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Part II

1. Consider the function f(x, y) = x6 − 6xy + y6.

(a) Determine and classify its critical points.

Solution: The critical points of f are the solutions of the nonlinear system
∂f

∂x
= 0

∂f

∂y
= 0

⇔


6x5 − 6y = 0

−6x+ 6y5 = 0

⇔


y = x5

−x+ x25 = 0

⇔


y = x5

x(−1 + x24) = 0

⇔


y = 0

x = 0

∨


y = ±1

x = ±1

The critical points are (0, 0), (1, 1) and (−1,−1). In order to classify them

we need to compute the Hessian matrix, given by

H(x, y) =


∂2f

∂x2

∂2f

∂x∂y

∂2f

∂y∂x

∂2f

∂y2

 =

[
30x4 −6

−6 30y4

]

Computing the determinants of the principal minors for each critical point,

we get:

(0, 0): ∆1 = 0,∆2 = −36 6= 0, saddle point.

(±1,±1) : ∆1 = 30 > 0,∆2 = 302 − 62 = 864 > 0, local minimum points.

(b) Show that f does not have a global maximum.

Solution: Since f is differentiable in an open set (R2), the global maximum

would occur at a critical point, that would also be a local maximum. However,

according to (a), there are no local maximum points, and so there are also

no global maximum points. Alternatively, we observe that f(x, 0) = x6 is



unbounded and so f can take arbitrarily large values. This excludes the

possibility of existing a global maximum.

2. Compute

∫∫
Ω

xy2dx dy, where Ω = {(x, y) ∈ R2 : x2 + y2 ≤ 1 ∧ x ≥ 0}.

Solution:∫∫
Ω

xy2dxdy =

∫ 1

0

∫ √1−x2

−
√

1−x2
xeydydx =

∫ 1

0

x

[
y3

3

]y=
√

1−x2

y=−
√

1−x2
dx =

∫ 1

0

2

3
x(1− x2)3/2dx

=

[
−1

3

(1− x2)5/2

5/2

]x=1

x=0

=
2

15

3. Consider an economic model where QS and QD are the quantity supplied and de-

manded, respectively, and these quantities relate to the market price of a given

good, P (t), according to the formulas

QS = a0 + a1P (t) + a2P
′(t) + a3P

′′(t)

QD = b0 + b1P (t) + b2P
′(t) + b3P

′′(t),

where a0, a1, a2, a3, b0, b2, b3 ∈ R with a3 6= b3 and a1 6= b1.

(a) Show that if we assume that QD = QS for all t > 0, the price level follows the

differential equation

P ′′(t) + αP ′(t) + βP (t) = γ, t > 0 (1)

where α = (a2−b2)/(a3−b3), β = (a1−b1)/(a3−b3) and γ = (b0−a0)/(a3−b3).

Solution: The condition QS = QD is equivalent to

a0 + a1P (t) + a2P
′(t) + a3P

′′(t) = b0 + b1P (t) + b2P
′(t) + b3P

′′(t)⇔

(a3 − b3)P ′′(t) + (a2 − b2)P ′(t) + (a1 − b1)P (t) + (a0 − b0) = 0⇔

P ′′(t) +

(
a2 − b2

a3 − b3

)
︸ ︷︷ ︸

=α

P ′(t) +

(
a1 − b1

a3 − b3

)
︸ ︷︷ ︸

=β

P (t) =

(
b0 − a0

a3 − b3

)
︸ ︷︷ ︸

=γ

⇔

P ′′(t) + αP ′(t) + βP (t) = γ.



(b) Determine the solution of equation (1), with α = 1, β = 1
2

and γ = 1, given

the initial conditions P (0) = 10, P ′(0) = 0.

Solution: This is a second order linear differential equation with constant

coefficients. The general solution can be written as P = Ph + P∗, where Ph

is the general solution of the homogeneous equation and P∗ is a particular

solution of the full equation.

i. Calculation of Ph.

We must solve the homogeneous equation (D2 +D + 1
2
)Ph = 0. Since the

roots of the characteristic polynomial are −1
2
± 1

2
i, we know that

Ph(t) = e−
1
2
t

(
C1 cos

(
t

2

)
+ C2 sin

(
t

2

))
.

ii. Calculation of P∗.

Since the second member of our differential equation is a constant, we will

try to find a constant particular solution, lets say P∗(t) = K. Substituting

this in the differential equation we get

(K)′′ + α(K)′ + β(K) = γ ⇔ 0 + 0 + βK = γ ⇔ K =
γ

β
= 2.

Since we are assuming that a1 6= b1, we have that β 6= 0 and so P∗(t) = 2

is always a particular solution.

iii. Using the results from i. and ii. we can obtain the general solution

P (t) = Ph(t) + P∗(t) = e−
1
2
t

(
C1 cos

(
t

2

)
+ C2 sin

(
t

2

))
+ 2

and we cal also compute

P ′(t) =− 1

2
e−

1
2
t

(
C1 cos

(
t

2

)
+ C2 sin

(
t

2

))
+

e−
1
2
t

(
−1

2
C1 sin

(
t

2

)
+

1

2
C2 cos

(
t

2

))
iv. Finally, we must compute the values of C1, C2 that yield the proposed

initial conditions.{
P (0) = 10

P ′(0) = 0
⇔

{
C1 + 2 = 10

−1
2
C1 + 1

2
C2 = 0

⇔ C1 = C2 = 8

The solution to our problem is then given by

P (t) = 8e−
t
2

(
cos

t

2
+ sin

t

2

)
+ 2.



(c) Propose values of α, β for which the price level P (t) is periodic in time (sea-

sonal).

Solution: As we have seen before, P∗(t) = γ
β

is a particular solution of the

equation. Therefore, P (t) is periodic if and only if Ph(t) is periodic. Now,

Ph(t) is periodic if the roots of the characteristic polynomial D2 +αD+β are

pure imaginary numbers (with no real part), which occurs when α = 0 and

β > 0, yielding the general solution

P (t) = C1 cos(
√
βt) + C2 sin(

√
βt) + 2,

a periodic function with period 2π
β

.

Point values: 1. (a) 2,5 (b) 1,0 2. 2,0 3. (a) 1,0 (b) 2,5 (c) 1,0



Part I

1. Consider the matrix A =

a 1 b

1 −1 0

b 0 −2

 .
(a) Set a = 1, b = 0 and compute the eigenvalues of A, as well as the eigenvectors

associated with one of the eigenvalues.

Solution: The eigenvalues of A are the solutions of the equation |A−λI| = 0,∣∣∣∣∣∣∣
1− λ 1 0

1 −1− λ 0

0 0 −2− λ

∣∣∣∣∣∣∣ = 0⇔ (−2− λ) [(1− λ)(−1− λ)− 1] = 0⇔

λ = −2 ∨ −1− λ+ λ+ λ2 − 1 = 0⇔ λ = −2 ∨ λ = ±
√

2

The eigenvectors corresponding to the eigenvalue λ = −2 are the solutions of

the undetermined linear system (A+ 2I)u = 0,
3u1 + u2 = 0

u1 + u2 = 0

0 = 0

⇔


u2 = −3u1

u1 − 3u1 = 0

0 = 0

⇔


u2 = 0

u1 = 0

0 = 0

⇔

The eigenvectors that we are searching are of the form (0, 0, t), t 6= 0.

(b) Let Q : R3 → R be defined by Q(x) = xTAx. Show that if a > 0 the quadratic

form Q is indefinite.

Solution: The determinants of the principal minors of A are ∆1 = a > 0,

∆2 = −a − 1 < 0 and ∆3 = b2 + 2a + 2 > 0, which means that when a > 0

the matrix A is indefinite and so is the quadratic form Q(x) = xTAx.

2. Let f : Ω ⊂ R2 → R be defined by the expression f(x, y) =

√
y − 2x

ln(y − x2)
.



(a) Determine the domain of f , Ω, analitically and geometrically.

Solution:

Ω ={(x, y) ∈ R2 : y − 2x ≥ 0 ∧ y − x2 > 0 ∧ ln(y − x2) 6= 0}

={(x, y) ∈ R2 : y ≥ 2x ∧ y > x2 ∧ y 6= x2 + 1}

(b) Determine the boundary of Ω and decide if the set is open.

Solution:

Bdy(Ω) ={(x, y) ∈ R2 : (y = x2 ∧ y ≥ 2x) ∨ (y = 2x ∧ y ≥ x2) ∨ y = x2 + 1}

The set is not open because it includes points that are not interior, namely

every point on the segment connecting (0, 0) and (2, 4) (except for (0, 0), (1, 2)

and (2, 4)).

(c) Sketch the zero levelset C0 = {(x, y) ∈ Ω : f(x, y) = 0} and show that C0 is

bounded but not compact.

Solution: The zero levelset is given by

C0 = {(x, y) ∈ Ω : f(x, y) = 0} = {(x, y) ∈ Ω : y = 2x},

which is the line segment connecting (0, 0) and (2, 4), except for the points

(0, 0), (1, 2) and (2, 4).



This set is bounded because it can be fit inside a ball, for example B5((0, 0)),

but it is not closed (for example point (0,0) belongs to the adherence but not

to the set) and it is thefore not compact.

3. Consider f(x, y) =


2y3 − xy√
x2 + y2

, y > 0

0 , y ≤ 0

(a) Compute
∂f

∂x
(0, 0) and

∂f

∂y
(0, 0).

Solution:

∂f

∂x
(0, 0) = lim

h→0

f(0 + h, 0)− f(0, 0)

h
= lim

h→0

0− 0

h
= 0

∂f

∂y
(0, 0) = lim

h→0

f(0, 0 + h)− f(0, 0)

h
= lim

h→0

f(0, h)

h
∗
= 0

(*)

lim
h→0−

f(0, h)

h
= lim

h→0−

0

h
= 0

lim
h→0+

f(0, h)

h
= lim

h→0

1

h

2h3

√
h2

= lim
h→0

2h2

|h|
= 0

(b) Check if f is differentiable at (0, 0).

Solution: The function is differentiable at (0, 0) if

lim
(u,v)→(0,0)

f(u, v)− f(0, 0)− uf ′x(0, 0)− vf ′y)(0, 0)
√
u2 + v2

= lim
(u,v)→(0,0)

f(u, v)√
u2 + v2

= 0

The previous limit is zero if and only if

lim
(u,v)→(0,0)

v≤0

f(u, v)√
u2 + v2

= lim
(u,v)→(0,0)

v>0

f(u, v)√
u2 + v2

= 0.



Now,

lim
(u,v)→(0,0)

v≤0

f(u, v)√
u2 + v2

= lim
(u,v)→(0,0)

0√
u2 + v2

= 0

and

lim
(u,v)→(0,0)

v>0

f(u, v)√
u2 + v2

= lim
(u,v)→(0,0)

2v3 − uv
u2 + v2

Computing directional limits we easily verify that this last limit does not

exist, and we conclude that f is not differentiable at (0, 0).

4. Let f : R → R be a function of class C1 and define h(x, y) = 1
x
f(xy). Show that

for every x 6= 0 the following equation holds:

x
∂h

∂x
− y∂h

∂y
+ h = 0.

Solution: The partial derivatives of h(x, y) are given by

∂h

∂x
=− 1

x2
f(xy) +

1

x
· y · f ′(xy)

∂h

∂y
=

1

x
· x · f ′(xy) = f ′(xy)

x
∂h

∂x
− y∂h

∂y
+ h = −1

x
f(xy) + yf ′(xy)− yf ′(xy) +

1

x
f(xy) = 0,

as we wanted to show.

Point values: 1. (a) 1,5 (b) 1,5 2. (a) 1,5 (b) 1,0 (c) 1,0 3. (a) 1,0 (b) 1,5 4. 1,0


