Mathematics II

Undergraduate Degrees in Economics and Management Regular period, January 4, 2017

Part II

1. Consider the function $f(x, y)=x^{6}-6 x y+y^{6}$.
(a) Determine and classify its critical points.

Solution: The critical points of f are the solutions of the nonlinear system

$$
\begin{gathered}
\left\{\begin{array} { l }
{ \frac { \partial f } { \partial x } = 0 } \\
{ \frac { \partial f } { \partial y } = 0 }
\end{array} \Leftrightarrow \left\{\begin{array} { r }
{ 6 x ^ { 5 } - 6 y = 0 } \\
{ - 6 x + 6 y ^ { 5 } = 0 }
\end{array} \Leftrightarrow \left\{\begin{array}{r}
y=x^{5} \\
-x+x^{25}=0
\end{array} \Leftrightarrow\right.\right.\right. \\
\left\{\begin{array} { c }
{ y = x ^ { 5 } } \\
{ x (- 1 + x ^ { 2 4 }) = 0 }
\end{array} \Leftrightarrow \left\{\begin{array}{r}
y=0 \\
x=0
\end{array}\right.\right. \\
\qquad\left\{\begin{array}{r}
y= \pm 1 \\
x= \pm 1
\end{array}\right.
\end{gathered}
$$

The critical points are $(0,0),(1,1)$ and $(-1,-1)$. In order to classify them we need to compute the Hessian matrix, given by

$$
H(x, y)=\left[\begin{array}{cc}
\frac{\partial^{2} f}{\partial x^{2}} & \frac{\partial^{2} f}{\partial x \partial y} \\
\frac{\partial^{2} f}{\partial y \partial x} & \frac{\partial^{2} f}{\partial y^{2}}
\end{array}\right]=\left[\begin{array}{cc}
30 x^{4} & -6 \\
-6 & 30 y^{4}
\end{array}\right]
$$

Computing the determinants of the principal minors for each critical point, we get:
$(0,0): \Delta_{1}=0, \Delta_{2}=-36 \neq 0$, saddle point.
$(\pm 1, \pm 1): \Delta_{1}=30>0, \Delta_{2}=30^{2}-6^{2}=864>0$, local minimum points.
(b) Show that f does not have a global maximum.

Solution: Since f is differentiable in an open set $\left(\mathbb{R}^{2}\right)$, the global maximum would occur at a critical point, that would also be a local maximum. However, according to (a), there are no local maximum points, and so there are also no global maximum points. Alternatively, we observe that $f(x, 0)=x^{6}$ is
unbounded and so f can take arbitrarily large values. This excludes the possibility of existing a global maximum.
2. Compute $\iint_{\Omega} x y^{2} d x d y$, where $\Omega=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2} \leq 1 \wedge x \geq 0\right\}$.

Solution:

$$
\begin{aligned}
\iint_{\Omega} x y^{2} d x d y & =\int_{0}^{1} \int_{-\sqrt{1-x^{2}}}^{\sqrt{1-x^{2}}} x e^{y} d y d x=\int_{0}^{1} x\left[\frac{y^{3}}{3}\right]_{y=-\sqrt{1-x^{2}}}^{y=\sqrt{1-x^{2}}} d x=\int_{0}^{1} \frac{2}{3} x\left(1-x^{2}\right)^{3 / 2} d x \\
& =\left[-\frac{1}{3} \frac{\left(1-x^{2}\right)^{5 / 2}}{5 / 2}\right]_{x=0}^{x=1}=\frac{2}{15}
\end{aligned}
$$

3. Consider an economic model where Q_{S} and Q_{D} are the quantity supplied and demanded, respectively, and these quantities relate to the market price of a given good, $P(t)$, according to the formulas

$$
\begin{aligned}
& Q_{S}=a_{0}+a_{1} P(t)+a_{2} P^{\prime}(t)+a_{3} P^{\prime \prime}(t) \\
& Q_{D}=b_{0}+b_{1} P(t)+b_{2} P^{\prime}(t)+b_{3} P^{\prime \prime}(t),
\end{aligned}
$$

where $a_{0}, a_{1}, a_{2}, a_{3}, b_{0}, b_{2}, b_{3} \in \mathbb{R}$ with $a_{3} \neq b_{3}$ and $a_{1} \neq b_{1}$.
(a) Show that if we assume that $Q_{D}=Q_{S}$ for all $t>0$, the price level follows the differential equation

$$
\begin{equation*}
P^{\prime \prime}(t)+\alpha P^{\prime}(t)+\beta P(t)=\gamma, \quad t>0 \tag{1}
\end{equation*}
$$

where $\alpha=\left(a_{2}-b_{2}\right) /\left(a_{3}-b_{3}\right), \beta=\left(a_{1}-b_{1}\right) /\left(a_{3}-b_{3}\right)$ and $\gamma=\left(b_{0}-a_{0}\right) /\left(a_{3}-b_{3}\right)$.

Solution: The condition $Q_{S}=Q_{D}$ is equivalent to

$$
\begin{gathered}
a_{0}+a_{1} P(t)+a_{2} P^{\prime}(t)+a_{3} P^{\prime \prime}(t)=b_{0}+b_{1} P(t)+b_{2} P^{\prime}(t)+b_{3} P^{\prime \prime}(t) \Leftrightarrow \\
\left(a_{3}-b_{3}\right) P^{\prime \prime}(t)+\left(a_{2}-b_{2}\right) P^{\prime}(t)+\left(a_{1}-b_{1}\right) P(t)+\left(a_{0}-b_{0}\right)=0 \Leftrightarrow \\
P^{\prime \prime}(t)+\underbrace{\left(\frac{a_{2}-b_{2}}{a_{3}-b_{3}}\right)}_{=\alpha} P^{\prime}(t)+\underbrace{\left(\frac{a_{1}-b_{1}}{a_{3}-b_{3}}\right)}_{=\beta} P(t)=\underbrace{\left(\frac{b_{0}-a_{0}}{a_{3}-b_{3}}\right)}_{=\gamma} \Leftrightarrow \\
P^{\prime \prime}(t)+\alpha P^{\prime}(t)+\beta P(t)=\gamma .
\end{gathered}
$$

(b) Determine the solution of equation (1), with $\alpha=1, \beta=\frac{1}{2}$ and $\gamma=1$, given the initial conditions $P(0)=10, P^{\prime}(0)=0$.

Solution: This is a second order linear differential equation with constant coefficients. The general solution can be written as $P=P_{h}+P_{*}$, where P_{h} is the general solution of the homogeneous equation and P_{*} is a particular solution of the full equation.
i. Calculation of P_{h}.

We must solve the homogeneous equation $\left(D^{2}+D+\frac{1}{2}\right) P_{h}=0$. Since the roots of the characteristic polynomial are $-\frac{1}{2} \pm \frac{1}{2} i$, we know that

$$
P_{h}(t)=e^{-\frac{1}{2} t}\left(C_{1} \cos \left(\frac{t}{2}\right)+C_{2} \sin \left(\frac{t}{2}\right)\right)
$$

ii. Calculation of P_{*}.

Since the second member of our differential equation is a constant, we will try to find a constant particular solution, lets say $P_{*}(t)=K$. Substituting this in the differential equation we get

$$
(K)^{\prime \prime}+\alpha(K)^{\prime}+\beta(K)=\gamma \Leftrightarrow 0+0+\beta K=\gamma \Leftrightarrow K=\frac{\gamma}{\beta}=2 .
$$

Since we are assuming that $a_{1} \neq b_{1}$, we have that $\beta \neq 0$ and so $P_{*}(t)=2$ is always a particular solution.
iii. Using the results from i. and ii. we can obtain the general solution

$$
P(t)=P_{h}(t)+P_{*}(t)=e^{-\frac{1}{2} t}\left(C_{1} \cos \left(\frac{t}{2}\right)+C_{2} \sin \left(\frac{t}{2}\right)\right)+2
$$

and we cal also compute

$$
\begin{aligned}
P^{\prime}(t)= & -\frac{1}{2} e^{-\frac{1}{2} t}\left(C_{1} \cos \left(\frac{t}{2}\right)+C_{2} \sin \left(\frac{t}{2}\right)\right)+ \\
& e^{-\frac{1}{2} t}\left(-\frac{1}{2} C_{1} \sin \left(\frac{t}{2}\right)+\frac{1}{2} C_{2} \cos \left(\frac{t}{2}\right)\right)
\end{aligned}
$$

iv. Finally, we must compute the values of C_{1}, C_{2} that yield the proposed initial conditions.

$$
\left\{\begin{array} { r }
{ P (0) = 1 0 } \\
{ P ^ { \prime } (0) = 0 }
\end{array} \Leftrightarrow \left\{\begin{array}{r}
C_{1}+2=10 \\
-\frac{1}{2} C_{1}+\frac{1}{2} C_{2}=0
\end{array} \Leftrightarrow C_{1}=C_{2}=8\right.\right.
$$

The solution to our problem is then given by

$$
P(t)=8 e^{-\frac{t}{2}}\left(\cos \frac{t}{2}+\sin \frac{t}{2}\right)+2
$$

(c) Propose values of α, β for which the price level $P(t)$ is periodic in time (seasonal).

Solution: As we have seen before, $P_{*}(t)=\frac{\gamma}{\beta}$ is a particular solution of the equation. Therefore, $P(t)$ is periodic if and only if $P_{h}(t)$ is periodic. Now, $P_{h}(t)$ is periodic if the roots of the characteristic polynomial $D^{2}+\alpha D+\beta$ are pure imaginary numbers (with no real part), which occurs when $\alpha=0$ and $\beta>0$, yielding the general solution

$$
P(t)=C_{1} \cos (\sqrt{\beta} t)+C_{2} \sin (\sqrt{\beta} t)+2,
$$

a periodic function with period $\frac{2 \pi}{\beta}$.

Part I

1. Consider the matrix $A=\left[\begin{array}{ccc}a & 1 & b \\ 1 & -1 & 0 \\ b & 0 & -2\end{array}\right]$.
(a) Set $a=1, b=0$ and compute the eigenvalues of A, as well as the eigenvectors associated with one of the eigenvalues.

Solution: The eigenvalues of A are the solutions of the equation $|A-\lambda I|=0$,

$$
\begin{gathered}
\left|\begin{array}{ccc}
1-\lambda & 1 & 0 \\
1 & -1-\lambda & 0 \\
0 & 0 & -2-\lambda
\end{array}\right|=0 \Leftrightarrow(-2-\lambda)[(1-\lambda)(-1-\lambda)-1]=0 \Leftrightarrow \\
\lambda=-2 \vee-1-\lambda+\lambda+\lambda^{2}-1=0 \Leftrightarrow \lambda=-2 \vee \lambda= \pm \sqrt{2}
\end{gathered}
$$

The eigenvectors corresponding to the eigenvalue $\lambda=-2$ are the solutions of the undetermined linear system $(A+2 I) u=0$,

$$
\left\{\begin{array} { r }
{ 3 u _ { 1 } + u _ { 2 } = 0 } \\
{ u _ { 1 } + u _ { 2 } = 0 } \\
{ 0 = 0 }
\end{array} \Leftrightarrow \left\{\begin{array} { r }
{ u _ { 2 } = - 3 u _ { 1 } } \\
{ u _ { 1 } - 3 u _ { 1 } = 0 } \\
{ 0 = 0 }
\end{array} \Leftrightarrow \left\{\begin{array}{r}
u_{2}=0 \\
u_{1}=0 \\
0=0
\end{array} \Leftrightarrow\right.\right.\right.
$$

The eigenvectors that we are searching are of the form $(0,0, t), \quad t \neq 0$.
(b) Let $Q: \mathbb{R}^{3} \rightarrow \mathbb{R}$ be defined by $Q(\boldsymbol{x})=\boldsymbol{x}^{T} A \boldsymbol{x}$. Show that if $a>0$ the quadratic form Q is indefinite.

Solution: The determinants of the principal minors of A are $\Delta_{1}=a>0$, $\Delta_{2}=-a-1<0$ and $\Delta_{3}=b^{2}+2 a+2>0$, which means that when $a>0$ the matrix A is indefinite and so is the quadratic form $Q(x)=x^{T} A x$.
2. Let $f: \Omega \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$ be defined by the expression $f(x, y)=\frac{\sqrt{y-2 x}}{\ln \left(y-x^{2}\right)}$.
(a) Determine the domain of f, Ω, analitically and geometrically.

Solution:

$$
\begin{aligned}
\Omega & =\left\{(x, y) \in \mathbb{R}^{2}: y-2 x \geq 0 \wedge y-x^{2}>0 \wedge \ln \left(y-x^{2}\right) \neq 0\right\} \\
& =\left\{(x, y) \in \mathbb{R}^{2}: y \geq 2 x \wedge y>x^{2} \wedge y \neq x^{2}+1\right\}
\end{aligned}
$$

(b) Determine the boundary of Ω and decide if the set is open.

Solution:

$B d y(\Omega)=\left\{(x, y) \in \mathbb{R}^{2}:\left(y=x^{2} \wedge y \geq 2 x\right) \vee\left(y=2 x \wedge y \geq x^{2}\right) \vee y=x^{2}+1\right\}$

The set is not open because it includes points that are not interior, namely every point on the segment connecting $(0,0)$ and $(2,4)$ (except for $(0,0),(1,2)$ and $(2,4)$).
(c) Sketch the zero levelset $C_{0}=\{(x, y) \in \Omega: f(x, y)=0\}$ and show that C_{0} is bounded but not compact.

Solution: The zero levelset is given by

$$
C_{0}=\{(x, y) \in \Omega: f(x, y)=0\}=\{(x, y) \in \Omega: y=2 x\},
$$

which is the line segment connecting $(0,0)$ and $(2,4)$, except for the points $(0,0),(1,2)$ and $(2,4)$.

This set is bounded because it can be fit inside a ball, for example $B_{5}((0,0))$, but it is not closed (for example point $(0,0)$ belongs to the adherence but not to the set) and it is thefore not compact.
3. Consider $f(x, y)=\left\{\begin{array}{cl}\frac{2 y^{3}-x y}{\sqrt{x^{2}+y^{2}}} & , y>0 \\ 0 & , y \leq 0\end{array}\right.$
(a) Compute $\frac{\partial f}{\partial x}(0,0)$ and $\frac{\partial f}{\partial y}(0,0)$.

Solution:

$$
\begin{aligned}
& \frac{\partial f}{\partial x}(0,0)=\lim _{h \rightarrow 0} \frac{f(0+h, 0)-f(0,0)}{h}=\lim _{h \rightarrow 0} \frac{0-0}{h}=0 \\
& \frac{\partial f}{\partial y}(0,0)=\lim _{h \rightarrow 0} \frac{f(0,0+h)-f(0,0)}{h}=\lim _{h \rightarrow 0} \frac{f(0, h)}{h} \stackrel{*}{=} 0
\end{aligned}
$$

(*)

$$
\begin{aligned}
\lim _{h \rightarrow 0^{-}} \frac{f(0, h)}{h} & =\lim _{h \rightarrow 0^{-}} \frac{0}{h}=0 \\
\lim _{h \rightarrow 0^{+}} \frac{f(0, h)}{h} & =\lim _{h \rightarrow 0} \frac{1}{h} \frac{2 h^{3}}{\sqrt{h^{2}}}=\lim _{h \rightarrow 0} \frac{2 h^{2}}{|h|}=0
\end{aligned}
$$

(b) Check if f is differentiable at $(0,0)$.

Solution: The function is differentiable at $(0,0)$ if

$$
\lim _{(u, v) \rightarrow(0,0)} \frac{\left.f(u, v)-f(0,0)-u f_{x}^{\prime}(0,0)-v f_{y}^{\prime}\right)(0,0)}{\sqrt{u^{2}+v^{2}}}=\lim _{(u, v) \rightarrow(0,0)} \frac{f(u, v)}{\sqrt{u^{2}+v^{2}}}=0
$$

The previous limit is zero if and only if

$$
\lim _{\substack{(u, v) \rightarrow(0,0) \\ v \leq 0}} \frac{f(u, v)}{\sqrt{u^{2}+v^{2}}}=\lim _{\substack{(u, v) \rightarrow 0,0,0) \\ v>0}} \frac{f(u, v)}{\sqrt{u^{2}+v^{2}}}=0 .
$$

Now,

$$
\lim _{\substack{(u, v) \rightarrow(0,0) \\ v \leq 0}} \frac{f(u, v)}{\sqrt{u^{2}+v^{2}}}=\lim _{(u, v) \rightarrow(0,0)} \frac{0}{\sqrt{u^{2}+v^{2}}}=0
$$

and

$$
\lim _{\substack{(u, v) \rightarrow(0,0) \\ v>0}} \frac{f(u, v)}{\sqrt{u^{2}+v^{2}}}=\lim _{(u, v) \rightarrow(0,0)} \frac{2 v^{3}-u v}{u^{2}+v^{2}}
$$

Computing directional limits we easily verify that this last limit does not exist, and we conclude that f is not differentiable at $(0,0)$.
4. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function of class C^{1} and define $h(x, y)=\frac{1}{x} f(x y)$. Show that for every $x \neq 0$ the following equation holds:

$$
x \frac{\partial h}{\partial x}-y \frac{\partial h}{\partial y}+h=0
$$

Solution: The partial derivatives of $h(x, y)$ are given by

$$
\begin{gathered}
\frac{\partial h}{\partial x}=-\frac{1}{x^{2}} f(x y)+\frac{1}{x} \cdot y \cdot f^{\prime}(x y) \\
\frac{\partial h}{\partial y}=\frac{1}{x} \cdot x \cdot f^{\prime}(x y)=f^{\prime}(x y) \\
x \frac{\partial h}{\partial x}-y \frac{\partial h}{\partial y}+h=-\frac{1}{x} f(x y)+y f^{\prime}(x y)-y f^{\prime}(x y)+\frac{1}{x} f(x y)=0,
\end{gathered}
$$

as we wanted to show.

