0 0

109 0 01 0 0 0 0

2109 0 0 01 O 0 0

P= 3109 0 0 0 01 O 0

4109 O 0 0 0 01 O

5109 0 0 0 0 0 0.1

6\09 0 0 0 0 0 0.1
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Long term: P8 =

.09 .009 .0009 .00009 9.0x107% 1.0x10°°
.09 .009 .0009 .00009 9.0x107°% 1.0x10°°
.09 .009 .0009 .00009 9.0x107% 1.0x10°°
.09 .009 .0009 .00009 9.0x107% 1.0x10°°
.09 .009 .0009 .00009 9.0x107°% 1.0x10°°
.09 .009 .0009 .00009 9.0x107% 1.0x10°°
.09 .009 .0009 .00009 9.0x107°% 1.0x10°°

© © O © O © O
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A posterior ratemaking system, experience rating, is a Bonus-malus
sytem if
@ The rating periods are equal (1 year)

@ The risks, policies, are divided into (finite) classes:
G, G,...C: U, G=C¢C: Gn CJ = J.

@ No transitions within the year
@ Position in Class in the year n depends on:

e Position in n—1, and
e The year claim counts.
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Example (Centeno [2003])

A Bonus system in motor insurance, 3rd party liability (directly, the
system is not Markovian)

@ 30% discount, no claim for 2 yrs.
@ 15% malus, 1 claim
@ 30% malus, 2 claims
@ 45% malus, 3 claims

@ 100% malus, 4 claims

@ > 4, case by case...

This is not Markovian, unless...classes are split (see later)
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Composition of the B-S system:

@ A vector of premia (or multiplying factor, index)
b= (b(1),b(2),...,b(s))
@ Transition rules among classes, in matrix:

T = |[Tj], each entry Tj is a set of integers...

T . UL Ty ={012.}, TjNnTy=2,j#/

@ Entry class, G, is the same for all policies.
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Markov analysis

@ Symbolically, a B-M S can be written as a triplet:
A=(GC, T,b).

@ Bonus Class in year n: Zp ,, defined by set of rules T and
entry class Cj,.

@ The system is supposed to be a Markov chain
{Zpn,n=0,1,2,...}

e Transition probability matrix: P+ = [pr1(/, )]
@ Transition rules is based on claim counts, often
o Poisson distributed (usually bad), or
o mixed Poisson (much better), i,j =1,2,...,s,
pr(ij) = Pr(Zan+1=jlZan=1)
pPPNiLG) = PriZan=ilZao=1i)
pPr) = PrZan=J)
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Markov analysis

Transition rules is based on claim counts, often
@ Poisson distributed (usually bad), i,j =1,2,...,s, n=0,1, ...

pra(i,j) = Pr(Zans1i=JjlZan=1i,A=A)
PPN = Pr(Zan=jlZao=i A=)
POG) = Pr(Zan=jlA=2) .

e Mixed Poisson (much better), 1st compute the conditional
P (i), i =1,2,...,s, then

pr(ij) = /Oopm(lJ)dﬂ(A)
pPAG ) dr(N) = E [ (7.))]
/OOOP(T")A dr(A) = E[P(T",)A(J)}-

Remark: neither ps.)(/ J) nor p(T)( ) are obtained from the

initial mixed Poisson distribution.

o
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Markov analysis

@ All B-S systems have (at least) a bonus class where a policy:
o stays if keeps with no claims
e goes, transits to, if has no claims
e goes out, transits from (to another)

@ That class is a periodic state

o If the Markov chain is irreducible, finite number of states, it

will be aperiodic and stationary;
@ Then, it exists a limit distribution, for a given A

PG) = LiTrgop(",)A(i.J)-

If A is considered to be the outcome of a r.v. with dist. 77(A),
usually

o0 = [ A6 an(0) = E [6f70)]

(c0)

Remark: p7’(j) is not got from the initial “mixed Poisson".
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Markov analysis

Problem 2 (Problem 1 cont'd)

Consider a motor insurance portfolio where the population is classified into
categories A B and C, respectively, where A is Good drivers, B is Bad drivers
and C is Sports drivers. The population of drivers is split as follows: 70% is in
category A, 25% in B and 5% in C. For each driver in category A, there is a
probability of 0.75 of having no claims in a year, a probability of 0.2 of having
one claim and a probability of 0.05 of having two or more claims in a year. For
each driver in category B these probabilities are 0.25, 0.4 and 0.35,
respectively. For each driver in category C these probabilities are 0.3, 0.4 and
0.3, respectively.

Risk parameter representing the kind of driver is denoted by 6, which is a
realization of the random variable ®. The insurer does not know the value of
that parameter. Let X be the (observable) number of claims per year for a risk
taken out at random from the whole portfolio. For a given ® = 6 yearly

observations X, X5, ..., make a random sample from risk X. The insurer finds
crucial that the annual premium for a given risk might be adjusted by its claim
record.

Suppose that the insurer uses a Bonus-malus system based on the claims
frequency to rate the risks of that portfolio. The system has simply three

classes, numbered 1, 2 and 3 and ranked increasingly from low to higher risk.
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Markov analysis

Problem 2 (cont'd)

Transition rules are the following: A policy with no claims in one year goes to the
previous lower class in the next year unless it is already Class 1, where it stays. In the
case of a claim goes to Class 3, if it is already there no change is made.

Let «(6) be the probability of not having any claim in one year for a policy in with risk
parameter 6. Entry class is Class 2 and premia vector is b = (70, 100, 150).

— Consider a policy with risk parameter 6.

@ Write the transition rules matrix and compute the one year transition probability.
@ Comment on the existence of the of the stationary distribution.

© Calculate the probability of a policy being ranked in Class 1 two years after
entering the system.

@ Calculate the probability function of the premium for a type A driver after two
years os stay in the portfolio. Compute the average premium.

@ After some time the insurer’s chief actuary concluded that for ratemaking
purposes it didn't make much difference to keep categories B and C apart, and
merged them into, say, B*. For a driver in this new class, compute the
probability funcion of the premium after one year of staying in the system (since
his entry).

— Stationary distr. for a given 6 is given by vector (x(6)?; [1 —a(6)]a(6); 1 —a(6)).

6 Compute the probability function of the premium for a policy taken out at
random from the portfolio. Calculate the average premium.
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Markov analysis

Example (Cont'd, Centeno [2003])

A Bonus system in motor insurance, 3rd party liability (directly, the
system is not Markovian)

30% discount, no claim for 2 yrs.
15% malus, 1 claim
30% malus, 2 claims
45% malus, 3 claims

100% malus, 4 claims

e 6 66 66 o o

> 4, case by case...

This is not Markovian, unless... Classes are split.



Markov analysis

Bonus-malus systems
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Example (Centeno [2003]. Class splitting:)

G
G

G
Ca
Cs
Ce
G
Cs

Policies with 30% bonus

Policies with neither bonus nor malus for the 2nd
consecutive year

Policies with neither bonus nor malus for the 1st yr
Policies with 15% penalty and no claims last yr
Policies with 15% penalty and claims last yr
Policies with 30% penalty and no claims last yr
Policies with 30% penalty and claims last yr
Policies with 45% penalty and no claims last yr
Policies with 45% penalty and claims last yr
Policies with 100% penalty and no claims last yr

Policies with 100% penalty and claims last yr.

Now is Markovian.
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Markov analysis

Example (Cont'd)

b= (70, 100, 100, 115, 115, 130, 130, 145, 145, 200, 200)
T =

1 2 3 4 5 6 7 8 9 10 11
1 ({0} {1} {2} (3} {4,..)
2 [ {0} {1} {2} {3} {4,..)
3 {0} {1) {2} (3} {4,..)
4 | {0} {1} {2} (3.}
5 {0} {1} {2} {3,..)
6 | {0} {1} {2,..)
7 {0} {1} {2...}
8 | {0} 1,.1
9 {0} (1.}
10 | {0} {1,..}
11 {0} {1,.}
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Markov analysis

Example (cont'd)

Class j b;j  New Class after step, with

o 1 2 3 4+
1 70 1 5 7 9 11
2 100 1 5 7 9 11
3 100 2 5 7 9 11
4 115 1 7 9 11 11
5 115 4 7 9 11 11
6 130 1 9 11 11 11
7 130 6 9 11 11 11
8 145 1 11 11 11 11
9 145 8§ 9 11 11 11
10 200 1 11 11 11 11
11 200 10 11 11 11 11
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Markov analysis

Example (cont'd)

If claim counts follow a Poisson(A), P x:
1 2 3 4 5 6 7 8 9 10 11
1 ]e Ao A=A Ae=d i L — ey g AN/l
2 | A Ae=A A2e=2 /9 \3¢ G 1 —¢ AV-?:U N /]
3 P \e A ’\2’ ,\:-2 \Jr )\‘__-E-I 1 —¢ A'\?;:U \F..'r\
4 e et A2e=A /2 L — ey Al
5 e de N2 L—ey2 N/l
6 | e Ae L —e Y A/l
70 e he L—e 3l A/l
8 | | —e
9 et | —e?
10| e | —e?
11 et | —e?

@ The Markov chain is not irreducible.

@ You cannot go to Class/State 3.

o Class of states { (2, G3} is transient.

e Class, {G, G4, G5, Go, C7, Cg, Gy, Cip, Ci1} is a class of positive
recurrent aperiodic states.
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Markov analysis

Re-order states in two classes of states:

o Class 1: {(G, G3}

o Class 2: {1, Gu, G5, Go, G7, Gg,Co, Cro, Ci1}
So that Py, is split into 4 blocks:

Priany Psan

Paa= 0 P2aA

@ Py Transition Prob'ty block inside Class 1, { G, G}
@ P34 x: Transition Prob'ty block between Class of states 1 & 2,

{CQ, C3} and {Cl, C4, C5, C@, C7, ngCg, Clo, C11}

@ P, A ) Transition Prob'ty block among states
{G. G, G5, Gs, G7, Gg,Co, Cro, Cua }-
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Markov analysis

We have
, [ Piax | PP +PsanPaan
Par = - I
0 | P2
[0 | PyaanPsan +PsanP2an
| 0| Pg,(A,A)
2
. 0 0 00
with P%,A,A = [ 0 } = [ 00 ]

Recursively, n > 2,

P7 = [ Y (Pl,(A,A)Ps,(A,A) + P&(A,A)PZ(A,A)) Po A ]

0 PS,(A,A)
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Markov analysis

Calculate the limit lim,—eo PR, = PXA

o _ [ 0 <P1,(A,A)P3,(A,/\) + P3,(A,A)P2,(A,A)) P ]
AN T 0 p®
2,(A0)
with
P;?(A,/\) - P;C,)(A,/\)sz(Av/\) = 0 - Pgo (I - Pz)

P?X , tends for a matrix with all lines equal, of the form

PAr— [0 | P;(A,)\)}
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Example (cont'd)

Bonus-malus systems
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e At Mer o Me A | —¢ ’\\50\’;\-.
¢ he A Af | —¢ ’\\f_ At
e het AemA 2 | —e Ay !
e Xe? | —¢ ’\\30\’,-7'.
Poay 0 g Aot | —¢ ’\\]0\"'
f 1—¢
e |-
e [
e |-
A=01
With A = 0.1, we get P;(A’A)as
( 0.81873 0.067032 0.074082 0.014905 0.016473 0.0032584
0.0036011 91126 x 10~ 10071 x 103 )
In stationarity, Average Premium is 78.997% of entry Premium.
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Evaluation measures

@ Lemaire's (1995):
o Relative Stationary Average Level (RSAL):

SAP — mP

RAL = WP —mP

S
SAP = Y b())p ()
j=1
SAP: Stationary Average Premium, mP: minimum Premium,

MP: Max Premium
o Premium variation coefficient (VC):

RSAL = SDP/SAP

S
SDP = szmzp(ﬁ)u)—mw
j=1
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Evaluation measures

o Elasticity of the average premium (Response to changes in
frequency mean)

yA) = BAPN dInSAP(A)
ER dinA

A — 0= SAP(A) = max {b(j)} < oo;
A = oco=nA)—=0 A—=0=n5(A)—0.

o Lemaire's (1985) Transient Elasticity (1st step analysis)
S
VW() = b() +Bj Y prali k)Va(k), j=1,..s
k=1

o V) (j): Expected present value to be paid by policy from C;.;
o B; (< 1): Discount rate.
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Evaluation measures

o Lemaire's (1985) Transient Elasticity (1st step analysis)
Vi(j) = b(j) + B; ZPTA K\WVa(k), j=1,...,s

o V) (j): Expected present value to be paid by popli from Cj;
o fB; (< 1): Discount rate.

The system has a unique solution and elasticity comes:

i = POIG

n0) = [ mldr(a)
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Evaluation measures

“Bonus hunger”

@ Due to “claims frequency system”
@ (Some?) Small accidents aren't reported,;

o It changes: the reported frequency and amonts dist’s;
o Decreases insurer's management costs;
o “No-report” decision depends:

@ solely on insuree, and
o his bonus class C;;

o Let x;: Retention level (works like a “Franchise” not a
“Deductible”);

@ It's possible to find an optimal retention point: xf (under
some assumptions).
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Evaluation measures

@ (Unreal) Insuree knows single amount distr. Fx(-), and x;;

e N — Poisson(A); Single amount X; —~ Fx(-);
Let N*: no. of accidents reported in C;:

N = i Yi, Yo=0
Y; AIZ?nomia/(l; p); p = Pr[X; > xj] = Fx(x;).
Then
N* ~ CPoisson(A, F,) = Poisson(AFx(x;))

o Let D : Cost of unreported claim, with mean E [D(x;)]:

D(xj) = XTix<y)
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Evaluation measures

E[D(x)] = 0 x AFx(x;) + AFx(x;)

@ and payments are made in mid-year:

Vax(i) = b()+BY2E[D(x) +ﬁ2pm, k) Vax(k) |
j=1..s5;

Matrix form equation:
Vix = b<x>+,BPTAx( K)V )\ x

Vix = (1—BP7ix) "b(x)
b(x) = (....b(j)+BY?E[D(x)], ...).

Under those conditions it's possible to find optimums xf, see
Centeno (2003, pp 181-184), and for algorithms.
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Evaluation measures

@ Norberg's (1976) model. Efficiency Measure of premium
bn(Za,n), as estimator of risk premium E (S,|A)

Qn(a) = E [(E (SalA) = bn(Zs.n))?]
- I 2 (SalA) = ba(Zs n))? PH()ATI(A)

Bonus classin n ZA,,,, n=20,1,2, ...
Sn . Aggregate claims of policy in n
E (Sp|A) :  Risk premium, unknown.

Q,,(A) E [ [( (S ‘}\) ZA,, )2} ‘ZA,n} (Like in credibility)
= E[VI[E(Sn[A) |ZA,nH

+E [(E [bn(Za,n) — E(E (SalA)] \ZA,n))2]
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Evaluation measures

@ Norberg's (1976) model. Optimal Scale
Efficiency Measure

Qn(8) = E[(E(SalA) = ba(Zs.0))?]

Qn(A) = E[VI[E(SnlA)|Za,n]]

Qn(A) = E[V[E(Sn[A)|2Za,n]]
Iff Pr [bn(ZA,n) = “I/ln(ZA,n)] =1
Un(Zan) = E[E(SalA)|Zan], credibility pr. for yr n

o Note: E [un(Zp.n)] = E[E (Sh|A)] = E (Sh)
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Evaluation measures

Optimal scale for limiting situation: Qo(A) = lim Q,(A), as n — o

Q(A) = E [(E (S|A) — b<zT>)2} s<s,
%) (oo) .
br(j) = E[E(S|N) |Zr =] = J E<5|A)(£>T',A(J)dnw
pr ()

If S, depends only of A and use E(X;) as monetary unit

) (oo) .
i - E AL
pr ()

= E [br(Zr)2] = Yooy br ()2 ()

Efficiency Measure: e(T)



Ratemaking and GLM

@ Statistical modelling
e Model the pure premium
o Model the Conditional Expected Value:

E(Y‘XLXQ,...,XP) = h(Xl,XQ,...,Xp,ﬁl,ﬁg,...,ﬁp)
Y = h(Xl,X2,...,Xp,ﬂl,ﬁg,...,ﬁp)+€

Y': endogenous variable, x;: factor, exogenous, B;: parameter

o ldentify risk factors;

e Different sorts of variables: Nominal (binary: gender,
good/bad risk), ordinal/Categorical (ranks: age, power
groups), discrete (age, experience yrs, claim counts...),
continuous (income, cliam amounts)

e Data, Information must be (always) reliable, as simple as
possible, clean, neat...

@ Y: Pure premium, Factors: risk factors influencing:

o E.g motor insurance: kms, traffic, driver's ability, power,
vehicle type, driver's experience, geographical factors...



Ratemaking and GLM

Deal with the experts about the factors influencing, gather
information, data, manageable data. E.g., in
motor insurance we can consider

@ Past accident record

kms driven

Car owner (company/private)
Use (business or private)
Vehicle value

Power (cm?)

Weight

Driver's age

Driving region (usual, city/countryside...)
Multiple driver's?

Vehicle age

Years fo driver's expereince

Car brand and/or model



Ratemaking and GLM

o Gender

@ Sort of insurance (third party, own damages)

Driver's profession

@ etc,...

Then, we have to make choices, run/test models...

@ Built classes of factors. Often Class aggregation is needed

e Often we have many binary or rank variables, qualitative-data



Ratemaking and GLM

If dependent variable Y is:
@ Binary: Model a Logit or Probit

e Countig data: Poisson model. Ex: Number of claims in a
Bonus system

o Continuous data: Gamma model. Ex: Amount of claims

Let S be Aggregate claims in one year. Then E(S) = E(N)E(X),
is the pure premium (N is annual number of claims and X is
amount of each claim). We can consider modeling the two
expectations separately.

In a portfolio we can consider different level factors influencing each
(conditional) expectation, building a tariff, such that:

E(Y’X]_,X2, ...,Xp) = h(X]_,X2, ...,Xp,ﬁl,ﬁz, ...,ﬁp)

Specifying h(x1, x2, ..s Xp, B1, B2, ..., Bp) may not be an easy task,
where the xq, xo, ..., X, are the factors.



Ratemaking and GLM

A tariff analysis is based on insurer's own data.
Steps:

@ Postulate a distribution of Y according to its nature, as well as
the factors (x1, %2, ..., Xp);

e Based on a sample for Y and (x1, x2, ..., x,) choose the best
h(.) and estimate (B1, B2, ..., Bp);

@ Hypothesis testing, for Y and (x1, x2, ..., Xp).
We should consider:

e Existing information in the company;

@ Used variables in other, previous, studies;
o Market used variables;
o

Legal limitations.



Ratemaking and GLM

Data:
@ Must be reliable, objective;
@ Number of variables must be adequate, no too long or too
short;
@ All information must cover an homogeneous period. Not too
long periods, e.g.
Models:
o Additive models. ANOVA;
@ Mutliplicative models, GLM, e.g. two rating factors:

Hij = YoY1iY2j

o Key ratio
Yij = X/ wi

e Mean of key ratio:

Hij = E(Y;j), with wij = 1



Ratemaking and GLM

e Mutliplicative models, extension to many rating factors, M:

Wiigis,.ig = YOV1i V2in X oo X Y Miy
Wiy ins.ing Mean of dependent var. with M rating factors
M: Number of rating factors
vij Rating factor i in Class j

e Exponential dispersion models (EDM’s) of GLM's generalise
the normal distribution used in the linear models.

Pure Premium = Claim frequency x Claim severity

For each of the two factors, we can have different rating factors,
separately, since severity and frequency are independent.



Ratemaking and GLM

Table L.1 Rating factors in moged insurance

Rating factor Class Ctass description

Vehicle class 1 Weight over 60 kg and more than two gears
2 » Other

Vehicle age I At most 1 year
2 2 years or more

Geographic zone 1 Central and semi-central parts of

Sweden’s three largest cities
Suburbs and middie-sized towns
Lesser towns, except those in 5 or 7
Smadl towns and countryside, except 5—7
Northern towns

* Northern countryside
Gotland (Sweden’s largest island}
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Ratemaking and GLM

Table 1.2 Koy ratios in moped insurance (claim frequency per mille)
Tariff celf Duration No. Tlraim Caim Pure Acetaal
CEass Amc Fone claims Sreguenay: severicy promium premium
1 1 1 17 270 182356 1938 z o099
i H 2 7 [S5-] 13632 845 1230
1 T k] k] as z0877 Tan 7s2
1 1 e 7 =] 13 045 242 a06
1 1 E3 o el . o @90
H 1 - ] ia 15 000 2312 soa
1 1 k4 1 228 s018 1829 96
H = H s2 [2=2:] s 232 126 12290
1 E) (=23 B2 Tals SOz 738
i E] 7S s54 7318 3ow 457
1 4 138 25 euz2 17t 238
¢ s = s 11131 105 sS04
1 -1 14 17 se70 103 356
] b2 k4 1 16 &S00 toa 238
] 1 1 a3 z2a F 7S 1740 1024
=3 i 2 k3 143 G933 ooz &1s
1 = 11 o8 4402 208 as1
H = 5 s s214 1a7 198
B3 1 E o © - o a9s
= £ & E 3 5230 21 297
2 1 7 ] o - el 198
2 = 1 o 112 < 728 526 &s1a
2 =3 = o9 76 azs2 32s 30
=2 -3 L a7 30 az212 125 229
3 2 E se 15 3846 5% 1Lio
= z El “ 37 3925 Laa 207
= = s s (%=1 5280 &5 178
= = 7 1 15 7795 138 119




Table 1.3 Important key ratios

Ratemaking and GLM

Exposure w Response X Keyratio ¥ = X/w
Duration Number of claims Claim frequency
Duration Claim cost Pure premium

Nurnber of ¢laims Claim cost (Average) Claim severity
Earned premigm Claim cost Logs ratio

Number of cfaims Number of large claims Proportion of large claims




Outline Intro ibility theory Bonus-malus systems Ratemaking and GLM

EDM'’s of GLM's
e Data, Key Ratios Obs org'zed in list form (y1,...yn)";

@ Row i contains y;, exposure weight w; and rating factors ob's;

E Tariff Covariates Duration Claim
cell Tlass Age Zone (exposure) frequency
i xi1 xiz xi3 g >i

1 1 1 1 62.9 270
= 1 1 = 112.9 62
= 1 1 3 e 68
a4 1 1 a 376.6 19
= 1 1 s o.a o
S 1 1 S 70.8 14
= 1 1 7 a.a 228
8 1 2 i S>>ty 148
£=1 1 > =3 840.1 82
21 =2 1 ¥ s 14.5
- > > 1 844.8 111
>3 > = 2 1 296.0 76
24 = - =3 1214.9 30
= > > a 3 740.7 LS
== > > s 109.4 37
=5 = > P3 a404.7 12
= = > 7 66.3 15




Ratemaking and GLM

@ Prob'y dist of the Claim Frequency: Poisson, mixed Poisson.
Let X; in cell i with w;,

Xi —~ Poisson(w;ju;) = Yi = X;/w; — relative Poisson
@ Model for claim severity: Gamma, X —~ Gamma(wu, B)
=Y = X/w ~ Gamma(wa, wB), E[X] =a/p

@ Tweedie models:
o EDM'’s that are scale invariant, those with variance function
v(p) = pP.
o If 1 < p < 2 correspond to the Compound Poisson. Key ratio:
Pure premium.
o Model altogether the pure premium, not claim counts and size
separately.



Outline Intro bility theo o Ratemaking and GLM

Table 2.7 Moped insurance: relativities from a multiplicative Poisson GLM for claim frequency
and a gamma GLM for claim severity

Rating Class Duration No. Relativities, Relativities, Relativities,
factor claims frequency severity pure premium
Vehicle class 1 9833 391 1.00 1.00 1.00
2 8824 395 0.78 0.55 0.42
Vehicle age 1 1918 141 1.35 1.79 2.78
2 16740 645 1.00 1.00 1.00
Zone 1 1451 206 7.10 1.21 8.62
2 2486 209 4.17 1.07 448
3 2889 132 223 1.07 238
- 10069 207 1.00 1.00 1.00
5 246 6 1.20 1.21 1.46
6 1369 23 0.79 0.98 0.78
7 147 3 1.00 1.20 1.20




Ratemaking and GLM

Bonus-malus systems

Credibility theo
0000000000 000000000000000

Outline Intro
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E I Te = 3 s
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