Stochastic Calculus - part 4

2016

(ISEG) Stochastic Calculus - part 4 2016 1 / 15

Brownian motion

Brownian motion

Definition

A s.p. $B = \{B_t; t \ge 0\}$ is a Brownian motion if

- 1 $B_0 = 0.$
- 2 B has independent and stationary increments.
- 3 If s < t, $B_t B_s$ is a r.v. with distribution N(0, t s).
- ④ The process B has continuous trajectories.

Brownian motion properties

- The B.m. is a Gaussian process. Indeed, The finite dimensional distributions of B, i.e. the distribution of the vectors (B_{t1}, B_{t2},..., B_{tn}) is a multivariate Gaussian distribution.
- $E[B_t] = 0$ (consequence of condition 3).
- Covariance function: $c(s, t) = E[B_s B_t] = \min(s, t)$

Proof.

If $s \leq t$:

$$E [B_s B_t] = E [B_s (B_t - B_s) + B_s^2]$$

= $E [B_s (B_t - B_s)] + E [B_s^2]$
= $E [B_s] E [B_t - B_s] + s = s.$

(ISEG)

Stochastic Calculus - part 4

Brownian motion properties

• A s.p. that satisfies properties 1,2 and 3 has a version with continuous trajectories.

Proof.

Since $(B_t - B_s) \sim N(0, t - s)$, it is possible to show that

$$E\left[\left(B_t-B_s\right)^{2k}\right]=\frac{(2k)!}{2^k\cdot k!}\left(t-s\right)^k.$$

In order to prove this formula, one can use integration by parts and the mathematical induction principle in k (see Oksendal book) With k = 2:

$$E\left[\left(B_t-B_s\right)^4\right]=3\left(t-s\right)^2.$$

Kolmogorov continuity criterion \implies exists a version of B with cont. paths.

• Exists a s.p. that satisfies conditions 1,2,3 and 4 (by the Kolmogorov extension Theorem (see Oksendal book) and by the Kolmogorov continuity criterion).

2016

3 / 15

 In the definition of Brownian motion, the probability space is arbitrary. However, one can describe the structure of this space, considering the map:

$$egin{aligned} \Omega &
ightarrow \mathcal{C}\left(\left[0,\infty
ight)
ight) \mathbb{R}
ight) \ \omega &
ightarrow \mathcal{B}_{\cdot}\left(\omega
ight) \end{aligned}$$

that associates to each ω a continuous function with values in \mathbb{R} (the trajectory). The probability space can therefore be identified with the space of continuous functions $C([0,\infty),\mathbb{R})$ equipped with the Borel σ -algebra \mathcal{B}_C and with the probability induced by the previous map: $P_W = P \circ B^{-1}$ (this probability measure is called the Wiener measure). The canonical probability space for the Brownian motion is then the space $(C([0,\infty),\mathbb{R}),\mathcal{B}_C,P_W)$. In this space, the random variables are $X_t(\omega) = \omega(t)$.

Stochastic Calculus - part 4

Brownian motion properties

• As a corollary to the Kolmogorov continuity criterion and the formula $E\left[\left(B_t - B_s\right)^{2k}\right] = \frac{(2k)!}{2^k \cdot k!} (t - s)^k$, we have that

$$|B_{t}(\omega) - B_{s}(\omega)| \leq G_{\varepsilon}(\omega) |t-s|^{\frac{1+\alpha}{p}-\varepsilon} \leq G_{\varepsilon}(\omega) |t-s|^{\frac{1}{2}-\varepsilon},$$

for each $\varepsilon > 0$, where $\mathcal{G}_{\varepsilon}(\omega)$ is a r.v.

- Intuitively: $|B_t B_s| \approx |t s|^{\frac{1}{2}}$
- Moreover: $E\left[\left(B_{t+\Delta t}-B_{t}\right)^{2}\right]=\Delta t$
- Consider the interval [0, t] and partitions of this interval $0 = t_0 < t_1 < \cdots < t_n = t$ with $t_j = \frac{t_j}{n}$. Then:
- **1** The B.m. infinite total variation: $\sum_{k=1}^{n} |\Delta B_k| \approx n \left(\frac{t}{n}\right)^{1/2} \to \infty$, when $n \to \infty$.

2 The B.m. has finite quadratic variation: $\sum_{k=1}^{n} |\Delta B_k|^2 \approx n\left(\frac{t}{n}\right) = t$.

5 5 / 15

2016

• The trajectories of the B.m. are not differentiable at any point (a.s.). sketch of the proof:

$$rac{B_{t+\Delta t}-B_t}{\Delta t}pproxrac{\sqrt{\Delta t}Z}{\Delta t}=rac{Z}{\sqrt{\Delta t}},$$

where $Z \sim N(0, 1)$. This ratio tends to ∞ when $\Delta t \to 0$ in probability, since $P\left(\left|\frac{Z}{\sqrt{\Delta t}}\right| > K\right) \to 1$ for every K, when $\Delta t \to 0$. Therefore, the derivative does not exist at t.

- Self-similarity: If $B = \{B_t; t \ge 0\}$ is a B.m. then, for any a > 0, the process $\{a^{-1/2}B_{at}; t \ge 0\}$ is also a B.m.
- Exercise: show that $\{a^{-1/2}B_{at}; t \ge 0\}$ satisfies the definition of Brownian motion.

(ISEG)

Stochastic Calculus - part 4

2016 7 / 15

Processes related to Brownian motion

Processes related to Brownian motion

Brownian motion with drift:

$$Y_t = \mu t + \sigma B_t$$
,

with $\sigma > 0$ and μ real constants. Clearly, it is a Gaussian process with $E[Y_t] = \mu t$ and

 $c(s,t) = E\left[\left(Y_{s} - E\left[Y_{s}\right]\right)\left(Y_{t} - E\left[Y_{t}\right]\right)\right] = \sigma^{2}\min\left(s,t\right).$

 Geometric Brownian motion: (proposed by Samuelson, and later used by Black, Scholes and Merton for modeling asset prices)

$$X_t = e^{\mu t + \sigma B_t}$$

The distribution of X is lognormal, i.e. $\ln(X_t)$ has normal distribution.

• Brownian bridge:

$$Z_t=B_t-tB_1$$
, $t\in [0,1]$.

Note that $Z_1 = Z_0 = 0$. This is a Gaussian process with $E[Z_t] = 0$ and $c(s, t) = E[Z_sZ_t] = \min(s, t) - st$.

(ISEG)

8

Martingales and the Brownian motion

- Consider a Brownian motion $B = \{B_t; t \ge 0\}$ defined on (Ω, \mathcal{F}, P) .
- The filtration generated by B is $\{\mathcal{F}^B_t, t \geq 0\}$ with

$$\mathcal{F}^{\mathcal{B}}_t = \sigma\left\{ \mathcal{B}_s, s \leq t
ight\}$$
 .

• Consider that \mathcal{F}_t^B also contains the events of zero probability (consider that $N \in \mathcal{F}_0$ if P(N) = 0).

(ISEG)

Stochastic Calculus - part 4

2016 9 / 15

Martingales and the Brownian motion

- Some consequences of the inclusion of events of probability 0 in the filtration:
 - Any version of an adapted process is also an adapted process.
 - 2 The filtration is right-continuous, i.e.

$$\bigcap_{s>t} \mathcal{F}^B_s = \mathcal{F}^B_t.$$

(the intersection of all "future information" is the "present information").

• Example: If B is a B.m. then the process $X_t = \sup_{0 \le s \le t} B_s$ is adapted to $\{\mathcal{F}_t^B, t \ge 0\}$ but the process $Y_t = B_{t+\varepsilon}$, with $\varepsilon > 0$, is not.

Proposition

If $B = \{B_t; t \ge 0\}$ is a B.m. and $\{\mathcal{F}_t^B, t \ge 0\}$ is the filtration generated by B, then the following processes are $\{\mathcal{F}_t^B, t \ge 0\}$ -martingales:

- 1 B_t . 2 $B_t^2 - t$.
- 3 $\exp\left(aB_t \frac{a^2t}{2}\right)$ (Homework: show that it is a martingale)

(ISEG)

Stochastic Calculus - part 4

11 2016 11 / 15

Martingales and the Brownian motion

Proof.

1. Clearly B_t is \mathcal{F}_t^B -measurable and integrable. Moreover, $B_t - B_s$ is independent of \mathcal{F}_s^B (by the independence of the increments of B)

$$E\left[B_t-B_s|\mathcal{F}_s^B\right]=E\left[B_t-B_s\right]=0.$$

2. Clearly, $B_t^2 - t$ is \mathcal{F}_t^B -measurable and integrable. By the properties of B and of the conditional expectation:

$$E\left[B_t^2 - t|\mathcal{F}_s^B\right] = E\left[\left(B_t - B_s + B_s\right)^2 |\mathcal{F}_s^B\right] - t$$
$$= E\left[\left(B_t - B_s\right)^2\right] + 2B_s E\left[B_t - B_s|\mathcal{F}_s^B\right] + B_s^2 - t$$
$$= t - s + B_s^2 - t = B_s^2 - s.$$

Quadratic variation of Brownian motion

Proposition

Consider the interval [0, t] and partitions of this interval $0 = t_0 < t_1 < \cdots < t_n = t$, with $t_j = \frac{t_j}{n}$. Then

$$E\left[\left(\sum_{k=1}^{n} (\Delta B_k)^2 - t\right)^2\right] \to 0, \text{ when } n \to \infty.$$

and therefore the quadratic variation of the B.m. is finite (it is t in the interval [0, t]).

(ISEG)

Stochastic Calculus - part 4

13 2016 13 / 15

14 / 15

Quadratic variation and total variation of the Brownian motion

Proof.

By the independence of the increments and the fact that $E\left[\left(\Delta B_k\right)^2\right] = \frac{t}{n}$, we have

$$E\left[\left(\sum_{k=1}^{n} (\Delta B_k)^2 - t\right)^2\right] = E\left[\left(\sum_{k=1}^{n} \left[(\Delta B_k)^2 - \frac{t}{n}\right]\right)^2\right]$$
$$= \sum_{k=1}^{n} E\left[(\Delta B_k)^2 - \frac{t}{n}\right]^2.$$

Using $E\left[\left(B_t - B_s\right)^{2j}\right] = \frac{(2j)!}{2^j \cdot j!} (t-s)^j$, we have

$$E\left[\left(\sum_{k=1}^{n} (\Delta B_k)^2 - t\right)^2\right] = \sum_{j=1}^{n} \left[3\left(\frac{t}{n}\right)^2 - 2\left(\frac{t}{n}\right)^2 + \left(\frac{t}{n}\right)^2\right]$$
$$= 2\sum_{\substack{i=1\\(\text{ISEG})}}^{n} \left(\frac{t}{n}\right)^2 = 2t \left|\frac{t}{n}\right| \underset{n \to \infty}{\to \infty} 0.$$
Stochastic Calculus - part 4 2016

Total variation of Brownian motion

Proposition

Consider the interval [0, t] and partitions π of this interval: $0 = t_0 < t_1 < \cdots < t_n = t$. Then

$$V:=\sup_{\pi}\sum_{k=1}^n |\Delta B_k|=+\infty$$
 ,

a.s. and therefore the total variation of the B.m. is infinite.

Proof.

By the continuity of the B.m. trajectories, and assuming finite V,

$$\sum_{k=1}^n \left(\Delta B_k
ight)^2 \leq \sup_k \left|\Delta B_k
ight| \sum_{k=1}^n \left|\Delta B_k
ight| \leq V \sup_k \left|\Delta B_k
ight| \stackrel{
ightarrow}{
ightarrow} 0,$$

but $\sum_{k=1}^{n} (\Delta B_k)^2$ converges in quadratic mean to t. Hence, $V = \infty$.

(ISEG)

Stochastic Calculus - part 4

2016 15 / 15