Stochastic Calculus - part 6

ISEG

2016

The stochastic integral as a process

The stochastic integral as a process

• Consider a stochastic process $u \in L^2_{a,T}$. Then, for each $t \in [0, T]$, the process $u\mathbf{1}_{[0,t]}$ also belongs to $L^2_{a,T}$ and we can define the indefinite stochastic integral:

$$\int_0^t u_s \mathrm{d}B_s := \int_0^T u_s \mathbf{1}_{[0,t]}(s) \, \mathrm{d}B_s.$$

• The stochastic process $\left\{ \int_0^t u_s \mathrm{d}B_s, \ 0 \leq t \leq T \right\}$ is the indefinite stochastic integral of u with respect to B.

- Main properties of the indefinite integral:
- ① Additivity: For any $a \le b \le c$, we have:

$$\int_a^b u_s \mathrm{d}B_s + \int_b^c u_s \mathrm{d}B_s = \int_a^c u_s \mathrm{d}B_s.$$

② Factorization: For a < b and $A \in \mathcal{F}_a$, we have:

$$\int_a^b \mathbf{1}_A u_s \mathrm{d}B_s = \mathbf{1}_A \int_a^b u_s \mathrm{d}B_s.$$

This property remains valid if we replace $\mathbf{1}_A$ by any bounded random variable which is also \mathcal{F}_a -measurable.

3 Martingale property: If $u \in L^2_{a,T}$ then the indefinite stochastic integral $M_t = \int_0^t u_s dB_s$ is a $\{\mathcal{F}_t\}$ -martingale.

The stochastic integral as a process

- 4. Continuity: If $u \in L^2_{a,T}$ then the indefinite stochastic integral $M_t = \int_0^t u_s dB_s$ has a version with continuous trajectories.
- 5. Maximal inequality for the indefinite stochastic integral: If $u \in L^2_{a,T}$ and $M_t = \int_0^t u_s dB_s$, then, for any $\lambda > 0$, we have

$$P\left[\sup_{0 < t < T} |M_t| > \lambda\right] \leq \frac{1}{\lambda^2} E\left[\int_0^T u_t^2 dt\right].$$

/ 1 /

- Proof of 1: Exercise (TPC).
- Proof of 3: Let $u^{(n)}$ be a sequence of simple processes such that

$$\lim_{n\to\infty} E\left[\int_0^T \left|u_t - u_t^{(n)}\right|^2 dt\right] = 0.$$

Let $M_n(t) = \int_0^t u_s^{(n)} dB_s$. and let ϕ_j be the value of $u^{(n)}$ in $(t_{j-1}, t_j]$, with $j = 1, \ldots, n$.

The stochastic integral as a process

If $s < t_k < t_{m-1} < t$, then:

(ISEG)

$$E\left[M_{n}\left(t
ight)-M_{n}\left(s
ight)\left|\mathcal{F}_{s}
ight] = E\left[\phi_{k}\left(B_{t_{k}}-B_{s}
ight)+\sum_{i=t+1}^{m-1}\phi_{j}\Delta B_{j}+\phi_{m}\left(B_{t}-B_{t_{m-1}}
ight)\left|\mathcal{F}_{s}
ight],$$

and by the properties of conditional expectation, we have:

$$= E\left[\phi_{k}\left(B_{t_{k}} - B_{s}\right) \middle| \mathcal{F}_{s}\right] + \sum_{j=k+1}^{m-1} E\left[E\left[\phi_{j}\Delta B_{j}\middle| \mathcal{F}_{j-1}\right] \middle| \mathcal{F}_{s}\right] + \\ + E\left[E\left[\phi_{m}\left(B_{t} - B_{t_{m-1}}\right) \middle| \mathcal{F}_{t_{m-1}}\right] \middle| \mathcal{F}_{s}\right].$$

Stochastic Calculus - part 6 2016 6 / 14

$$= \phi_k E \left[B_{t_k} - B_s | \mathcal{F}_s \right] + \sum_{j=k+1}^{m-1} E \left[\phi_j E \left[\Delta B_j | \mathcal{F}_{j-1} \right] | \mathcal{F}_s \right] + \\ + E \left[\phi_m E \left[B_t - B_{t_{m-1}} | \mathcal{F}_{t_{m-1}} \right] | \mathcal{F}_s \right]$$

and using the independence of Brownian motion increments, we get

$$= 0.$$

The mean square convergence implies mean square convergence of the conditional expectation, and therefore we have

$$E\left[M\left(t\right)-M\left(s\right)|\mathcal{F}_{s}\right]=0$$

and the indefinite stochastic integral is a martingale.

The stochastic integral as a process

Proof of 4: M_n (t) has clearly continuous trajectories, since it is the integral of a simple process (Exercíse: Prove this statement).
 Then, by the Doob maximal inequality applied to M_n - M_m, with p = 2, we obtain:

$$P\left[\sup_{0\leq t\leq T}\left|M_{n}\left(t\right)-M_{m}\left(t\right)\right|>\lambda\right]\leq \frac{1}{\lambda^{2}}E\left[\left|M_{n}\left(T\right)-M_{m}\left(T\right)\right|^{2}\right]$$

$$=\frac{1}{\lambda^{2}}E\left[\left(\int_{0}^{T}\left(u_{t}^{(n)}-u_{t}^{(m)}\right)dB_{t}\right)^{2}\right]$$

$$=\frac{1}{\lambda^{2}}E\left[\int_{0}^{T}\left|u_{t}^{(n)}-u^{(m)}\right|^{2}dt\right].\overset{n,m\to\infty}{\longrightarrow}0,$$

where we used the Itô isometry.

/ 1 4

We can therefore choose a subsequence n_k , $k=1,2,\ldots$, such that

$$P\left[\sup_{0 \le t \le T} \left| M_{n_{k+1}}(t) - M_{n_k}(t) \right| > 2^{-k} \right] \le 2^{-k}.$$

The stochastic integral as a process

The events:

$$A_{k}:=\left\{ \sup_{0\leq t\leq T}\left|M_{n_{k+1}}\left(t
ight)-M_{n_{k}}\left(t
ight)
ight|>2^{-k}
ight\}$$

satisfy

$$\sum_{k=1}^{\infty} P(A_k) < \infty.$$

Therefore, by the Borel-Cantelli Lemma, we have that $P\left(\limsup_{k}A_{k}\right)=0$ or

$$P\left[\sup_{0\leq t\leq T}\left|M_{n_{k+1}}\left(t\right)-M_{n_{k}}\left(t\right)\right|>2^{-k}\text{ for infinite values }k\right]=0.$$

(ISEG)

Therefore, for almost all $\omega \in \Omega$, exists a $k_1(\omega)$ such that

$$\sup_{0 \leq t \leq T} \left| M_{n_{k+1}}\left(t\right) - M_{n_{k}}\left(t\right) \right| \leq 2^{-k} \text{ for } k \geq k_{1}\left(\omega\right).$$

Hence, $M_{n_k}(t,\omega)$ is uniformly convergent on [0,T] a.s.and therefore the limit, which we denote by $J_t(\omega)$, is a continuous function of t. Finally, since $M_{n_k}(t,\cdot) \to M_t(\cdot)$ in mean square (or in $L^2(\Omega)$) for all t,then we must have

$$M_t = J_t$$
 a.s. and for all $t \in [0, T]$,

and the indefinite stochastic integral has a continuous version.

The stochastic integral as a process

Quadratic variation of the indefinite stochastic integral

• Let $u \in L^2_{a,T}$. Then

$$\sum_{j=1}^n \left(\int_{t_{j-1}}^{t_j} u_s dB_s \right)^2 \xrightarrow{L^1(\Omega)} \int_0^t u_s^2 ds,$$

when $n \to \infty$ and with $t_j := \frac{jt}{n}$.

12

Stochastic Calculus - part 6

Stochastic integral extension

- One can replace $\{\mathcal{F}_t\}$ (filtration generated by the Brownian motion) by a larger filtration \mathcal{H}_t such that the Brownian motion B_t is a \mathcal{H}_t -martingale.
- We can replace condition 2) $E\left[\int_0^T u_t^2 dt\right] < \infty$ in the definition of $L_{a,T}^2$ by the (weaker) condition: 2') $P\left[\int_0^T u_t^2 dt < \infty\right] = 1$.
- Let $L_{a,T}$ be the space of adapted and measurable processes u that satisfy condition 2'). This space is larger than $L_{a,T}^2$. The stochastic integral can be defined for processes $u \in L_{a,T}$ but, in this case, the stochastic integral may fail to have a mean value of zero and to satisfy the Itô isometry.

Extensions of the stochastic integral

Exercises:

 Exercise: Prove directly, by using the definition of stochastic integral, that

$$\int_0^t s dB_s = tB_t - \int_0^t B_s ds.$$

Sugestion: Note that

(ISEG)

$$\sum_{j} \Delta (s_{j}B_{j}) = \sum_{j} s_{j}\Delta B_{j} + \sum_{j} B_{j+1}\Delta s_{j}.$$

• Exercise: Consider a deterministic function g such that $\int_0^T g(s)^2 ds < \infty$. Show that the stochastic integral $\int_0^T g(s) dB_s$ is a Gaussian random variable and calculate its mean and variance.

1