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Abstract

Monte Carlo studies have shown that estimated asymptotic standard errors of the e!cient
two-step generalized method of moments (GMM) estimator can be severely downward biased
in small samples. The weight matrix used in the calculation of the e!cient two-step GMM
estimator is based on initial consistent parameter estimates. In this paper it is shown that the
extra variation due to the presence of these estimated parameters in the weight matrix accounts
for much of the di3erence between the �nite sample and the usual asymptotic variance of the
two-step GMM estimator, when the moment conditions used are linear in the parameters. This
di3erence can be estimated, resulting in a �nite sample corrected estimate of the variance. In
a Monte Carlo study of a panel data model it is shown that the corrected variance estimate
approximates the �nite sample variance well, leading to more accurate inference.
c© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

In Monte Carlo studies it has often been found that the estimated asymptotic stan-
dard errors of the e!cient, two-step, generalized method of moments (GMM) estimator
are severely downward biased in small samples, see e.g. Arellano and Bond (1991),
whereas the asymptotic standard errors of one-step GMM estimators are virtually
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unbiased. 1 One-step GMM estimators use weight matrices that are independent of
estimated parameters, whereas the e!cient two-step GMM estimator weighs the mo-
ment conditions by a consistent estimate of their covariance matrix. This weight matrix
is constructed using an initial consistent estimate of the parameters in the model. In this
paper it is shown that the extra variation due to the presence of these estimated parame-
ters in the e!cient weight matrix accounts for much of the di3erence between the �nite
sample and the estimated asymptotic variance for two-step GMM estimators based on
moment conditions that are linear in the parameters. This di3erence can be estimated,
resulting in �nite sample corrected estimates of the variance. The proposed feasible
correction to the estimate of the asymptotic variance is very simple to implement and
is shown to approximate the �nite sample variance of the two-step GMM estimator
well in a Monte Carlo study of a panel data model, leading to more accurate inference.
As this inference is based on a Wald test using the corrected variance estimate, it will
be reliable when the �nite sample distribution of the estimator is symmetric and the
estimator itself not seriously biased. The variance correction is illustrated using panel
data models and data from Arellano and Bond (1991) and Blundell and Bond (2000).
Other proposed solutions to the inference problem for e!cient GMM have been

based on nonlinear procedures, like the continuously updated GMM approach (Hansen
et al., 1996), or empirical likelihood (e.g Imbens et al., 1998). Alternatively, bootstrap
methods for GMM have been developed by Hall and Horowitz (1996) and Brown and
Newey (2002). Bond and Windmeijer (2002) evaluate these various test procedures in
the context of dynamic panel data models. They report problems with the bootstrap
procedures when the weight matrix is a poor estimate of the covariance matrix of
the moment conditions, which occurs for example when there are a large number
of overidentifying restrictions. In such cases inference using the normal asymptotic
approximation with the �nite sample corrected variance estimate proposed in this paper
can be more reliable, which is further illustrated in the Monte Carlo results below.
Section 2 analyses the inDuence of estimated parameters in the weight matrix of

e!cient two-step GMM estimators on their asymptotic variance, and derives a �nite
sample correction that is feasible to implement. Section 3 illustrates this for a bivariate
panel data model, and Section 4 presents Monte Carlo results for this model. The
e3ect of estimated weight matrix parameters on the �nite sample behaviour of the
Sargan/Hansen test of overidentifying restrictions is also considered in this section.
Section 5 presents the empirical applications. Section 6 presents some Monte Carlo
results that show that the Wald test using two-step estimation results and the corrected
variance estimate can have considerable more power than the Wald test based on the
one-step results. Section 7 presents some Monte Carlo results that show that inference
based on the �nite sample corrected variance can still be unreliable when the �nite
sample distribution of the two-step GMM estimator is asymmetric. Finally, Section 8
concludes.

1 The same observation has been made for alternative GMM estimators, like the continuously updated
and iterated GMM estimators (see Hansen et al., 1996). A �nite sample variance correction for the iterated
GMM is given in Windmeijer (2000).
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2. GMM and �nite sample variance correction

Consider the moment conditions

E[g(Xi; �0)] = E[gi(�0)] = 0;

where g(:) is vector of order q, Xi is a vector of variables for i = 1; : : : ; N , and �0 is
a parameter vector of order k, with k ¡q. The GMM estimator �̂ for �0 minimizes 2

QWN =

[
1
N

N∑
i=1

gi(�)

]′

W−1
N

[
1
N

N∑
i=1

gi(�)

]

with respect to �; where WN satis�es plimN→∞ WN=W , with W a positive de�nite ma-
trix. Regularity conditions are assumed such that limN→∞ (1=N )

∑N
i=1 gi(�)=E[gi(�)]

and (1=
√
N )

∑N
i=1 gi(�0) → N(0; �). Let �(�) = E[@gi(�)=@�′] and ��0 ≡ �(�0), then√

N (�̂ − �0) has a limiting normal distribution,
√
N (�̂ − �0) → N(0; VW ), where

VW = (�′
�0W

−1��0 )
−1�′

�0W
−1�W−1��0 (�

′
�0W

−1��0 )
−1: (2.1)

The e!cient two-step GMM estimator, denoted �̂2, is based on a weight matrix that
satis�es plimN→∞ WN =�, with VW = (�′

�0�
−1��0 )

−1. A weight matrix that satis�es
this property is given by

WN (�̂1) =
1
N

N∑
i=1

gi(�̂1)gi(�̂1)′; (2.2)

where �̂1 is an initial consistent estimator for �0.
Let

Kg(�) =
1
N

N∑
i=1

gi(�);

C(�) =
@ Kg(�)
@�′ ;

G(�) =
@C(�)
@�

=



@C(�)
@�1

@C(�)
@�2
...

@C(�)
@�k


2 See Hansen (1982).
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and

b�0 ;WN =
1
2
@QWN

@�
|�0 = C(�0)′W−1

N Kg(�0);

A�0 ;WN =
1
2
@2QWN

@�@�′ |�0 = C(�0)′W−1
N C(�0) + G(�0)′(Ik ⊗ W−1

N Kg(�0)):

A standard �rst-order Taylor series approximation of �̂2 around �0, conditional on
WN (�̂1), then results in

�̂2 − �0 = −A−1
�0 ;WN (�̂1)

b�0 ;WN (�̂1)
+ Op(N−1)

and an estimate for the asymptotic variance of �̂2 is given by

v̂ar(�̂2) =
1
N

A−1
�̂2 ;WN (�̂1)

C(�̂2)′W−1
N (�̂1)C(�̂2)A−1

�̂2 ;WN (�̂1)
:

However, a further expansion of �̂1 around �0 results in

�̂2 − �0 = −A−1
�0 ;WN (�0)

b�0 ;WN (�0) + D�0 ;WN (�0)(�̂1 − �0) + Op(N−1); (2.3)

where

WN (�0) =
1
N

N∑
i=1

gi(�0)gi(�0)′

and

D�0 ;WN (�0) =
@
@�′ (−A−1

�0 ;WN (�)
b�0 ;WN (�))|�0

is a k × k matrix. The jth column of D�0 ;WN (�0) is given by 3

D�0 ;WN (�0)[:; j] = −A−1
�0 ;WN (�0)

F1j;�0 ;WN (�0)A
−1
�0 ;WN (�0)

b�0 ;WN (�0) + F2j;�0 ;WN (�0); (2.4)

where

F1j;�0 ;WN (�0) =C(�0)′W−1
N (�0)

@WN (�)
@�j

|�0W−1
N (�0)C(�0)

+G(�0)′
(
Ik ⊗ W−1

N (�0)
@WN (�)
@�j

|�0W−1
N (�0) Kg(�0)

)
;

F2j;�0 ;WN (�0) = A−1
�0 ;WN (�0)

C(�0)′W−1
N (�0)

@WN (�)
@�j

|�0W−1
N (�0) Kg(�0)

and

@WN (�)
@�j

=
1
N

N∑
i=1

(
@gi(�)
@�j

gi(�)′ + gi(�)
@gi(�)′

@�j

)
:

The �rst term of D�0 ;WN (�0) is a function of A−1
�0 ;WN (�0)

b�0 ;WN (�0) which is the bias of
an infeasible GMM estimator that uses an e!cient weight matrix that is based on

3 Using results given in Magnus and Neudecker (1988, p. 151).
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the true parameters �0. This bias tends to be small and will generally not grow with
the number of moment conditions, see Newey and Smith (2000). The second term,
F2j;�0 ;WN (�0), which in general does increase with the number of moment conditions,
will therefore dominate.
Let �̂1 be a one-step GMM estimator that uses a weight matrix WN that does not

depend on estimated parameters. An estimate of the variance of �̂2 that incorporates
the term involving the one-step parameter estimates used in the weight matrix can then
be obtained as

v̂arc(�̂2) =
1
N

A−1
�̂2 ;WN (�̂1)

C(�̂2)′W−1
N (�̂1)C(�̂2)A−1

�̂2 ;WN (�̂1)

+
1
N

D�̂2 ;WN (�̂1)
A−1
�̂1 ;WN

C(�̂1)′W−1
N C(�̂2)A−1

�̂2 ;WN (�̂1)

+
1
N

A−1
�̂2 ;WN (�̂1)

C(�̂2)′W−1
N C(�̂1)A−1

�̂1 ;WN
D′

�̂2 ;WN (�̂1)

+D�̂2 ;WN (�̂1)
v̂ar(�̂1)D′

�̂2 ;WN (�̂1)
; (2.5)

where D�̂2 ;WN (�̂1)
is as de�ned in (2.4) with �0 and WN (�0) substituted by �̂2 and

WN (�̂1), respectively, 4 and the estimated variance of the one-step estimator is given
by

v̂ar(�̂1) =
1
N

A−1
�̂1 ;WN

C(�̂1)′W−1
N WN (�̂1)W−1

N C(�̂1)A−1
�̂1 ;WN

:

The term D�0 ;W (�0)(�̂1 − �0) in (2.3) is itself Op(N−1) and in this general setting,
incorporating non-linear models and/or non-linear moment conditions, whether taking
account of it will improve the estimation of the small sample variance substantially
depends on the other remainder terms which are of the same order.

2.1. Linear moment conditions

An improvement of the variance estimate will be obtained in models where all the
moment conditions used are linear in the parameters, as in this case

�̂2 − �0 =−(C′W−1
N (�̂1)C)−1C′W−1

N (�̂1) Kg(�0)

=−(C′W−1
N (�0)C)−1C′W−1

N (�0) Kg(�0)

+D�0 ;WN (�0)(�̂1 − �0) + op(N−1);

4 As A−1
�̂2 ;WN (�̂1)

b�̂2 ;WN (�̂1)
= 0, the jth column of D�̂2 ;WN (�̂1)

is equal to F2j; �̂2 ;WN (�̂1)
.
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where the jth column of D�0 ;WN (�0) is given by

D�0 ;WN (�0)[:; j] =−(C′W−1
N (�0)C)−1C′W−1

N (�0)
@WN (�)
@�j

|�0W−1
N (�0)C

×(C′W−1
N (�0)C)−1C′W−1

N (�0) Kg(�0)

+(C′W−1
N (�0)C)−1C′W−1

N (�0)
@WN (�)
@�j

|�0W−1
N (�0) Kg(�0):

In this case taking account of the Op(N−1) term D�0 ;WN (�0)(�̂1 − �0) will result in a
more accurate approximation of the variance of �̂2 in �nite samples.
A one-step linear estimator satis�es

�̂1 − �0 = −(C′W−1
N C)−1C′W−1

N Kg(�0)

and the �nite sample corrected estimate of the variance of �̂2 can be obtained as

v̂arc(�̂2) =
1
N

(C′W−1
N (�̂1)C)−1

+
1
N

(D�̂2 ;WN (�̂1)
(C′W−1

N (�̂1)C)−1 + (C′W−1
N (�̂1)C)−1D′

�̂2 ;WN (�̂1)
)

+D�̂2 ;WN (�̂1)
v̂ar(�̂1)D′

�̂2 ;WN (�̂1)
; (2.6)

where the �rst term is the conventional estimate of the asymptotic variance; 5

D�̂2 ;WN (�̂1)
[:; j] = (C′W−1

N (�̂1)C)−1C′W−1
N (�̂1)

@WN (�)
@�j

|�̂1W−1
N (�̂1) Kg(�̂2)

and

v̂ar(�̂1) =
1
N

(C′W−1
N C)−1C′W−1

N WN (�̂1)W−1
N C(C′W−1

N C)−1:

2.2. Discussion

The above derivation of the �nite sample variance correction for linear e!cient
two-step GMM is similar in spirit to the variance adjustment for models with generated
regressors where one of the explanatory variables is a function of estimated parameters,
see e.g. Pagan (1984) and Murphy and Topel (1985). A crucial di3erence is that the
presence of generated regressors a3ects the variance of the limiting distribution of an
estimator, whereas the estimated parameters in the weight matrix for e!cient two-step
GMM does not a3ect the limiting distribution of the estimator, as

√
N (�̂2 − �0) =−

√
N (C′W−1

N (�0)C)−1C′W−1
N (�0) Kg(�0)

+D�0 ;WN (�0)

√
N (�̂1 − �0) + op(N−1=2) (2.7)

5 Note that D�̂2 ;WN (�̂1)
v̂ar(�̂1)D′

�̂2 ;WN (�̂1)
is of lower order than the covariance term (1=N )

D�̂2 ;WN (�̂1)
(C′W−1

N (�̂1)C)−1, and is of the same order as the remainder term.
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and plimN→∞ D�0 ;WN (�0) =0. The variance correction then simply incorporates the �nite
sample value of D�̂2 ;WN (�̂1)

which is not equal to zero, unless the model is just identi�ed.
This type of expansion would therefore not work in settings like just identi�ed feasible
GLS estimation that uses parameter estimates in the calculation of the variance matrix
of the residuals. Related to this is the derivation by Koenker et al. (1994) of exact
moment expansions for a minimum distance estimator on the basis of OLS estimated
parameters. Their �rst term in the expansion for the variance of

√
N (�̂ − �0) is of

order O(N−1). They do not address the issue of the exact �nite sample distribution
of the estimator, which is also beyond the scope of this paper. Note that expansion
(2.7) is not a higher order Edgeworth approximation. Based on the standard �rst-order
asymptotic approximation, the limiting distribution of �̂2 is normal with a particular
variance. Correction (2.6) will provide a better �nite sample estimate of this variance
by taking into account the �nite sample variation of �̂1. If �0 were known for the
estimation of the e!cient weight matrix, this adjustment would clearly not occur.
A related issue is the �nite sample bias of the GMM estimator itself. Altonji and

Segal (1996) �nd large �nite sample biases for their optimal minimum distance es-
timator of the variance of certain distributions, using grouped observations. This bias
is due to the fact that the second order moments are correlated with the fourth or-
der moments in the e!cient weight matrix. Newey and Smith (2000) use higher order
asymptotic expansions to show that in some cases the estimation of the e!cient weight
matrix may be a signi�cant source of bias. This bias is not present when the third mo-
ments of gi(�0) are zero. Further sources of bias are the degree of overidenti�cation
in the model, with the bias increasing with increasing numbers of instruments, given
the number of estimated parameters, see for example Hahn et al. (2001), 6 and weak
instruments, see for example Bound et al. (1995) and Staiger and Stock (1997). It
is clear that the �nite sample variance correction will only be useful for improving
inference if the GMM estimator itself does not su3er from a large �nite sample bias
in a given application, and when the �nite sample distribution of the GMM estimator
is symmetric. In the next sections, the �nite sample variance correction is evaluated
for a simple linear panel data model by means of a Monte Carlo study with a design
for which the GMM estimator does not have a large �nite sample bias and is sym-
metrically distributed. Section 6 provides an example of an asymmetrically distributed
GMM estimator.

3. A panel data model

Consider the panel data model speci�cation

yit = �0xit + uit ;

uit =  i + vit

6 Koenker and Machado (1999) investigate the asymptotic behaviour of linear GMM estimators when the
number of moment conditions increases with the sample size. They establish that a su!cient condition for
the usual limiting distribution of the GMM estimator is that the number of moment conditions is of the
order o (N−1=3).
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for i=1; : : : ; N , t=1; : : : ; T . The single regressor xit is correlated with  i and predeter-
mined with respect to vit , meaning that E(xitvit+s)=0, s=0; : : : ; T−t, but E(xitvit−r) �= 0,
r = 1; : : : ; t − 1. A commonly used estimator is the GMM estimator in the model in
�rst di3erences, see Arellano and Bond (1991),

Oyit = �0Oxit +Ouit ; t = 2; : : : ; T

with T (T − 1)=2 sequential instruments

Zi =


xi1 0 0 0 0 0

0 xi1 xi2 0 0 0

. . .

0 0 0 xi1 : : : xiT−1

 :

The moment conditions are then given by E(Z ′
iOui) = 0, where Oui is the (T − 1)

vector (Oui2; : : : ;OuiT )′. The covariance matrix of the moment conditions is denoted
�.
A one-step GMM estimator is given by

�̂1 = (Ox′ZW−1
N Z ′Ox)−1Ox′ZW−1

N Z ′Oy;

where Z ′ is the T (T −1)=2×N (T −1) matrix (Z ′
1; Z

′
2; : : : ; Z

′
N ), Oxi is the (T −1) vector

(Oxi2; : : : ;OxiT )′, Oyi is the (T−1) vector (Oyi2; : : : ;OyiT )′, Ox and Oy are N (T−1)
vectors (Ox′

1;Ox′
2; : : : ;Ox′

N )
′ and (Oy′

1;Oy′
2; : : : ;Oy′

N )
′, respectively, and W−1

N is an
initial positive de�nite weight matrix. For example, 2SLS sets WN = (1=N )Z ′Z . An
initial weight matrix that is e!cient when the vit are i.i.d. is WN =(1=N )

∑N
i=1 Z ′

i HZi,
where H is a matrix with 2’s on the main diagonal, −1’s on the �rst o3-diagonals and
zeros elsewhere.
The asymptotic variance of �̂1 is estimated by

v̂ar(�̂1) = N (Ox′ZW−1
N Z ′Ox)−1Ox′ZW−1

N WN (�̂1)W−1
N Z ′Ox(Ox′ZW−1

N Z ′Ox)−1;

where

WN (�̂1) =
1
N

N∑
i=1

Z ′
iOû i1Oû′

i1Zi;

Oû i1 =Oyi − �̂1Oxi

with WN (�̂1) a consistent estimate of �. Given the estimate �̂1, the e!cient two-step
GMM estimator is given by

�̂2 =
(
Ox′ZW−1

N

(
�̂1

)
Z ′Ox

)−1
Ox′ZW−1

N

(
�̂1

)
Z ′Oy:
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Standard theory implies that the asymptotic variance of �̂2 is estimated by

v̂ar(�̂2) = N (Ox′ZW−1
N (�̂1)Z ′Ox)−1; (3.1)

which is an estimate of (1=N )(�′
ZO x�

−1�ZO x)−1, with �ZO x = plimN→∞ (1=N )Z ′Ox.
Applying the Taylor series expansion developed in the previous section to account

for the presence of �̂1 in the estimated weight matrix results in

�̂2 − �0 = (Ox′ZW−1
N (�0)Z ′Ox)−1Ox′ZW−1

N (�0)Z ′Ou

+D�0 ;WN (�0)(�̂1 − �0) + op(N−1); (3.2)

where Ou is the N (T − 1) vector (Ou′
1;Ou′

2; : : : ;Ou′
N )

′, and D�0 ;WN (�0) is given by

D�0 ;WN (�0) = (Ox′ZW−1
N (�0)Z ′Ox)−1Ox′ZW−1

N (�0)
@WN (�)

@�
|�0W−1

N (�0)Z ′Ox

×(Ox′ZW−1
N (�0)Z ′Ox)−1Ox′ZW−1

N (�0)Z ′Ou

−(Ox′ZW−1
N (�0)Z ′Ox)−1Ox′ZW−1

N (�0)
@WN (�)

@�
|�0W−1

N (�0)Z ′Ou

with

WN (�0) =
1
N

N∑
i=1

Z ′
iOuiOu′

iZi

and

@WN (�)
@�

|�0 = − 1
N

N∑
i=1

Z ′
i (OxiOu′

i +OuiOx′
i)Zi:

A small sample bias corrected estimate of the variance of �̂2 can then be obtained as

v̂arc(�̂2) =N (Ox′ZW−1
N (�̂1)Z ′Ox)−1

+ND�̂2 ;WN (�̂1)
(Ox′ZW−1

N (�̂1)Z ′Ox)−1

+N (Ox′ZW−1
N (�̂1)Z ′Ox)−1D′

�̂2 ;WN (�̂1)

+D�̂2 ;WN (�̂1)
v̂ar(�̂1)D′

�̂2 ;WN (�̂1)
: (3.3)

Again, as (Ox′ZW−1
N (�̂1)Z ′Ox)−1Ox′ZW−1

N (�̂1)Z ′Oû 2=0, where Oû 2=Oyi− �̂2Ox,
the expression of D�̂2 ;WN (�̂1)

simpli�es to

D�̂2 ;WN (�̂1)
= −(Ox′ZW−1

N (�̂1)Z ′Ox)−1Ox′ZW−1
N (�̂1)

@WN (�)
@�

|�̂1W−1
N (�̂1)Z ′Oû 2:
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4. Monte Carlo results

A panel data process is generated as

yit = �0xit +  i + vit ;

xit = 0:5xit−1 +  i + 0:5vit−1 + 'it ;

 i ∼ N(0; 1) 'it ∼ N(0; 1);

vit = (i)t!it !it ∼ (+21 − 1);

(i ∼ U[0:5; 1:5] )t = 0:5 + 0:1(t − 1):

Fifty time periods are generated, with )t=0:5 for t=−49; : : : ; 0 and xi;−49 ∼ N ( i=0:5+
1=0:75), before the estimation sample is drawn. This model design corresponds to the
features of the panel data model described in the previous section, the xit are correlated
with the unobserved heterogeneity  i and are predetermined with respect to vit . The
design is further such that the vit are skewed and heteroscedastic over both time t and
individuals i. The parameters are estimated by �rst di3erenced GMM as described in
the previous section.
Table 1 reports estimation results for �0=1, N=100, T=4 and 8. Reported are means

and standard deviations of a one-step GMM estimator with WN = (1=N )
∑N

i=1 Z ′
i HZi,

which is not e!cient in this case, the two-step GMM estimator using WN (�̂1), and
an infeasible estimator that uses the true parameter �0 to evaluate the weight matrix,
WN (�0). This latter estimator is denoted �̂WN (�0). For all three GMM estimators, means
of the conventional asymptotic standard errors are reported, denoted se�̂1, se�̂2, and

Table 1
Monte Carlo results

T = 4 T = 8

�̂1 0.9800 0.9784
sd�̂1 0.1534 0.0832
se�̂1 0.1471 0.0809

�̂2 0.9868 0.9810
sd�̂2 0.1423 0.0721
se�̂2 0.1244 0.0477
sec�̂2 0.1391 0.0715

�̂WN (�0) 0.9895 0.9915

sd�̂WN (�0) 0.1278 0.0481
se�̂WN (�0) 0.1229 0.0474

Notes: N = 100, �0 = 1, means and standard deviations of 10,000 replications. sec�̂2 is the �nite sample
corrected estimated standard error of �̂2. �̂WN (�0) is the GMM estimator for �0 using WN (�0).
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se�̂WN (�0). The means of the feasible estimated corrected standard errors, calculated
from (3.3), is denoted sec�̂2.
The means of the estimates show that the GMM estimators are only slightly down-

ward biased, less so for the two-step GMM than for the one-step GMM, whereas the
infeasible GMM estimator has the smallest bias. This is due in part to the fact that the
parameters in the data generating process for xit are chosen such that there is no weak
instrument problem and so the lagged values of xit are informative for Oxit . Also, the
correlation between the moments and the estimated weight matrix is small in this case,
inducing only a small �nite sample bias in the mean. Increasing T from 4 to 8, and
the number of instruments from 6 to 28, has only a very small impact on the bias of
the estimators.
The estimated asymptotic standard errors of the GMM estimators that do not have

estimated parameters present in the weight matrix, �̂1 and �̂WN (�0), are on average only
slightly smaller than their standard deviations, less so at T = 8 than at T = 4. For the
two-step GMM estimator, however, the means of the estimated asymptotic standard
errors are considerably smaller than the standard deviations of �̂2, especially at T =8.
At T = 4, se�̂2 accounts for 87% of sd�̂2, whereas when T = 8, se�̂2 accounts for
only 66% of sd�̂2. When T = 8, there are 28 instruments, whereas there are only 6
instruments when T = 4.
The standard deviations of the Taylor series expansion (3.2) evaluated at the true

parameter values are given by 0.1414 and 0.0717 for T = 4 and 8, respectively, and
therefore almost equal to the standard deviations of �̂2. The standard deviations of
the leading term in (3.2), (Ox′ZW−1

N (�0)Z ′Ox)−1Ox′ZW−1
N (�0)Z ′Ou, are given by

sd�̂WN (�0), and so the term involving (�̂1 − �0) accounts for 10% and 33% of the
standard deviation of �̂2 for T=4 and 8, respectively. As can be seen, the conventional
estimated asymptotic standard error of �̂2, se�̂2, is in fact a good estimate of the
standard deviation of the estimator �̂WN (�0) rather than the standard deviation of �̂2,
and the di3erence between sd�̂2 and se�̂2 is due to the presence of the estimated �̂1

in the weight matrix.
The means of the feasible estimated standard errors that correct for this extra vari-

ation due to the estimation of weight matrix parameters, as estimated from (3.3), are
also very close to the standard deviations of �̂2. The means of the corrected standard
errors now account for 98% and 99% of the standard deviation of �̂2, for T = 4 and
8, respectively.
In order to evaluate the behavior of the Wald test statistics for the test H0: �0 = 1,

based on the one-step and two-step estimators and associated standard errors,
Figs. 1 and 2 show p-value plots (see Davidson and MacKinnon, 1996) for these
Wald statistics, for T = 4 and 8, respectively. W1 is based on the one-step estimator
and its asymptotic standard error. W2 is based on the conventional two-step estimation
results, whereas W2C uses the corrected variance estimate. Also shown are the p-value
plots for the symmetric t-tests using critical values from the bootstrap procedure for
two-step GMM proposed by Hall and Horowitz (1996), on the basis of 500 boot-
strap samples per Monte Carlo replication. This test procedure is denoted W2HH in the
graphs.
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Fig. 1. p-Value plot, H0: �0 = 1, T = 4.

Fig. 2. p-Value plot, H0: �0 = 1, T = 8.
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For T = 4, W2 is moderately oversized, whereas W1 and W2C have good size prop-
erties. Perhaps surprisingly, using the bootstrap method results in a test that is quite
severely undersized. For T =8, W2 is severely oversized. Using the corrected standard
errors improves the size of the test dramatically and W2C is only slightly oversized. W1

is more oversized here than W2C as the one-step estimator has a larger small sample
bias. It is clear that using the corrected variance estimate for the two-step estimator im-
proves the �nite sample inference considerably. The Hall–Horowitz bootstrap procedure
again results in a severely undersized test. 7 Similar results were found by Bond and
Windmeijer (2002) in their analysis of various test procedures for dynamic panel data
models estimated by GMM. They suggest that the reliability of this bootstrap proce-
dure is related to how well the weight matrix estimates the covariance of the moment
conditions, so that the performance of the bootstrap deteriorates with an increasing
number of moment conditions. That there is a problem with estimating the covariance
of the moment conditions in this case will also become apparent in Section 4.1 where
the behaviour of the test of overidentifying restrictions is considered. The fragility of
this bootstrap procedure is clearly an issue that merits further future investigation.
Due to the fact that the bias of the GMM estimator is related to the number of

overidentifying restrictions, it could in practice be better not to use the full set of 28
instruments in the case of T = 8, see e.g. Tauchen (1986) and Koenker and Machado
(1999). For example, the instruments used in each of the �rst-di3erenced equations
could be limited to (at most) xit−1 and xit−2. In the Monte Carlo experiment, reducing
the total number of instruments to 13 in this way, results in a mean of the estimated
two-step parameters of 0.9886, thus decreasing the average bias of the two-step GMM
estimator by 0.0076, or 40%. The empirical standard deviation for this estimator is
0.0774, which is an increase of about 7.5%. The mean of the usual estimated asymptotic
standard errors is now 0.0644, which is much closer to the empirical standard deviation
than for the GMM estimator that uses all the moment conditions. The mean of the �nite
sample corrected standard errors is 0.0775, almost identical to the empirical standard
deviation.
Fig. 3 shows the p-value plot for the Wald statistics based on the GMM estimators

that use this reduced instrument set. W2 performs better than in the case of the full
instrument set, but is still severely oversized. W1 and W2C have good size properties
and they are less oversized than in the case of the full instrument set. Again, W2HH is
undersized.

4.1. The Sargan/Hansen test of overidentifying restrictions

The test statistic of overidentifying restrictions in the simple linear panel data model
based on the two-step GMM estimator is given by

SWN (�̂1)
=

1
N

Oû′
2ZW

−1
N (�̂1)Z ′Oû 2;

7 An alternative bootstrap procedure proposed by Brown and Newey (2002) results in almost identical
size properties of the test in these experiments.
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Fig. 3. p-Value plot, H0: �0 = 1, T = 8, reduced instrument set.

whereas the test statistic of overidentifying restrictions based on the infeasible GMM
estimator �̂WN (�0) is given by

SWN (�0) =
1
N

Oû′
0ZW

−1
N (�0)Z ′Oû 0;

where Oû 0 = Oy − �̂WN (�0)Ox. Under the null that the moment conditions are valid,
SWN (�0) and SWN (�̂1)

both have a limiting +2q−k distribution.
Figs. 4 and 5 depict the p-value plots for the Sargan/Hansen tests for over-

identi�cation based on the two-step and infeasible GMM estimators from the Monte
Carlo experiments described in Section 4, for T = 4 and 8, respectively. In the �g-
ures SWN (�̂1)

is denoted SAR2 and SWN (�0) is denoted SAR0. It is clear that the two
statistics have almost exactly the same size properties, and so the size performance
of the Sargan/Hansen test based on the two-step GMM estimator is not a3ected by
the estimation of �̂1 used to construct the weight matrix. For T = 8, when there are
many overidentifying restrictions, both test statistics are severely undersized. 8 This is
due to the fact that both WN (�0) and WN (�̂1) are poor estimates of the covariance
of the moment conditions in this case, which has a much more profound impact on

8 This has also been documented by Bowsher (2002), who shows that the test of overidentifying re-
strictions becomes severely undersized with an increasing number of overidentifying moment conditions in
autoregressive panel data models with normal errors. In contrast, Ziliak (1997) �nds the test for overiden-
tifying restrictions to be oversized within the context of a linear panel data setting with increasing number
of instruments, using data from the PSID and bootstrap Monte Carlo methods.
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Fig. 4. p-Value plot, T = 4.

Fig. 5. p-Value plot, T = 8.
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the distribution of the test of overidentifying restrictions than on the distribution of �̂2

itself, as is clear from Fig. 2. 9

The relation between SWN (�̂1)
and SWN (�0) is given by

SWN (�̂1)
=Ou′ZW−1

N (�̂1)Z ′Ou

−Ou′ZW−1
N (�̂1)Z ′Ox(Ox′ZW−1

N (�̂1)Z ′Ox)−1Ox′ZW−1
N (�̂1)Z ′Ou

=Ou′ZW−1
N (�0)Z ′Ou

−Ou′ZW−1
N (�0)Z ′Ox(Ox′ZW−1

N (�0)Z ′Ox)−1Ox′ZW−1
N (�0)Z ′Ou

+P�0 ;WN (�0)(�̂1 − �0) + op(N−1=2)

= SWN (�0) + P�0 ;WN (�0)(�̂1 − �0) + op(N−1=2);

where P�0 ;WN (�0) is given by

−Ou′ZW−1
N (�0)

@WN (�)
@�

|�0W−1
N (�0)Z ′Ou

+2Ou′ZW−1
N (�0)

@WN (�)
@�

|�0W−1
N (�0)Z ′Ox(Ox′ZW−1

N (�0)Z ′Ox)−1

×Ox′ZW−1
N (�0)Z ′Ou

−Ou′ZW−1
N (�0)Z ′Ox(Ox′ZW−1

N (�0)Z ′Ox)−1Ox′ZW−1
N (�0)

× @WN (�)
@�

|�0W−1
N (�0)Z ′Ox

× (Ox′ZW−1
N (�0)Z ′Ox)−1Ox′ZW−1

N (�0)Z ′Ou:

P�0 ;WN (�0)(�̂1−�0) is Op(N−1=2). However, the terms tend to cancel each other out. For
example, in the Monte Carlo simulations, the means of the three terms of P�0 ;WN (�0)(�̂1−
�0) are given by −0:346, 0.384 and −0:098 for T =4, and −1:035, 0.958 and −0:067
for T = 8.
As the size properties of the test deteriorates with the number of overidentifying

restrictions, Fig. 6 shows the p-value plots for the test statistics based on GMM es-
timators that use the reduced instrument set xit−1 and xit−2 per time period. As also
noted by Bowsher (2002), the size properties of these tests improve upon those based
on the full instrument set, but here the tests remain undersized. As before, the size
properties of the two statistics are virtually identical.

9 Asymmetries in the �nite sample distribution of Z ′Oû2 will also lead to poor properties of the Sar-
gan/Hansen test.
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Fig. 6. p-Value plot, T = 8, reduced instrument set.

5. Empirical illustrations

In this section results of the two-step GMM variance correction are illustrated for
two examples from the literature. The �rst example is taken from Arellano and Bond
(1991), who used a sample of 140 UK quoted �rms over the years 1976–1984. The
sample is unbalanced with observations varying between 7 and 9 records per company.
Arellano and Bond (1991) estimated dynamic employment equations, one of which
was speci�ed as

nit = 01nit−1 + 02nit−2 + �wit + �1wit−1 + 2kit + (ysit + (1ysit−1 + 3t +  i + uit ;

where nit is the logarithm of UK employment in company i at the end of period t, wit

is the log of the real product wage, kit is the log of gross capital and ysit is the log
of industry output. The model is estimated in �rst di3erences, with an instrument set
of the form

Zi =


1 ni1 ni2 0 0 0 0 · · · 0 0 · · · 0 Ox′

i4

0 0 0 1 ni1 ni2 ni3 0 0 0 Ox′
i5

...
...

. . .
...

0 0 0 0 0 0 0 · · · 1 ni1 · · · ni7 Ox′
i9

 ;
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Table 2
Estimation results for Arellano and Bond (1991) data

One step Two step

Coe3 Std err Coe3 Std err Std errc

nit−1 0.5346 0.1664 0.4742 0.0853 0.1854
nit−2 −0:0751 0.0680 −0:0523 0.0273 0.0517
wit −0:5916 0:1679 −0:5132 0.0493 0.1456
wit−1 0.2915 0.1416 0.2246 0.0801 0.1420
kit 0.3585 0.0538 0.2927 0.0395 0.0626
ysit 0.5972 0.1719 0.6098 0.1085 0.1562
ysit−1 −0:6117 0.2118 −0:4464 0.1248 0.2173

m1 −2:493 −2:826 −1:999
m2 −0:359 −0:327 −0:316
Wald 219.6 372.0 142.0

The dependent variable is nit . No. of �rms 140. No. of observations 611. Time dummies included. Std
err are asymptotic standard errors, std errc are corrected for the estimation of �̂1 in the e!cient weight
matrix. m1 and m2 are N(0; 1) tests for �rst- and second-order serial correlation. Wald is a +27 test of joint
signi�cance of the coe!cients.

where Ox′
it=[Owit ;Owit−1;Okit ;Oysit ;Oysit−1]. There are a total of 25 overidentifying

moment conditions in this model.
Table 2 presents estimation results for the one-step estimator, using the weight matrix

(1=N )
∑N

i=1 Z ′
i HZi, and the two-step estimator. 10 The two-step estimation results are

identical to those presented in column (b) of Table 4 in Arellano and Bond (1991).
Both the asymptotic standard errors and some tests based on the asymptotic variance,
and the corrected versions of these, are reported.
The usual asymptotic standard errors for the two-step estimator are much smaller

than the standard errors for the one-step estimator. However, the standard errors that
adjust for the estimation of parameters used to construct the e!cient weight matrix
indicate that this perceived increase in precision is due to the downward bias of the
usual estimates of the standard errors. The corrected standard errors are very similar
to, and sometimes even larger than, those of the one-step estimator. Similarly, the
corrected Wald test for joint signi�cance of the reported parameters is much smaller
than the test based on the usual asymptotic covariance matrix.
The next example uses data from Blundell and Bond (2000), who investigated

estimation of production functions using the so-called system GMM estimator. A

10 The estimation was performed using the DPD98 program for Gauss, see Arellano and Bond (1998).
Standard error corrections were implemented in Gauss by the author and the adjusted programme is available
upon request. DPD for Ox (Doornik et al., 2001), PcGive 10 (Doornik and Hendry, 2001) and XTABOND2
for STATA (Roodman, 2003) report the corrected standard errors.



F. Windmeijer / Journal of Econometrics 126 (2005) 25–51 43

Table 3
Estimation results for Blundell and Bond (2000) data

One step Two step

Coe3 Std err Coe3 Std err Std errc

First di7erences
(y − k)it−1 0.4600 0.0740 0.4146 0.0574 0.1000
(n − k)it 0.5272 0.1024 0.5731 0.0698 0.0993
(n − k)it−1 −0:2041 0.1086 −0:1607 0.0746 0.1158

m1 −6:139 − 6:210 −4:711
m2 −0:612 − 0:623 −0:583
Wald 129.5 236.02 120.1

System
(y − k)it−1 0.5618 0.0790 0.6292 0.0371 0.0759
(n − k)it 0.5158 0.1009 0.5389 0.0598 0.0829
(n − k)it−1 −0:2876 0.1169 −0:3155 0.0609 0.0946

m1 −6:800 − 8:788 −7:737
m2 −0:364 − 0:209 −0:202
Wald 416.4 1254:7 532.5

The dependent variable is (y− k)it . No. of �rms 509. No. of observations 2545. Time dummies included.
Std err are asymptotic standard errors, std errc are corrected for the estimation of �̂1 in the e!cient weight
matrix. m1 and m2 are N(0; 1) tests for �rst- and second-order serial correlation. Wald is a +23 test of joint
signi�cance of the coe!cients.

speci�cation that was estimated is

(y − k)it = 0(y − k)it−1 + �(n − k)it + 2(n − k)it−1 + (t + uit ;

uit =  i + vit ; (5.1)

where yit , nit and kit are the logs of sales, employment and capital stock of �rm i
in year t, respectively. This speci�cation accommodates �rst-order autocorrelation in
productivity shocks and imposes constant returns to scale. The data used are a balanced
panel of 509 R&D-performing US manufacturing companies observed for 8 years, 1982
–1989, similar to that used in Mairesse and Hall (1996).
Table 3 presents estimation results for both the �rst di3erenced and system GMM

estimators. The �rst di3erenced estimator in this case uses the 3(T−2)(T−3)=2+(T−3)
moment conditions

E((1; xt−3
i )Ouit) = 0; t = 4; : : : ; T;

where xt−3
i = (xi1; : : : ; xit−3) and xis = (yis; nis; kis).

The system GMM estimator uses the 3(T − 2)(T − 3)=2 moment conditions for the
di3erenced equations

E(xt−3
i Ouit) = 0; t = 4; : : : ; T
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plus 4(T − 3) moment conditions for the levels equations

E((1;Oxit−2)uit) = 0; t = 4; : : : ; T: (5.2)

The additional 3(T − 3) moment conditions E(uitOxit−2) = 0 are valid under the ad-
ditional mean stationarity assumption on initial conditions E( iOxit) = 0, see Arellano
and Bover (1995) and Blundell and Bond (1998). When the data are persistent, and
the instruments potentially weak in the �rst-di3erenced equations, Blundell and Bond
(1998) show that the additional moment conditions (5.2) remain informative, resulting
in estimates that have a much smaller �nite sample bias and are also more e!cient.
The gain in precision from using the two-step GMM estimator rather than the one-step
GMM estimator is also likely to be greater in this case, since there is no feasible
one-step weight matrix that yields an asymptotically equivalent estimator to two-step
GMM, even in the case of i.i.d. disturbances. The two-step system GMM estimator
is therefore the preferred estimator in terms of mean squared error, see Blundell and
Bond (1998, 2000) and Blundell et al. (2000) for Monte Carlo simulation evidence.
The one-step estimation results presented in Table 3 are identical to those presented

in columns 3 and 4 of Table 6 in Blundell and Bond (2000). For the �rst-di3erenced
GMM estimator there are 42 overidentifying moment conditions, whereas there are
57 overidentifying moment conditions for the system GMM estimator. Although the
number of �rms is quite large, again the corrected standard errors of the two-step
di3erenced GMM estimator are much larger than the uncorrected ones. The one-step
standard errors are actually smaller than the corrected two-step standard errors for two
of the three coe!cients. For the system two-step GMM estimator, again the corrected
standard errors are larger than the uncorrected ones, but here they are smaller than
the corresponding one-step standard errors. So, as expected, in this case there does
appear to be a genuine gain in precision from using the e!cient weight matrix. The
corrected standard errors for the two-step system estimator are further smaller than
those for the two-step di3erenced GMM estimator, indicating a gain in precision from
using the additional moment conditions arising from mean stationarity. The estimated
coe!cient on the lagged dependent variable for the two-step system estimator is about
50% larger than that for two-step di3erenced estimator, an indication that the system
GMM estimator corrects a downward bias of the di3erenced GMM estimator, due to
the use of a more informative set of instruments.

6. Power

The correction to the estimated standard errors for the two-step GMM estimator as
developed in this paper has been shown to improve inference considerably in terms
of size of the Wald test. One advantage of this correction is therefore that use of it
will guard against the reporting of the hugely inDated values of the two-step Wald test
based on the usual asymptotic standard errors. Another advantage is that as the two-step
GMM estimator is expected to be more e!cient also in �nite samples, the Wald test
based on the two-step estimation results using the variance correction can have more
power than the one-step Wald test. Figs. 7a and b show size and power properties of
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Fig. 7. (a) p-Value plot, system estimator, T = 8. (b) Power, system estimator, T = 8.
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W1 and W2C for the system GMM estimator using the same design as in Section 4, for
T =8. The power of the tests is calculated for values of �=0:8; 0:85; : : : ; 1:20, using as
critical values the 95th percentiles of the distribution of the test statistics when �= 1.
Again, all results are based on 10,000 replications. The �gures show that W2C has
almost everywhere better power than W1 with considerable larger rejection frequencies
for values of � larger than 1. W2C also has slightly better size properties in this case,
as shown in Fig. 7a.

7. Bias and/or asymmetry

The Monte Carlo simulations presented so far have shown that the corrected two-step
GMM variance estimate approximates the �nite sample variance well. The resulting
Wald test statistics also performed well, due to the fact that the �nite sample distribution
of the two-step estimator was symmetric, close to normal and centered around the
true parameter. Obviously, use of the corrected variance estimate will not result in
well-behaved Wald test statistics when the estimator is biased and/or when its �nite
sample distribution is non-normal, especially when it is asymmetric. As an example
of the latter, Table 4 presents results for the system GMM estimator using the same
design as in Section 4, with 5 increased from 0.5 to 0.6.
The means of the corrected standard errors are again very close to the standard

deviation of the two-step GMM estimates, which are considerably more e!cient than
the one-step estimates. For T = 4, the two-step estimator is upward biased by about
3%, and the ratio of bias to standard deviation is not very dissimilar from the results in
Table 1 for T=8. The corrected Wald test is therefore expected to overreject somewhat.
However, the �nite sample distribution of the estimator is skewed to the left for this
design, as displayed in Fig. 8a, whereas the �nite sample distribution of the corrected
t-statistic is skewed to the right as shown in Fig. 8b. Because of this, the performance
of the corrected Wald test is quite poor in this case when T = 4 as shown in Fig. 9a.
The test overrejects the null considerably, more so than the one-step Wald test which

Table 4
Monte Carlo results for system GMM

T = 4 T = 8

�̂1 1.0161 0.9829
sd�̂1 0.1163 0.0891
se�̂1 0.1125 0.0846

�̂2 1.0308 1.0086
sd�̂2 0.0977 0.0675
se�̂2 0.0793 0.0349
sec�̂2 0.0961 0.0657

Notes: N =100, �0 = 1, 5=0:6, means and standard deviations of 10; 000 replications. sec�̂2 is the �nite
sample corrected estimated standard error of �̂2.
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Fig. 8. (a) Two-step system GMM estimator, T = 4. (b) Corrected two-step t-statistic, T = 4.
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Fig. 9. (a) p-Value plot, H0: �0 = 1, T = 4. (b) p-Value plot, H0: �0 = 1, T = 8.
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has a more symmetric �nite sample distribution, although it still considerably improves
upon the performance of the usual asymptotic Wald test. These results indicate that one
should be cautious when applying the Wald test in small samples even when using
the corrected variance estimate. When T = 8, the Wald test based on the corrected
variance estimates is much better behaved, as shown in Fig. 9b, as there is almost no
bias and the �nite sample distribution (not displayed here) is again very close to being
symmetric.

8. Conclusions

This paper has shown that the commonly found small sample downward bias of
the estimated asymptotic standard errors of the e!cient two-step GMM estimator in
linear models can be attributed to the fact that the usual asymptotic standard errors do
not take account of the extra variation in small samples which is due to the use of
estimated parameters in constructing the e!cient weight matrix. A simple �rst order
Taylor series expansion generates an extra term that accounts for the estimation of these
parameters. This correction term vanishes with increasing sample size, but provides a
more accurate approximation in �nite samples when all the moment conditions are
linear. This extra term can be estimated and in a Monte Carlo study of a panel data
model it is shown that this feasible corrected estimate of the variance is close to the
�nite sample variance of the e!cient two-step GMM estimator.
The Monte Carlo results further show that the conventional asymptotic variance

estimate of the two-step GMM estimator is a good estimate of the variance of an
infeasible GMM estimator that uses the true values of the parameters to calculate the
e!cient weight matrix. The di3erence between the variances of the infeasible and
feasible two-step GMM estimators can be quite large in �nite samples. The estimated
corrected variance of the two-step GMM estimator captures this di3erence well, and
results in more accurate inference.
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