1. C. A random walk process has a constant mean.
2. B. $\operatorname{Cov}\left(y_{t}, y_{t+1}\right)=0$ and $\operatorname{Cov}\left(y_{t}, y_{t+2}\right)=-0.75 \sigma^{2}$.
3. D. A weakly dependent process shows a mean reversion behavior over time.
4.

a) Breusch-Godfrey test. The test has the aim to test for second order serial correlation

$$
\begin{gathered}
u_{t}=\beta_{0}+\beta_{1} x_{t}+\beta_{2} x_{t-1}+\rho_{1} u_{t-1}+\rho_{2} u_{t-2} \\
\widehat{\widehat{u_{t}}}=-0.021+0.007 x_{t}-0.001 x_{t-1}+0.214 \hat{u}_{t-1}-0.110 \hat{u}_{t-2}
\end{gathered}
$$

Test of hypothesis:

$$
H_{0}: \rho_{1}=\rho_{2}=0 \text { vs } H_{1}: \exists \rho_{1}, \rho_{2} \neq 0
$$

It is possible to compute the F test or to use the Lagrange multiplier LM form of the statistic (Breusch-Godfrey test).

Test Statistic:

$L M=m R^{2} \widehat{u}_{t} \sim X_{(q)}^{2}\left(\right.$ Under $\left.H_{0}\right)$

Observed value of the test statistic:
$R^{2} \widehat{u}_{t}=0.282$
$L M_{\text {obs }}=75 \times 0.282=21.15$

Critical value:
$\alpha=1 \% \Rightarrow X_{(2) ; 0.01}^{2}=9.21034 ;$
$\alpha=5 \% \Rightarrow X_{(2) ; 0.05}^{2}=5.991465$;
$\alpha=10 \% \Rightarrow X_{(2) ; 0.10}^{2}=4.60517$;

Rejection Rule:

Reject H_{0} if $L M_{o b s}>c$, where c is the critical value.

Conclusion:

For $\alpha=1 \%, 5 \%$ and $10 \%, L M_{\text {obs }}>c \Rightarrow$ Reject H_{0}.
Hence, for any level of significance α, there is enough evidence to conclude that the errors are serially correlated.
b) No, a dynamically complete model means that there is no serial correlation. In question a) was concluded that the errors are serially correlated, therefore the model is not dynamically complete.
5.
a)

$$
\begin{gathered}
\log \left(C 02_{t}\right)=\beta_{0}+\beta_{1} t+\beta_{2} \log \left(G D P_{t}\right)+u_{t} \\
\left.\log \widehat{(C 0} 2_{t}\right)=-34.02813-0.02360 t+2.042060 \log \left(G D P_{t}\right)
\end{gathered}
$$

Eview's Output:

Dependent Variable: LCO2
Method: Least Squares Date: 12/09/16 Time: 00:58
Sample: 19802012
Included observations: 33

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C	-34.02813	3.225419	-10.54999	0.0000
LGDP	-0.023260	0.004757	-4.889732	0.0000
R-squared	2.042060	0.176390	11.57698	0.0000
Adjusted R-squared	0.953674	Mean dependent var	3.813881	
S.E. of regression	0.073544	S.D. dependent var	0.330839	
Sum squared resid	0.162260	Schwarz criterion	-2.295365	
Log likelihood	40.87353	Hannan-Quinn criter.	-2.249590	
F-statistic	308.7889	Durbin-Watson stat	1.184836	
Prob(F-statistic)	0.000000			

$\widehat{\beta_{0}}=-0.3402813$, is the intercept of the model.
$\widehat{\beta_{1}}=-0.023260$ is the coefficient of the time trend. Holding all other factors fixed, β_{1} measures the average proportionate change (growth rate) in the variable CO2 per period. Therefore, $\mathrm{CO} 2_{t}$ decreases on average 2.326% per period.
$\widehat{\beta_{2}}=2.04206$. If there is a 1% increase in the variable $G D P_{t}, C 02_{t}$ increases on average 2.042060% around its trend.
b)

```
\(u_{t}=\alpha_{0}+\alpha_{1} t+\alpha_{2} \log \left(G D P_{t}\right)+\rho_{1} u_{t-1}\)
\(\widehat{\widehat{u_{t}}}=1.788624+0.001872 t-0.096974 \log \left(G D P_{t}\right)+0.381154 \widehat{u_{t-1}}\)
```


Eview's Output:

Dependent Variable: RES
Method: Least Squares
Date: 12/09/16 Time: 01:15
Sample (adjusted): 19812012
Included observations: 32 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C	1.788624	2.987098	0.598783	0.5541
T	0.001872	0.004392	0.426242	0.6732
LGDP	-0.096974	0.163324	-0.593748	0.5574
RES(-1)	0.381154	0.169624	2.247058	0.0327
R-squared	0.161386	Mean dependent var	0.003706	
Adjusted R-squared	0.071535	S.D. dependent var	0.069040	
S.E. of regression	0.066524	Akaike info criterion	-2.466028	
Sum squared resid	0.123914	Schwarz criterion	-2.282811	
Log likelihood	43.45645	Hannan-Quinn criter.	-2.405297	
F-statistic	1.796146	Durbin-Watson stat	1.988532	
Prob(F-statistic)	0.170806			

Test of hypothesis:
$H_{0}: \rho_{1}=0$ vs $H_{1}: \rho_{1} \neq 0$

Test statistic:

$t=\frac{\widehat{\rho_{1}}}{s e\left(\widehat{\rho_{1}}\right)} \sim t_{(n-k-1)} \quad\left(\right.$ Under $\left.H_{0}\right)$ since the sample is large is it possible to write $t=\frac{\widehat{\rho_{1}}}{\operatorname{se}\left(\widehat{\rho_{1}}\right)} \sim N(0,1)$ (Under H_{0}).

Observed value of the Test Statistic:

$t_{\text {obs }}=2.247058$

Rejection Rule:

Reject H_{0} if $\left|t_{o b s}\right|>c$, where c is the critical value.

$$
\begin{gathered}
\alpha=1 \% \Rightarrow c=z_{\frac{0.01}{2}}^{2}=2.576 ; \\
\alpha=5 \% \Rightarrow c=z_{0.05 / 2}=1.96 ; \\
\alpha=10 \% \Rightarrow c=z_{0.10 / 2}=z_{0.05}=1.645
\end{gathered}
$$

Conclusion:

For $\alpha=1 \%, t_{\text {obs }}<c \Rightarrow$ Do not reject H_{0}
Hence there is not enough evidence to assume that the errors are serially correlated, at a level of 1%.

For $\alpha=5 \%$ and $10 \%, t_{\text {obs }}>c \Rightarrow$ Reject H_{0}

Hence there is enough evidence to assume that the errors are serially correlated, at a level of 5% and 10%.
c) For a level of $\alpha=5 \%$ the null hypothesis was rejected which means that the errors are serially correlated.
As a consequence of this, the OLS estimators are no longer BLUE and the usual OLS standard errors and test statistics are not valid, even asymptotically.
d)

$$
\log \left(C 02_{t}\right)=\beta_{0}+\beta_{1} t+\beta_{2} \log \left(G D P_{t}\right)+\beta_{3} \log \left(C O 2_{t-1}\right)+u_{t}
$$

$$
u_{t}=\alpha_{0}+\alpha_{1} t+\alpha_{2} \log \left(G D P_{t}\right)+\alpha_{3} \log \left(C O 2_{t-1}\right)+\rho_{1} u_{t-1}+\rho_{2} u_{t-2}
$$

$$
\begin{aligned}
\left.\begin{array}{l}
\log (C 02 \\
t
\end{array}\right)= & -21.50146-0.016883 t \\
& +1.289284 \log \left(G D P_{t}\right)+0.386230 \log \left(C O 2_{t-1}\right) \\
\widehat{\widehat{u_{t}}}=6.709184 & +0.002153 t-0.413802 \log \left(G D P_{t}\right)+0.264243-0.389510 \widehat{u_{t-1}} \\
& -0.122787 \widehat{u_{t-2}}
\end{aligned}
$$

Eview's Outputs:

Dependent Variable: LCO2
Method: Least Squares
Date: 12/22/16 Time: 12:26
Sample (adjusted): 19812012
Included observations: 32 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C	-21.50146	6.495962	-3.309973	0.0026
LGDP	-0.016883	0.005344	-3.159494	0.0038
LCO2(-1)	1.289284	0.384780	3.350702	0.0023
R-squared	0.386230	0.184978	2.087982	0.0460
Adjusted R-squared	0.958658	Mean dependent var	3.834325	
S.E. of regression	0.954229	S.D. dependent var	0.314242	
Sum squared resid	0.067229	Akaike info criterion	-2.444941	
Log likelihood	0.126554	Schwarz criterion	-2.261724	
F-statistic	43.11906	Hannan-Quinn criter.	-2.384210	
Prob(F-statistic)	216.4280	Durbin-Watson stat	1.875661	

Breusch-Godfrey Serial Correlation LM Test:

F-statistic	0.941018	Prob. F(2,26)	0.4031
Obs*R-squared	2.159999	Prob. Chi-Square(2)	0.3396

Test Equation:
Dependent Variable: RESID
Method: Least Squares
Date: 12/22/16 Time: 12:40
Sample: 19812012
Included observations: 32
Presample missing value lagged residuals set to zero.

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C	6.709184	8.510974	0.788298	0.4377
T	0.002153	0.005892	0.365351	0.7178
LGDP	-0.413802	0.510892	-0.809959	0.4253
LCO2(-1)	0.264243	0.273837	0.964964	0.3435
RESID(-1)	-0.389510	0.291123	-1.337960	0.1925
RESID(-2)	-0.122787	0.204160	-0.601424	0.5528
R-squared	0.067500	Mean dependent var	$1.24 \mathrm{E}-15$	
Adjusted R-squared	-0.111827	S.D. dependent var	0.063894	
S.E. of regression	0.067372	Akaike info criterion	-2.389827	
Sum squared resid	0.118012	Schwarz criterion	-2.115002	
Log likelihood	44.23724	Hannan-Quinn criter.	-2.298730	
F-statistic	0.376407	Durbin-Watson stat	1.573473	
Prob(F-statistic)	0.860231			

Test of hypothesis:

$H_{0}: \rho_{1}=\rho_{2}=0$ vs $H_{1}: \exists \rho_{1}, \rho_{2} \neq 0$

Test Statistic:

$L M=n R^{2} \widehat{u}_{t} \sim X_{(q)}^{2}\left(\right.$ Under $\left.H_{0}\right)$ in this case $L M \sim X_{(2)}^{2}$

Observed value of the test statistic:
$L M_{\text {obs }}=2.159999$

Rejection Rule

Reject H_{0} if $L M_{\text {obs }}>c$, where c is the critical value.
$\alpha=1 \% \Rightarrow X_{(2) ; 0.01}^{2}=9.21034 ;$
$\alpha=5 \% \Rightarrow X_{(2) ; 0.05}^{2}=5.991465$;
$\alpha=10 \% \Rightarrow X_{(2) ; 0.10}^{2}=4.60517$;

Also, p-value $=0.3396$

Conclusion:

For $\alpha=1 \% 5 \%$ and $10 \%, L M_{\text {obs }}<c \Rightarrow$ Do not reject H_{0}
Alternatively pvalue $=0.3396>\alpha, \forall \alpha \Rightarrow$ Do not reject $H_{0}: \rho_{1}=\rho_{2}=0$.
Therefore, there is not enough evidence to conclude that the errors are serially correlated.
Hence, at a level of $1 \%, 5 \%$ and 10% it is assumed that the errors are not serially correlated.
e) $E\left[L C O 2_{t} \mid L C O 2_{t-1}, L C O 2_{t-2, \ldots,} L G D P_{t,}, L G D P_{t-1, \ldots}\right]=E\left[L C O 2_{t} \mid L C O 2_{t-1}, L G D P_{t}\right]$

