Answer to 4 Groups only

2 hours

Group 1

1. Consider a consumer whose utility function is $u\left(x_{1}, x_{2}\right)=\min \left\{x_{1}, 3 x_{2}\right\}$, where x_{1} represents the quantity of good 1 and x_{2} represents the quantity of good 2 .
a) (0.5 marks) Formulate the consumer choice problem.

A: Find x_{1}, x_{2} to maximize $u\left(x_{1}, x_{2}\right)=\min \left\{x_{1}, 3 x_{2}\right\}$ s.t. $p_{1} x_{1}+p_{2} x_{2}=m$ and $x_{1}, x_{2} \geq 0$.
b) (2 marks) Find this consumer's demand for goods 1 and 2 .

A: At the solution we have $x_{1}=3 x_{2}$, so that, substituting in the budget restriction and solving: $x_{1}\left(y, p_{1}, p_{2}\right)=3 m /\left(3 p_{1}+p_{2}\right)$ and $x_{2}\left(y, p_{1}, p_{2}\right)=m /\left(3 p_{1}+p_{2}\right)$.
c) (0.5 marks) Determine the indirect utility function.
$A: v\left(y, p_{1}, p_{2}\right)=3 m /\left(3 p_{1}+p_{2}\right)$.
C) (1 mark) Determine the expenditure function.
$A: e\left(u, p_{1}, p_{2}\right)=u\left(3 p_{1}+p_{2}\right) / 3$.
2. (1 mark) Let \succcurlyeq be a preference relation on $R^{n}+$ and suppose $u(\cdot)$ is a utility function that represents it. Show that $u(x)$ is strictly increasing if and only if \succcurlyeq is strictly monotonic.

Group 2

Willy owns a factory on the banks of a river that occasionally floods. He has no other assets. If there is no flood this spring, Willy's factory will be worth $€ 500,000$. If there is a flood, the factory will be worthless. Willy is an expected utility maximizer with von Neumann Morgenstern utility function $u(w)=\ln (w)$ where w is his wealth. Willy believes that the probability of a flood is $1 / 10$. Willy is offered a chance to buy as much flood insurance as he likes at a cost of $€ c$ per Euro's worth of insurance. The way this policy works is that if he buys $€ X$ worth of flood insurance and if there is no flood, he must pay a total of $€ c X$ in insurance premiums. If there is a flood, he doesn't have to pay his insurance premium, and he receives a payment of $€ X$ from the insurance company.
a) (1.5 marks) Formulate Willy's utility maximization problem.

A: Find the x to $\operatorname{Max} 0,9 \ln (500000-c x)+0,1 \ln (x)$ s.t. $0 \leq x \leq 500000$.
b) (3 marks) Write down a formula for the amount of insurance that Willy will buy as a function of the cost $€ c$ per euro of insurance.
A: Solving the utility maximization problem, the first order solution for an interior maximum gives $x=50000 / c$.
c) (0.5 marks) At what price c , will Willy buy just enough insurance so that his wealth is the same, whether or not there is a flood?
A: The actuarially fair price, i.e., the price at which the insurance firm gets 0 expected profits: $0,9 c x+0,1(-x)=0 \Leftrightarrow c=1 / 9$.

Group 3

1. In a perfectly competitive market, a firm has the production function $f\left(x_{1}, x_{2}\right)=\left(x^{a}{ }_{1}+x^{a}{ }_{2}\right)^{5 / a}$, where $a=-1$ and where $0<s<1$.
a) (1,5 marks) Find the conditional input demand functions for inputs 1 and 2 with prices w_{1} and w_{2}, respectively, and output y.

A: $x_{1}\left(w_{1}, w_{2}, y\right)=y^{1 / 5}\left[1+\left(w_{2} / w_{1}\right)^{1 / 2}\right]$ and $x_{2}\left(w_{1}, w_{2}, y\right)=y^{1 / s}\left[1+\left(w_{1} / w_{2}\right)^{1 / 2}\right]$.
b) (0,5 marks) Find the cost function $c\left(w_{1}, w_{2}, 1\right)$ for producing 1 unit of output.

A: $c\left(w_{1}, w_{2}, 1\right)=\left(w_{1}^{1 / 2}+w_{2}^{1 / 2}\right)^{2}$ as $c\left(w_{1}, w_{2}, y\right)=y^{1 / 5}\left(w_{1}^{1 / 2}+w_{2}^{1 / 2}\right)^{2}$.
c) (1,5 marks) Suppose that $s=1 / 2, w_{1}=4$ and $w_{2}=1$. If the firm can sell its output at a competitive price of $€ 72$ per unit, how many units should it produce to maximize its profits? A: The firm solves Max $72 y-c(4,1, y)$ to obtain $y=4$.
2. (1,5 marks) In a perfectly competitive market, a firm's technology can be described by the production function $f\left(x_{1}, x_{2}\right)=x_{1}{ }_{1} x^{b}{ }_{2}$. For which values of a and b does the long run profit maximization problem have a solution for all prices? Explain.
A: When $a+b<1$, the production function has decreasing returns to scale and the profit maximization problem has a solution.

Group 4

1. (2 marks) Suppose that a consumer's indirect utility function is $v\left(m, p_{1}, p_{2}\right)=m^{2} /\left(4 p_{1} p_{2}\right)$ and assume that initially $m=10$, and $p_{1}=p_{2}=1$. What is the compensating variation (CV) of an increase in p_{2} to $\mathrm{p}^{\prime}=2$?
A: Initially $v(10,1,1)=25$. Then, from $v(10+C V, 1,2)=25$, we obtain $C V=\operatorname{sqrt}(200)-10$.
2. A monopolist faces linear demand $p=a-b q$ and has cost $C=c q+F$, where all parameters are positive, $\mathrm{a}>\mathrm{c}$, and $(\mathrm{a}-\mathrm{c})^{2}>4 \mathrm{bF}$.
a) (1,5 marks) Solve for the monopolist's output, price, and profits.

A: The monopolist finds q such that $\operatorname{Max} q(a-b q)-(c q+F)$. Therefore, $q=(a-c) / 2 b, p=(a+c) / 2$, and Profit $=(a-c)^{2} / 4 b-F$.
b) (1, 5 marks) Calculate the deadweight loss.

A: in a perfectly competitive market, $p=c$ and $q=(a-c) / b$. Then, $D W L=(a-c)^{2} / 8 b$.

Group 5

1. (5 marks) Compute the weak perfect Bayesian Nash equilibria of the following game.

$A: P B E=\{[L L$, uaub, $p=0.5,0 \leq q \leq 1],[R R$, daub, $p \geq 2 / 3, q=0,5]\}$

Group 6

1. (2 marks) Comment on the following sentence: "In a strategic form game G, all players have a strictly dominant strategy if and only if the Nash equilibrium is unique."
A: If each player has a strictly dominant strategy, this strategy gives a strictly higher payoff against any strategy profile of the others. Thus, it is his/her unique best reply. It follows that there is a unique Nash equilibrium. Nevertheless, it is easy to find a counterexample for the converse statement, so that we may have a unique Nash equilibrium even though there is at least one player that does not have a strictly dominant strategy.
2. (3 marks) Players 1 and 2 face an incomplete information game. Player 1 does not know the type of player 2 , believing that he is type I with probability $1 / 2$ and type II with probability $1 / 2$. Compute all Bayes-Nash equilibria in pure strategies.
Type I

	L	R
	1,2	1,3
	2,4	

Type II

	L	R
	1,2	1,4
	2,1	

A: There are no Bayes-Nash equilibria । pure strategies.

