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Brownian motion

Brownian motion

Definition
A s.p. B = {Bt ; t ≥ 0} is a Brownian motion if

1 B0 = 0.
2 B has independent and stationary increments.
3 If s < t, Bt − Bs is a r.v. with distribution N(0, t − s).
4 The process B has continuous trajectories.
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Brownian motion properties

Brownian motion properties

The B.m. is a Gaussian process. Indeed, The finite dimensional
distributions of B, i.e. the distribution of the vectors
(Bt1 ,Bt2 , . . . ,Btn ) is a multivariate Gaussian distribution.
E [Bt ] = 0 (consequence of condition 3).

Covariance function: c(s, t) = E [BsBt ] = min (s, t)

Proof.
If s ≤ t:

E [BsBt ] = E
[
Bs (Bt − Bs ) + B2s

]
= E [Bs (Bt − Bs )] + E

[
B2s
]

= E [Bs ]E [Bt − Bs ] + s = s.
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Brownian motion properties

A s.p. that satisfies properties 1,2 and 3 has a version with
continuous trajectories.

Proof.
Since (Bt − Bs ) ∼ N(0, t − s), it is possible to show that

E
[
(Bt − Bs )2k

]
=
(2k)!
2k · k !

(t − s)k .

In order to prove this formula, one can use integration by parts and the
mathematical induction principle in k (see Oksendal book) With k = 2:

E
[
(Bt − Bs )4

]
= 3 (t − s)2 .

Kolmogorov continuity criterion =⇒exists a version of B with cont. paths.

Exists a s.p. that satisfies conditions 1,2,3 and 4 (by the Kolmogorov
extension Theorem (see Oksendal book) and by the Kolmogorov
continuity criterion).
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Brownian motion properties

In the definition of Brownian motion, the probability space is
arbitrary. However, one can describe the structure of this space,
considering the map:

Ω→ C ([0,∞) ,R)
ω → B· (ω)

that associates to each ω a continuous function with values in R (the
trajectory). The probability space can therefore be identified with the
space of continuous functions C ([0,∞) ,R) equipped with the Borel
σ-algebra BC and with the probability induced by the previous map:
PW = P ◦ B−1 (this probability measure is called the Wiener
measure). The canonical probability space for the Brownian motion
is then the space (C ([0,∞) ,R) ,BC ,PW ). In this space, the random
variables are Xt (ω) = ω (t).
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Brownian motion properties

As a corollary to the Kolmogorov continuity criterion and the formula
E
[
(Bt − Bs )2k

]
= (2k )!

2k ·k ! (t − s)
k , we have that

|Bt (ω)− Bs (ω)| ≤ Gε (ω) |t − s |
1+α
p −ε ≤ Gε (ω) |t − s |

1
2−ε ,

for each ε > 0, where Gε (ω) is a r.v.

Intuitively: |Bt − Bs | ≈ |t − s |
1
2

Moreover: E
[
(Bt+∆t − Bt )2

]
= ∆t

Consider the interval [0, t] and partitions of this interval
0 = t0 < t1 < · · · < tn = t with tj = tj

n . Then:

1 The B.m. infinite total variation: ∑n
k=1 |∆Bk | ≈ n

( t
n

)1/2 → ∞,
when n→ ∞.

2 The B.m. has finite quadratic variation: ∑n
k=1 |∆Bk |

2 ≈ n
( t
n

)
= t.
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Brownian motion properties

The trajectories of the B.m. are not differentiable at any point (a.s.).
sketch of the proof:

Bt+∆t − Bt
∆t

≈
√

∆tZ
∆t

=
Z√
∆t
,

where Z ∼ N (0, 1).This ratio tends to ∞ when ∆t → 0 in

probability, since P
(∣∣∣ Z√

∆t

∣∣∣ > K)→ 1 for every K , when ∆t → 0.
Therefore, the derivative does not exist at t.

Self-similarity: If B = {Bt ; t ≥ 0} is a B.m. then, for any a > 0, the
process

{
a−1/2Bat ; t ≥ 0

}
is also a B.m.

Exercise: show that
{
a−1/2Bat ; t ≥ 0

}
satisfies the definition of

Brownian motion.
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Processes related to Brownian motion

Processes related to Brownian motion
Brownian motion with drift:

Yt = µt + σBt ,

with σ > 0 and µ real constants. Clearly, it is a Gaussian process
with E [Yt ] = µt and
c(s, t) = E [(Ys − E [Ys ]) (Yt − E [Yt ])] = σ2min (s, t) .
Geometric Brownian motion: (proposed by Samuelson, and later used
by Black, Scholes and Merton for modeling asset prices)

Xt = eµt+σBt .

The distribution of X is lognormal, i.e. ln (Xt ) has normal
distribution.
Brownian bridge:

Zt = Bt − tB1, t ∈ [0, 1] .
Note that Z1 = Z0 = 0. This is a Gaussian process with E [Zt ] = 0
and c(s, t) = E [ZsZt ] = min (s, t)− st.
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Martingales and the Brownian motion

Martingales and the Brownian motion

Consider a Brownian motion B = {Bt ; t ≥ 0} defined on (Ω,F ,P) .
The filtration generated by B is

{
FBt , t ≥ 0

}
with

FBt = σ {Bs , s ≤ t} .

Consider that FBt also contains the events of zero probability
(consider that N ∈ F0 if P(N) = 0).
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Martingales and the Brownian motion

Some consequences of the inclusion of events of probability 0 in the
filtration:

1 Any version of an adapted process is also an adapted process.
2 The filtration is right-continuous, i.e.⋂

s>t
FBs = FBt .

(the intersection of all “future information” is the “present
information”).

Example: If B is a B.m. then the process Xt = sup
0≤s≤t

Bs is adapted to{
FBt , t ≥ 0

}
but the process Yt = Bt+ε, with ε > 0, is not.
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Martingales and the Brownian motion

Proposition

If B = {Bt ; t ≥ 0} is a B.m. and
{
FBt , t ≥ 0

}
is the filtration generated

by B, then the following processes are
{
FBt , t ≥ 0

}
-martingales:

1 Bt .
2 B2t − t.
3 exp

(
aBt − a2t

2

)
.(Homework: show that it is a martingale)
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Martingales and the Brownian motion

Proof.

1. Clearly Bt is FBt -measurable and integrable. Moreover, Bt − Bs is
independent of FBs (by the independence of the increments of B)

E
[
Bt − Bs |FBs

]
= E [Bt − Bs ] = 0.

2. Clearly, B2t − t is FBt -measurable and integrable. By the properties of
B and of the conditional expectation:

E
[
B2t − t|FBs

]
= E

[
(Bt − Bs + Bs )2 |FBs

]
− t

= E
[
(Bt − Bs )2

]
+ 2BsE

[
Bt − Bs |FBs

]
+ B2s − t

= t − s + B2s − t = B2s − s.
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Quadratic variation and total variation of the Brownian motion

Quadratic variation of Brownian motion

Proposition

Consider the interval [0, t] and partitions of this interval
0 = t0 < t1 < · · · < tn = t, with tj = tj

n . Then

E

( n

∑
k=1

(∆Bk )
2 − t

)2→ 0, when n→ ∞.

and therefore the quadratic variation of the B.m. is finite (it is t in the
interval [0, t]).
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Quadratic variation and total variation of the Brownian motion

Proof.

By the independence of the increments and the fact that E
[
(∆Bk )

2
]
= t

n ,
we have

E

( n

∑
k=1

(∆Bk )
2 − t

)2 = E
( n

∑
k=1

[
(∆Bk )

2 − t
n

])2
=

n

∑
k=1

E
[
(∆Bk )

2 − t
n

]2
.

Using E
[
(Bt − Bs )2j

]
= (2j)!

2j ·j ! (t − s)
j , we have

E

( n

∑
k=1

(∆Bk )
2 − t

)2 = n

∑
j=1

[
3
(
t
n

)2
− 2

(
t
n

)2
+

(
t
n

)2]

= 2
n

∑
j=1

(
t
n

)2
= 2t

∣∣∣∣ tn
∣∣∣∣ →n→∞

0.
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Quadratic variation and total variation of the Brownian motion

Total variation of Brownian motion
Proposition

Consider the interval [0, t] and partitions π of this interval:
0 = t0 < t1 < · · · < tn = t. Then

V := sup
π

n

∑
k=1
|∆Bk | = +∞,

a.s. and therefore the total variation of the B.m. is infinite.

Proof.
By the continuity of the B.m. trajectories, and assuming finite V ,

n

∑
k=1

(∆Bk )
2 ≤ sup

k
|∆Bk |

n

∑
k=1
|∆Bk | ≤ V sup

k
|∆Bk | →

|π|→0
0,

but ∑n
k=1 (∆Bk )

2 converges in quadratic mean to t. Hence, V = ∞.
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