

- 1. **C.** A random walk process has a constant mean.
- 2. **B.** $Cov(y_t, y_{t+1}) = 0$ and $Cov(y_t, y_{t+2}) = -0.75\sigma^2$.
- 3. **D.** A weakly dependent process shows a mean reversion behavior over time.
- 4.
- a) Breusch-Godfrey test. The test has the aim to test for second order serial correlation

$$u_t = \beta_0 + \beta_1 x_t + \beta_2 x_{t-1} + \rho_1 u_{t-1} + \rho_2 u_{t-2}$$
$$\widehat{u_t} = -0.021 + 0.007 x_t - 0.001 x_{t-1} + 0.214 \widehat{u_{t-1}} - 0.110 \widehat{u_{t-2}}$$

Test of hypothesis:

 $H_0: \rho_1 = \rho_2 = 0 \ vs \ H_1: \exists \rho_1, \rho_2 \neq 0$

It is possible to compute the F test or to use the Lagrange multiplier LM form of the statistic (Breusch-Godfrey test).

<u>Test Statistic:</u> $LM = mR^2_{\hat{u}_t} \sim X^2_{(q)}$ (Under H_0)

Observed value of the test statistic: $R^2_{\hat{u}_t} = 0.282$ $LM_{obs} = 75 \times 0.282 = 21.15$

Critical value: $\alpha = 1\% \Rightarrow X^2_{(2);0.01} = 9.21034;$ $\alpha = 5\% \Rightarrow X^2_{(2);0.05} = 5.991465;$ $\alpha = 10\% \Rightarrow X^2_{(2);0.10} = 4.60517;$

<u>Rejection Rule:</u> Reject H_0 if $LM_{obs} > c$, where c is the critical value.

Conclusion:

For $\alpha = 1\%$, 5% and 10%, $LM_{obs} > c \Rightarrow \text{Reject } H_0$.

Hence, for any level of significance α , there is enough evidence to conclude that the errors are serially correlated.

b) No, a dynamically complete model means that there is no serial correlation. In question a) was concluded that the errors are serially correlated, therefore the model is not dynamically complete. 5.

a)

$$\log(C02_t) = \beta_0 + \beta_1 t + \beta_2 \log(GDP_t) + u_t$$

 $\widehat{\log(C02_t)} = -34.02813 - 0.02360t + 2.042060\log(GDP_t)$

Eview's Output:

Dependent Variable: LCO2 Method: Least Squares Date: 12/09/16 Time: 00:58 Sample: 1980 2012 Included observations: 33

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	-34.02813	3.225419	-10.54999	0.0000
Т	-0.023260	0.004757	-4.889732	0.0000
LGDP	2.042060	0.176390	11.57698	0.0000
R-squared	0.953674	Mean dependent var		3.813881
Adjusted R-squared	0.950585	S.D. dependent var		0.330839
S.E. of regression	0.073544	Akaike info criterion		-2.295365
Sum squared resid	0.162260	Schwarz criterion		-2.159319
Log likelihood	40.87353	Hannan-Quinn criter.		-2.249590
F-statistic	308.7889	Durbin-Watson stat		1.184836
Prob(F-statistic)	0.000000			

 $\widehat{\beta_0} = -0.3402813$, is the intercept of the model.

 $\widehat{\beta_1} = -0.023260$ is the coefficient of the time trend. Holding all other factors fixed, β_1 measures the average proportionate change (growth rate) in the variable CO2 per period. Therefore, $C02_t$ decreases on average 2.326% per period.

 $\widehat{\beta_2} = 2.04206$. If there is a 1% increase in the variable GDP_t , $C02_t$ increases on average 2.042060% around its trend.

b)
$$u_t = \alpha_0 + \alpha_1 t + \alpha_2 \log(GDP_t) + \rho_1 u_{t-1}$$

 $\widehat{u_t} = 1.788624 + 0.001872t - 0.096974\log(GDP_t) + 0.381154\widehat{u_{t-1}}$

Eview's Output:

Dependent Variable: RES Method: Least Squares Date: 12/09/16 Time: 01:15 Sample (adjusted): 1981 2012 Included observations: 32 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	1.788624	2.987098	0.598783	0.5541
Т	0.001872	0.004392	0.426242	0.6732
LGDP	-0.096974	0.163324	-0.593748	0.5574
RES(-1)	0.381154	0.169624	2.247058	0.0327
R-squared	0.161386	Mean dependent var		0.003706
Adjusted R-squared	0.071535	S.D. dependent var		0.069040
S.E. of regression	0.066524	Akaike info criterion		-2.466028
Sum squared resid	0.123914	Schwarz criterion		-2.282811
Log likelihood	43.45645	Hannan-Quinn criter.		-2.405297
F-statistic	1.796146	Durbin-Watson stat		1.988532
Prob(F-statistic)	0.170806			

<u>Test of hypothesis:</u> $H_0: \rho_1 = 0 \ vs \ H_1: \rho_1 \neq 0$

Test statistic:

 $t = \frac{\widehat{\rho_1}}{se(\widehat{\rho_1})} \sim t_{(n-k-1)} \text{ (Under } H_0 \text{) since the sample is large is it possible to write}$ $t = \frac{\widehat{\rho_1}}{se(\widehat{\rho_1})} \sim N(0,1) \text{ (Under } H_0 \text{).}$

Observed value of the Test Statistic:

 $t_{obs} = 2.247058$

Rejection Rule:

Reject H_0 if $|t_{obs}| > c$, where c is the critical value. $\alpha = 1\% \Rightarrow c = z_{0.01} = 2.576;$ $\alpha = 5\% \Rightarrow c = z_{0.05/2} = 1.96;$ $\alpha = 10\% \Rightarrow c = z_{0.10/2} = z_{0.05} = 1.645$

Conclusion:

For $\alpha = 1\%$, $t_{obs} < c \Rightarrow Do not reject H_0$ Hence there is not enough evidence to assume that the errors are serially correlated, at a level of 1%.

For $\alpha = 5\%$ and 10%, $t_{obs} > c \Rightarrow Reject H_0$

ECONOMETRICS

Hence there is enough evidence to assume that the errors are serially correlated, at a level of 5% and 10%.

c) For a level of $\alpha = 5\%$ the null hypothesis was rejected which means that the errors are serially correlated.

As a consequence of this, the OLS estimators are no longer BLUE and the usual OLS standard errors and test statistics are not valid, even asymptotically.

d)

$$\log(C02_t) = \beta_0 + \beta_1 t + \beta_2 \log(GDP_t) + \beta_3 \log(C02_{t-1}) + u_t$$

 $u_{t} = \alpha_{0} + \alpha_{1}t + \alpha_{2}\log(GDP_{t}) + \alpha_{3}\log(CO2_{t-1}) + \rho_{1}u_{t-1} + \rho_{2}u_{t-2}$

$$\begin{split} \widehat{\log(C02_t)} &= -21.50146 - 0.016883t \\ &+ 1.289284 \log(GDP_t) + 0.386230 \log(C02_{t-1}) \end{split}$$

 $\widehat{\widehat{u_t}} = 6.709184 + 0.002153t - 0.413802 \log(GDP_t) + 0.264243 - 0.389510 \widehat{u_{t-1}} - 0.122787 \widehat{u_{t-2}}$

Eview's Outputs:

Dependent Variable: LCO2 Method: Least Squares Date: 12/22/16 Time: 12:26 Sample (adjusted): 1981 2012 Included observations: 32 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C T LGDP	-21.50146 -0.016883 1.289284	6.495962 0.005344 0.384780	-3.309973 -3.159494 3.350702	0.0026 0.0038 0.0023
LCO2(-1)	0.386230	0.184978	2.087982	0.0460
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.958658 0.954229 0.067229 0.126554 43.11906 216.4280 0.000000	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat		3.834325 0.314242 -2.444941 -2.261724 -2.384210 1.875661

Breusch-Godfrey Serial Correlation LM Test:

F-statistic	0.941018	Prob. F(2,26)	0.4031
Obs*R-squared	2.159999	Prob. Chi-Square(2)	0.3396

Test Equation: Dependent Variable: RESID Method: Least Squares Date: 12/22/16 Time: 12:40 Sample: 1981 2012 Included observations: 32 Presample missing value lagged residuals set to zero.

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	6.709184	8.510974	0.788298	0.4377
Т	0.002153	0.005892	0.365351	0.7178
LGDP	-0.413802	0.510892	-0.809959	0.4253
LCO2(-1)	0.264243	0.273837	0.964964	0.3435
RESID(-1)	-0.389510	0.291123	-1.337960	0.1925
RESID(-2)	-0.122787	0.204160	-0.601424	0.5528
R-squared	0.067500	Mean dependent var		1.24E-15
Adjusted R-squared	-0.111827	S.D. dependent var		0.063894
S.E. of regression	0.067372	Akaike info criterion		-2.389827
Sum squared resid	0.118012	Schwarz criterion		-2.115002
Log likelihood	44.23724	Hannan-Quinn criter.		-2.298730
F-statistic	0.376407	Durbin-Watson stat		1.573473
Prob(F-statistic)	0.860231			

Test of hypothesis:

 $H_0: \rho_1 = \rho_2 = 0 vs H_1: \exists \rho_1, \rho_2 \neq 0$

<u>Test Statistic:</u> $LM = nR^2_{\hat{u}_t} \sim X^2_{(q)}$ (Under H_0) in this case $LM \sim X^2_{(2)}$

Observed value of the test statistic:

 $LM_{obs} = 2.159999$

Rejection Rule

Reject H_0 if $LM_{obs} > c$, where c is the critical value. $\alpha = 1\% \Rightarrow X^2_{(2);0.01} = 9.21034;$ $\alpha = 5\% \Rightarrow X^2_{(2);0.05} = 5.991465;$ $\alpha = 10\% \Rightarrow X^2_{(2);0.10} = 4.60517;$

Also, p-value=0.3396

Conclusion:

For $\alpha = 1\%$ 5% and 10%, $LM_{obs} < c \Rightarrow Do not reject H_0$

 $\label{eq:alternatively} \mbox{\it Pvalue} = 0.3396 > \ \alpha, \forall \alpha \Rightarrow \mbox{\it Do not reject} \ H_0: \rho_1 = \ \rho_2 = 0 \ .$

Therefore, there is not enough evidence to conclude that the errors are serially correlated.

Hence, at a level of 1%, 5% and 10% it is assumed that the errors are not serially correlated.

e) $E[LCO2_t|LCO2_{t-1},LCO2_{t-2},...,LGDP_t,LGDP_{t-1},...] = E[LCO2_t|LCO2_{t-1},LGDP_t]$