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A general formula is derived for the price of a security whose value under specified conditions 
is a known function of the value of another security. Although the formula can be derived 
using the arbitrage technique of Black and Scholes, the alternative approach of continuous- 
time portfolio strategies is used instead. This alternative derivation allows the resolution of 
some controversies surrounding the Black and Scholes methodology. Specifically, it is demon- 
strated that the derived pricing formula must be continuous with continuous first derivatives, 
and that there is not a ‘pre-selection bias’ in the choice of independent variables used in the 
formula. Finally, the alternative derivation provides a direct proof of the Modigliani-Miller 
theorem even when there is a positive probability of bankruptcy. 

1. Introduction 

The theory of portfolio selection in continuous-time has as its foundation two 
assumptions: (1) the capital markets are assumed to be open at all times, and 
therefore, economic agents have the opportunity to trade continuously and (2) 
the stochastic processes generating the state variables can be described by 
diffusion processes with continuous sample paths.’ If these assumptions are 
accepted, then the continuous-time model can be used to derive equilibrium 
security prices.2 The pricing formulas derived by this method will in general 
require as minimum inputs estimates of the price of risk, the covariance of the 
security’s cash flows with the market, and the expected cash flows. These numbers 
are difficult to estimate. However, it is not always necessary to have these 
numbers to price a security. 

*The paper is a substantial revision of parts of Merton (1976) presented in seminars at 
Yale and Brown Universities in April 1976 and at the EIASM Workshop in Management 
Science, Bergamo, Italy ,in October 1976. I thank the oarticioants for their helpful comments. 
Aid from the National Science Foundation is gratefully acknowledged. My thanks to the 
referee for editorial suggestions. 

‘For references to the mathematics of diffusion processes and their applications in economics, 
see the bibliographies in Merton (1971) and (1973b). 

?See Merton (1973a) and (1975). 
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In a seminal paper, Black and Scholes (1973) used the continuous-time 
analysis to derive a formula for pricing common stock call options.3 Although 
their derivation uses the same assumptions and analytical tools used in the 
continuous-time portfolio analysis, the resulting formula expressed in terms 
of the price of the underlying stock does not require as inputs expected 
returns, expected cash flows, the price of risk, or the covariance of the returns 
with the market. In effect, all these variables are implicit in the stock’s price. 
Because expected returns and market covariances are not part of the inputs, 
the Black-Scholes evaluation formula is robust with respect to a reasonable 
amount of heterogeneity of expectations among investors, and because the 
required inputs are for the most part observable, the formula is testable. All of 
this has created substantial interest in extending their analysis to the evaluation 
of other types of securities. 

The essential reason that the Black-Scholes pricing formula requires so little 
information as inputs is that the call option is a security whose value on a 
specified future date is uniquely determined by the price of another security (the 
stock). As such, a call option is an example of a contingent claim. While call 
options are very specialized financial instruments, Black and Scholes and others4 
recognized that the same analysis could be applied to the pricing of corporate 
liabilities generally where such liabilities were viewed as claims whose values 
were contingent on the value of the firm. Moreover, whenever a security’s return 
structure is such that it can be described as a contingent claim, the same technique 
is applicable. 

In section 2 of this paper, I derive a general formula for the price of a security 
whose value under specified conditions is a known function of the value of 
another security. Although the formula can be derived using the arbitrage 
technique employed by Merton (1974) to derive the price of risky debt, an 
alternative approach is used to demonstrate that the resulting formula will 
obtain even if institutional restrictions prohibit arbitrage. 

Because the formula is often used to evaluate corporate liabilities as a function 
of the value of the firm, it is important to know conditions under which the 
value of the firm will not be affected by the form of its capital structure. In 
section 3, the Modigliani-Miller Theorem (1958) that the value of the firm is 
invariant to its capital structure is extended to the case where there is a positive 
probability of bankruptcy. 

‘A: call option gives its owner the right to buy a specified number of shares of a given stock 
at a specified price (the ‘exercise price’) on or before a specified date (the ‘expiration date’). 

4The literature based on the Black-Scholes analysis has exuanded so ranidlv that rather 
than attempt to list individual published articles and works-in-progress, I refer the reader to a 
survey article by Smith (1976). 
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2. A general derivation of a contingent claim price 

To develop the contingent-claim pricing model, I make the following assump- 
tions : 

(A. 1) ‘Frictionless markets’ 

There are no transactions costs or taxes. Trading takes place continuously in 
time. Borrowing and shortselling are allowed without restriction. The borrowing 
rate equals the lending rate. 

(A.2) Riskless asset 

There is a riskless asset whose rate of return per unit time is known and con- 
stant over time. Denote this return rate by r. 

(A.3) Asset # 1 

There is a risky asset whose value at any point in time is denoted by V(t). The 
dynamics of the stochastic process generating V( ) over time is assumed to be 
describable by a diffusion process with a formal stochastic differential equation 
representation of 

dV = [NV-D,(V, t)]dr+crVdZ, 

where c1 = instantaneous expected rate of return on the asset per unit time; 
~9 = instantaneous variance per unit time of the rate of return; O,(V, t) = in- 
stantaneous payout to the owners of the asset per unit time; dZ = standard 
Wiener process; tl can be generated by a stochastic process of a quite general 
type, and C? is restricted to be at most a function of Vand r. 

(A.4) Asset #2 

There is a second risky asset whose value at any date t is denoted by W(t) with 
the following properties: For 0 I t < T, its owners will receive an instantaneous 
payout per unit time, L&(V, t). For any t(0 5 t < T), if V(t) = F(t), then the 
value of the second asset is given by: W(t) = f[ v(t), t], where f is a known 
function. For any t(0 I t < T), if V(t) = y(t), then the value of the second 
asset is given by [V(t) < v(t)]: W(t) = g[V(t), t], where g is a known function. 
For t = T, the vaGe of the second asset% given by: W(T) = h[V(T)]. Asset 
# 2 will be called a contingent claim, contingent on the value of Asset # 1. 

(A.5) Investorpreferences andexpectations 

It is assumed that investors prefer more to less. It is assumed that investors 
agree upon 0’) but it is not assumed that they necessarily agree on u. 
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(A.6) Other 

There can be as many or as few other assets or securities as one likes. Market 
prices need not be general equilibrium prices. The constant interest rate and 
most of the ‘frictionless’ market assumptions are not essential to the development 
of the model but are chosen for expositionalconvenience. The critical assumptions 
are continuous-trading opportunities and the dynamics description for Asset # 1. 

If it is assumed that the value of Asset #2 can be written as a twice-continu- 
ously differentiable function of the price of Asset # 1 and time, then the pricing 
formula for Asset #2 can be derived by the same procedure used in Merton 
(1974, pp. 451-453) to derive the value of risky debt. If l+‘(t) = F[V(t), t] for 
0 5 t I T and for y(r) < V(t) I V(‘(t), then to avoid arbitrage, F must satisfy 
the linear partial differential equation 

0 = $a2V2F11+[rV-D,]Fl-rF+F,+D,, (1) 

where subscripts on F denote partial derivatives with respect to its two explicit 
arguments, V and t. Inspection of (1) shows that in addition to V and I, F will 
depend on a2 and r. However, F does nor depend on the expected return on 
Asset # 1, a, and it does not depend on the characteristics of other assets avail- 
able in the economy. Moreover, investors’ preferences do not enter the equation 
either. 

To solve (l), boundary conditions must be specified. From (A.4), we have that 

FL vO>, tl = f[ W), 11, 

FFJt), tl = d~(O, tl, 

WJ’I = h[Vj. 

(24 

W.9 

(24 

While the functions f, g, and h are required to solve for F, they are generally 
deducible from the terms of the specific contingent claim being priced. For 
example, the original case examined by Black and Scholes is a common stock 
call option with an exercise price of E dollars and an expiration date of T. If V 

is the value of the underlying stock, then the boundary conditions can be written 
as 

U’lv II as V-too, 

F[O, t) = 0, 

F[V, T] = Max [0, V-E], 

(34 

(3’4 

(34 

where (3a) is a regularity condition which replaces the usual boundary con- 
dition when v((t) = co. Both (3a) and (3b) follow from limited liability and from 
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the easy-to-prove condition that the underlying stock is always more valuable 
than the option. (3~) follows from the terms of the call option which establish the 
exact price relationship between the stock and option on the expiration date.5 

Hence, (1) together with (2a)-(2c) provide the general equation for pricing 
contingent claims. Moreover, if the contingent claim is priced according to (1) 
and (2), then it follows that there is no opportunity for intertemporal arbitrage. 
I.e., the relative prices ( W, V, r) are intertemporally consistent. 

Suppose there exists a twice-continuously differentiable solution to (1) and (2). 
Because the derivation of (1) used the assumption that the pricing function 
satisfies this condition, it is possible that some other solution exists which does 
not satisfy this differentiability condition. Indeed, in discussing the Black- 
Scholes solution to the call option case, Smith6 points out that there are an 
infinite number of continuous solutions to eqs. (1) and (3) which have discon- 
tinuous derivatives at only one interior point although the Black-Scholes 
solution is the only solution with continuous derivatives. He goes on to state 
‘the economics of the option pricing problem would suggest that the solution be 
continuous, but there is no obvious argument that it be differentiable everywhere’. 

The following alternative derivation is a direct proof that if a twice-continu- 
ously differential solution to (1) and (2) exists, then to rule out arbitrage, it must 
be the pricing function. 

Let F be the formal twice-continuously differentiable solution to eq. (1) with 
boundary conditions (2). Consider the continuous-time portfolio strategy where 
the investor allocates the fraction w(t) of his portfolio to Asset # 1 and [I -w(t)] 
to the riskless asset. Moreover, let the investor make net ‘withdrawals’ per unit 
time (for example, for consumption) of C(t). If C(t) and w(t) are right-continuous 
functions and P(t) denotes the value of the investor’s portfolio, then I have shown 
elsewhere7 that the dynamics for the value of the portfolio, P, will satisfy the 
stochastic differential equation 

d.P = {[~(a-r)+r]P-C}dt+waPdZ. (4) 

Suppose we pick the particular portfolio strategy with 

where Fl is the partial derivative of F with respect to V, and the ‘consumption’ 

‘In some cases, either r(t) or y(r) must be determined simultaneously with the solution of 
eq. (1) for F. Two examples are the American call and put options on a dividend-paying stock 
with the potential for early exercise. In such cases, there is usually an additional boundary 
condition imposed on the derivative of F which allows just enough ‘over-specification’ to 
determine l? See Merton (1973b, pp. 173-174) for discussion. The structural definition of 
Asset # 2 can be easily adjusted to include these cases. 

‘See Smith (1976, p. 23, footnote 21). 
‘See Merton (1971, p. 379). 
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strategy, 

C(t) = WV, t). (6) 

By construction, Fl is continuously-differentiable, and hence is a right-continuous 
function. Substituting from (5) and (6) into (4), we have that 

dP = F,dV+ {Fl(Dl -rV)+rP- D,}dt, 

where d V is given in (A.3). 

(7) 

Since F is twice-continuously differentiable, we can use Ito’s Lemma’ to 
express the stochastic process for Fas 

dF = [~aZVZF~1+(crV-D,)Fl+F2]dt+Fl;aVdZ. (8) 

But F satisfies eq. (1). Hence, we can rewrite (8) as 

dF = F,dV+ {F,(D, -rV)+rF- D,)dt. (9) 

Let Q(t) E P(t) - F[ V(t), t]. Then, from (7) and (9), we have that 

dQ = dP-dF 

= r(P-F)dt 

= rQdt. (IO) 

But, (10) is a non-stochastic differential equation with solution 

Q(t) = Q<o>ert, (11) 

for any time t and where Q(O) G P(0) - F[ V(O), 01. Suppose the initial amount 
invested in the portfolio, P(O), is chosen equal to F[V(O), O]. Then from (11) we 
have that 

P(t) = F[V(t), t]. (12) 

By construction, the value of Asset #2, W(t), will equal Fat the boundaries 
V(t) and F(t) and at the termination date T. Hence, from (12) the constructed 
portfolio’s value, P(t), will equal W(t) at the boundaries. Moreover, the interim 
‘payments’ or withdrawals available to the portfolio strategy, D,[V(t), t], are 
identical to the interim payments made to Asset #2. 

8See Merton (1971) for a discussion of It& Lemma and stochastic differential equations. 
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Therefore, if w(t) > P(t), then the investor could short-sell Asset # 2; proceed 
with the prescribed portfolio strategy including all interim payments; and be 

guaranteed a positive return on zero investment. I.e., there would be an arbitrage 
opportunity. If w(t) < P(t), then the investor could essentially ‘short-sell’ the 

prescribed portfolio strategy; use the proceeds to buy Asset #2; and again be 
guaranteed a positive return on zero investment. If institutional restrictions 
prohibit arbitrage,g then a similar argument can be applied using the principle 

that no security should be priced so as to ‘dominate’ another security.” Hence, 
W(f) must equal F[ V(t), t]. 

While this method of proof may appear to be very close to the original 
derivation, unlike the original derivation, it does not assume that the dynamics 
of Asset # 2 can be described by an Ito process, and therefore, it does not assume 
that Asset f2 has a smooth pricing function. Indeed, the portfolio stategy 
described by (5) and (6) involves only combinations of Asset # 1 and the riskless 
asset, and therefore, does not even require that Asset #2 exists! The connection 
between the portfolio strategy and Asset # 2 is that if Asset # 2 exists, then the 

price of Asset # 2 must equal F[ V(t), t], or else, there will be an opportunity for 
intertemporal arbitrage. 

Not only does this alternative derivation provide the ‘obvious argument’ why 
such pricing functions must be differentiable everywhere, but it also can be used 
to resolve other issues that have been raised about results derived using this 
type of analysis. In the next section, two of the more importantissues are resolved. 

3. On the Modigliani-Miller theorem with bankruptcy 

In an earlier paper (1974, p. 460), I proved that in the absence of bankruptcy 
costs and corporate taxes, the Modigliani-Miller theorem (1958) obtains even 
in the presence of bankruptcy. In a comment on this earlier paper, Long (1974) 

has asserted that my method of proof was ‘logically incoherent’. Rather than 
debate over the original proof’s validity, the method of derivation used in the pre- 
vious section provides an immediate alternative proof. 

Let there be a firm with two corporate liabilities: (I) a single homogeneous 
debt issue and (2) equity. The debt issue is promised a continuous coupon pay- 
ment per unit time, C, which continues until either the maturity date of the bond, 
T, or until the total assets of the firm reach zero, The firm is prohibited by the 
debt indenture from issuing additional debt or paying dividends. At the maturity 
date, there is a promised principal payment of B to the debtholders. In the event 

the payment is not made, the firm is defaulted to the debtholders, and the 
equityholders receive nothing. If s(t) denotes the value of the firm’s equity and 

‘One example would be restrictions on short-sales. 
“‘See Merton (1973b, p. 143) and Smith (1976, p. 7) for a discussion of ‘dominance’ in this 

context. 
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D(t) the value of the firm’s debt, then the value of the (levered) firm, VL(t), is 
identically equal to S(t) + D(r). Moreover, in the event that the total assets of the 
firm reach zero, VL(f) = S(t) = D(t) = 0 by limited liability. Also, by limited 
liability, D(t)/ VJt) I 1. 

Consider a second firm with initial assets and an investment policy identical 
to those of the levered firm. However, the second firm is all-equity financed with 
total value equal to V(t). To ensure the identical investment policy including 
scale, it follows from the well-known accounting identity that the net payout 
policy of the second firm must be the same as for the first firm. Hence, let the 
second firm have a dividend policy that pays dividends of C per unit time until 
either date T or until the value of its total assets reach zero (i.e., V = 0). Let the 
dynamics of the firm’s value be as posited in (A.3) where D1( V, r) = C for V > 0 
andD, = OforV= 0. 

Let F[ V, t] be the formal twice-continuously differentiable solution to eq. (1) 
subject to the boundary conditions: F[O, t] = 0; F[ V, t]/V I I ; and F[ V(T), T] 

= Min [V(T), B]. Consider the dynamic portfolio strategy of investing in the all- 
equity firm and the riskless asset according to the ‘rules’ (5) and (6) of section 2 
where C(t) is taken equal to C, If the total initial amount invested in the portfolio, 
P(O), is equal to F[ V(O), 01, then from (12), P(t) = F[ V(f), t]. 

Because both the levered firm and the all-equity firm have identical investment 
policies including scale, it follows that V(t) = 0 if and only if VL(t) = 0. And it 
also follows that on the maturity date T, V,(T) = V(T). 

By the indenture conditions on the levered firm’s debt, D(T) = Min [UT), B]. 

But since V(T) = V,(T) and P(T) = F[V(T), T], it follows that Z’(T) = D(T). 

Moreover, since VL(t) = 0 if and only if V(t) = 0, it follows that P(t) = P[O, tl = 

D(f) = 0 in that event. 
Thus, by following the prescribed portfolio strategy, one would receive 

interimpayments exactly equal to those on the debt of thelevered firm. Moreover, 
on a specified future date, T, the value of the portfolio will equal the value of the 
debt. Hence, to avoid arbitrage or dominance, P(t) = D(t). 

The proof for equity follows along similar lines. Letf[V, t] be the formal 
solution to eq. (1) subject to the boundary conditions : f[O, t] = , f[ V, t]/ V I 1; 
and f[ V(T), T] = Max [0, V(T) -B]. Consider the dynamic portfolio strategy of 
investing in the all-equity firm and the riskless asset according to the ‘rules’ (5) 
and (6) of section 2 where C(t) is now taken equal to zero. If the total initial 
amount invested in this portfolio, p(O), is equal to f[V(O), 01, then from (12), 

PO) = .!I V(t), 4. 
As with debt, if V(t) = 0, then p(t) = S(t) = 0, and at the maturity date, 

p(T) = Max [O,V(T)-B] = S(T). 
Thus, by following this prescribed portfolio strategy, one would receive the 

same interim payments as those on the equity of the levered firm. On the matu- 
rity date, the value of the portfolio will equal the value of the levered firm’s 
equity. Therefore, to avoid arbitrage or dominance,p(t) = S(t). 
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If one were to combine both portfolio strategies, then the resulting interim 
payments would be C per unit time with a value at the maturity date of V(T). 

I.e., both strategies together are the same as holding the equity of the unlevered 
firm. Hence, f[ V(t), t]+F[I’(t), t] = V(t). But it was shown thatf[V(t), t] + 
I;[ V(t), t] = S(t) + D(t) = VL(t). Therefore, VL(t) = V(r), and the proof is com- 
pleted. 

While the proof was presented in the traditional context of a firm with a 
single debt issue, the proof goes through in essentially the same fashion for 
multiple debt issues or for ‘hybrid securities’ such as convertible bonds, preferred 
stock, or warrants.” 

In his comment on my earlier paper Long (1974, p. 485) claims that the 

original derivation builds into the model that risky debt can only depend on the 
‘prespecified explanatory variables’. His point is that in fact, bond prices could 
depend on ‘the price of beer’; ‘the value of the market portfolio’; or ‘the rate of 

inflation’, but by assuming that the bond price depends only on the value of the 
firm, the market rate of interest, the volatility of the market value of the firm, 
and time until maturity, the derived model price rules out such additional 
dependencies. The derivation in section 2 did not assume that the value of Asset 
# 2 depends only on these prespecified variables. The assumptions used are only 
the stated ones (A.l)-(A.6). Hence, given the current values of Asset # 1, the 
only way that the price of beer, the market portfolio, or the rate of inflation can 
affect the price of Asset f2 is if they affect a’, r, or the boundary conditions. 
While it could be argued that in fact, o2 and r may depend on these other vari- 
ables, such an argument would simply be a criticism of assumptions (A.2) and 
(A.3) and not of the derivation itself. 

“In more complicated bond indentures, the restrictions may be in terms of accounting 
variables rather than market values. In such cases, the analysis requires that these accounting 
variables can be written as functions of the market values. 
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