Stochastic Calculus - part 4

ISEG

2016

Brownian motion

Definition

A s.p. $B=\left\{B_{t} ; t \geq 0\right\}$ is a Brownian motion if
(1) $B_{0}=0$.
(2) B has independent and stationary increments.
(3) If $s<t, B_{t}-B_{s}$ is a r.v. with distribution $N(0, t-s)$.
(4) The process B has continuous trajectories.

Brownian motion properties

- The B.m. is a Gaussian process. Indeed, The finite dimensional distributions of B, i.e. the distribution of the vectors $\left(B_{t_{1}}, B_{t_{2}}, \ldots, B_{t_{n}}\right)$ is a multivariate Gaussian distribution.
- $E\left[B_{t}\right]=0$ (consequence of condition 3).
- Covariance function: $c(s, t)=E\left[B_{s} B_{t}\right]=\min (s, t)$

Proof.
If $s \leq t$:

$$
\begin{aligned}
E\left[B_{s} B_{t}\right] & =E\left[B_{s}\left(B_{t}-B_{s}\right)+B_{s}^{2}\right] \\
& =E\left[B_{s}\left(B_{t}-B_{s}\right)\right]+E\left[B_{s}^{2}\right] \\
& =E\left[B_{s}\right] E\left[B_{t}-B_{s}\right]+s=s .
\end{aligned}
$$

- A s.p. that satisfies properties 1,2 and 3 has a version with continuous trajectories.

Proof.

Since $\left(B_{t}-B_{s}\right) \sim N(0, t-s)$, it is possible to show that

$$
E\left[\left(B_{t}-B_{s}\right)^{2 k}\right]=\frac{(2 k)!}{2^{k} \cdot k!}(t-s)^{k} .
$$

In order to prove this formula, one can use integration by parts and the mathematical induction principle in k (see Oksendal book) With $k=2$:

$$
E\left[\left(B_{t}-B_{s}\right)^{4}\right]=3(t-s)^{2}
$$

Kolmogorov continuity criterion \Longrightarrow exists a version of B with cont. paths.

- Exists a s.p. that satisfies conditions 1,2,3 and 4 (by the Kolmogorov extension Theorem (see Oksendal book) and by the Kolmogorov continuity criterion).
- In the definition of Brownian motion, the probability space is arbitrary. However, one can describe the structure of this space, considering the map:

$$
\begin{aligned}
\Omega & \rightarrow C([0, \infty), \mathbb{R}) \\
\omega & \rightarrow B .(\omega)
\end{aligned}
$$

that associates to each ω a continuous function with values in \mathbb{R} (the trajectory). The probability space can therefore be identified with the space of continuous functions $C([0, \infty), \mathbb{R})$ equipped with the Borel σ-algebra \mathcal{B}_{C} and with the probability induced by the previous map: $P_{W}=P \circ B^{-1}$ (this probability measure is called the Wiener measure). The canonical probability space for the Brownian motion is then the space $\left(C([0, \infty), \mathbb{R}), \mathcal{B}_{C}, P_{W}\right)$. In this space, the random variables are $X_{t}(\omega)=\omega(t)$.

- As a corollary to the Kolmogorov continuity criterion and the formula $E\left[\left(B_{t}-B_{s}\right)^{2 k}\right]=\frac{(2 k)!}{2^{k} \cdot k!}(t-s)^{k}$, we have that

$$
\left|B_{t}(\omega)-B_{s}(\omega)\right| \leq G_{\varepsilon}(\omega)|t-s|^{\frac{1+\alpha}{\rho}-\varepsilon} \leq G_{\varepsilon}(\omega)|t-s|^{\frac{1}{2}-\varepsilon}
$$

for each $\varepsilon>0$, where $G_{\varepsilon}(\omega)$ is a r.v.

- Intuitively: $\left|B_{t}-B_{s}\right| \approx|t-s|^{\frac{1}{2}}$
- Moreover: $E\left[\left(B_{t+\Delta t}-B_{t}\right)^{2}\right]=\Delta t$
- Consider the interval $[0, t]$ and partitions of this interval $0=t_{0}<t_{1}<\cdots<t_{n}=t$ with $t_{j}=\frac{t j}{n}$. Then:
(1) The B.m. infinite total variation: $\sum_{k=1}^{n}\left|\Delta B_{k}\right| \approx n\left(\frac{t}{n}\right)^{1 / 2} \rightarrow \infty$, when $n \rightarrow \infty$.
(2) The B.m. has finite quadratic variation: $\sum_{k=1}^{n}\left|\Delta B_{k}\right|^{2} \approx n\left(\frac{t}{n}\right)=t$.
- The trajectories of the B.m. are not differentiable at any point (a.s.). sketch of the proof:

$$
\frac{B_{t+\Delta t}-B_{t}}{\Delta t} \approx \frac{\sqrt{\Delta t} Z}{\Delta t}=\frac{Z}{\sqrt{\Delta t}}
$$

where $Z \sim N(0,1)$. This ratio tends to ∞ when $\Delta t \rightarrow 0$ in probability, since $P\left(\left|\frac{Z}{\sqrt{\Delta t}}\right|>K\right) \rightarrow 1$ for every K, when $\Delta t \rightarrow 0$. Therefore, the derivative does not exist at t.

- Self-similarity: If $B=\left\{B_{t} ; t \geq 0\right\}$ is a B.m. then, for any $a>0$, the process $\left\{a^{-1 / 2} B_{a t} ; t \geq 0\right\}$ is also a B.m.
- Exercise: show that $\left\{a^{-1 / 2} B_{a t} ; t \geq 0\right\}$ satisfies the definition of Brownian motion.

Processes related to Brownian motion

- Brownian motion with drift:

$$
Y_{t}=\mu t+\sigma B_{t}
$$

with $\sigma>0$ and μ real constants. Clearly, it is a Gaussian process with $E\left[Y_{t}\right]=\mu t$ and $c(s, t)=E\left[\left(Y_{s}-E\left[Y_{s}\right]\right)\left(Y_{t}-E\left[Y_{t}\right]\right)\right]=\sigma^{2} \min (s, t)$.

- Geometric Brownian motion: (proposed by Samuelson, and later used by Black, Scholes and Merton for modeling asset prices)

$$
X_{t}=e^{\mu t+\sigma B_{t}}
$$

The distribution of X is lognormal, i.e. $\ln \left(X_{t}\right)$ has normal distribution.

- Brownian bridge:

$$
Z_{t}=B_{t}-t B_{1}, \quad t \in[0,1]
$$

Note that $Z_{1}=Z_{0}=0$. This is a Gaussian process with $E\left[Z_{t}\right]=0$ and $c(s, t)=E\left[Z_{s} Z_{t}\right]=\min (s, t)-s t$.

Martingales and the Brownian motion

- Consider a Brownian motion $B=\left\{B_{t} ; t \geq 0\right\}$ defined on (Ω, \mathcal{F}, P).
- The filtration generated by B is $\left\{\mathcal{F}_{t}^{B}, t \geq 0\right\}$ with

$$
\mathcal{F}_{t}^{B}=\sigma\left\{B_{s}, s \leq t\right\} .
$$

- Consider that \mathcal{F}_{t}^{B} also contains the events of zero probability (consider that $N \in \mathcal{F}_{0}$ if $P(N)=0$).
- Some consequences of the inclusion of events of probability 0 in the filtration:
(1) Any version of an adapted process is also an adapted process.
(2) The filtration is right-continuous, i.e.

$$
\bigcap_{s>t} \mathcal{F}_{s}^{B}=\mathcal{F}_{t}^{B}
$$

(the intersection of all "future information" is the "present information").

- Example: If B is a B.m. then the process $X_{t}=\sup _{0 \leq s \leq t} B_{s}$ is adapted to $\left\{\mathcal{F}_{t}^{B}, t \geq 0\right\}$ but the process $Y_{t}=B_{t+\varepsilon}$, with $\varepsilon>0$, is not.

Proposition

If $B=\left\{B_{t} ; t \geq 0\right\}$ is a B.m. and $\left\{\mathcal{F}_{t}^{B}, t \geq 0\right\}$ is the filtration generated by B, then the following processes are $\left\{\mathcal{F}_{t}^{B}, t \geq 0\right\}$-martingales:
(1) B_{t}.
(2) $B_{t}^{2}-t$.
(3) $\exp \left(a B_{t}-\frac{a^{2} t}{2}\right)$.(Homework: show that it is a martingale)

Proof.

1. Clearly B_{t} is \mathcal{F}_{t}^{B}-measurable and integrable. Moreover, $B_{t}-B_{s}$ is independent of \mathcal{F}_{s}^{B} (by the independence of the increments of B)

$$
E\left[B_{t}-B_{s} \mid \mathcal{F}_{s}^{B}\right]=E\left[B_{t}-B_{s}\right]=0
$$

2. Clearly, $B_{t}^{2}-t$ is \mathcal{F}_{t}^{B}-measurable and integrable. By the properties of B and of the conditional expectation:

$$
\begin{aligned}
E\left[B_{t}^{2}-t \mid \mathcal{F}_{s}^{B}\right] & =E\left[\left(B_{t}-B_{s}+B_{s}\right)^{2} \mid \mathcal{F}_{s}^{B}\right]-t \\
& =E\left[\left(B_{t}-B_{s}\right)^{2}\right]+2 B_{s} E\left[B_{t}-B_{s} \mid \mathcal{F}_{s}^{B}\right]+B_{s}^{2}-t \\
& =t-s+B_{s}^{2}-t=B_{s}^{2}-s
\end{aligned}
$$

Quadratic variation of Brownian motion

Proposition

Consider the interval $[0, t]$ and partitions of this interval
$0=t_{0}<t_{1}<\cdots<t_{n}=t$, with $t_{j}=\frac{t j}{n}$. Then

$$
E\left[\left(\sum_{k=1}^{n}\left(\Delta B_{k}\right)^{2}-t\right)^{2}\right] \rightarrow 0, \text { when } n \rightarrow \infty
$$

and therefore the quadratic variation of the B.m. is finite (it is t in the interval $[0, t]$).

Quadratic variation and total variation of the Brownian motion

Proof.

By the independence of the increments and the fact that $E\left[\left(\Delta B_{k}\right)^{2}\right]=\frac{t}{n}$, we have

$$
\begin{aligned}
& E\left[\left(\sum_{k=1}^{n}\left(\Delta B_{k}\right)^{2}-t\right)^{2}\right]=E\left[\left(\sum_{k=1}^{n}\left[\left(\Delta B_{k}\right)^{2}-\frac{t}{n}\right]\right)^{2}\right] \\
& =\sum_{k=1}^{n} E\left[\left(\Delta B_{k}\right)^{2}-\frac{t}{n}\right]^{2}
\end{aligned}
$$

Using $E\left[\left(B_{t}-B_{s}\right)^{2 j}\right]=\frac{(2 j)!}{2^{j \cdot j!}}(t-s)^{j}$, we have

$$
\begin{aligned}
& E\left[\left(\sum_{k=1}^{n}\left(\Delta B_{k}\right)^{2}-t\right)^{2}\right]=\sum_{j=1}^{n}\left[3\left(\frac{t}{n}\right)^{2}-2\left(\frac{t}{n}\right)^{2}+\left(\frac{t}{n}\right)^{2}\right] \\
& =2 \sum_{\substack{i=1 \\
(\text { ISEG })}}^{n}\left(\frac{t}{n}\right)^{2}=2 t\left|\frac{t}{n}\right| \underset{\substack{\text { Stochastic Calculus - part 4 }}}{\rightarrow \infty} 0 .
\end{aligned}
$$

Total variation of Brownian motion

Proposition

Consider the interval $[0, t]$ and partitions π of this interval:
$0=t_{0}<t_{1}<\cdots<t_{n}=t$. Then

$$
V:=\sup _{\pi} \sum_{k=1}^{n}\left|\Delta B_{k}\right|=+\infty,
$$

a.s. and therefore the total variation of the B.m. is infinite.

Proof.

By the continuity of the B.m. trajectories, and assuming finite V,

$$
\sum_{k=1}^{n}\left(\Delta B_{k}\right)^{2} \leq \sup _{k}\left|\Delta B_{k}\right| \sum_{k=1}^{n}\left|\Delta B_{k}\right| \leq V \sup _{k}\left|\Delta B_{k}\right| \underset{|\pi| \rightarrow 0}{\rightarrow} 0,
$$

but $\sum_{k=1}^{n}\left(\Delta B_{k}\right)^{2}$ converges in quadratic mean to t. Hence, $V=\infty$.

