Stochastic Calculus - Part 10

ISEG

Existence and Uniqueness Theorem for SDE's

- Let $T>0, b(\cdot, \cdot):[0, T] \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ and $\sigma(\cdot, \cdot)$:
$[0, T] \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n \times m}$ be measurable functions such that:

1) $\mathbb{E}\left[|Z|^{2}\right]<\infty$ and Z independent of B.
2) Linear growth property

$$
|b(t, x)|+|\sigma(t, x)| \leq C(1+|x|), x \in \mathbb{R}^{n}, t \in[0, T]
$$

3) Lipschitz property

$$
|b(t, x)-b(t, y)|+|\sigma(t, x)-\sigma(t, y)| \leq D|x-y|, x, y \in \mathbb{R}^{n}, t \in[0, T]
$$

Then the SDE

$$
\begin{equation*}
X_{t}=Z+\int_{0}^{t} b\left(s, X_{s}\right) d s+\int_{0}^{t} \sigma\left(s, X_{s}\right) d B_{s} \tag{1}
\end{equation*}
$$

has a unique solution. Exists a unique stoch. proc. $X=\left\{X_{t}, 0 \leq t \leq T\right\}$ continuous, adapted, which satisfies (1) and

$$
E\left[\int_{\text {Stochastic Calculus - Part } 10}^{T}\left|X_{s}\right|^{2} d s\right]<\infty .
$$

Proof of the existence and uniqueness theorem

- Consider the space $L_{a, T}^{2}$ of processes adapted to the filtration $\mathcal{F}_{t}^{Z}:=\sigma(Z) \cup \mathcal{F}_{t}$ such that $E\left[\int_{0}^{T}\left|X_{s}\right|^{2} d s\right]<\infty$.
- In this space, consider the norm:

$$
\|X\|=\left(\int_{0}^{T} e^{-\lambda s} E\left[\left|X_{s}\right|^{2}\right] d s\right)^{\frac{1}{2}}
$$

where $\lambda>2 D^{2}(T+1)$.

- Define the operator $\mathcal{L}: L_{a, T}^{2} \rightarrow L_{a, T}^{2}$ by:

$$
(\mathcal{L} X)_{t}=Z+\int_{0}^{t} b\left(s, X_{s}\right) d s+\int_{0}^{t} \sigma\left(s, X_{s}\right) d B_{s}
$$

Proof of the theorem

- By the linear growth of b and σ, the operator \mathcal{L} is well defined.
- By the Cauchy-Schwarz inequality and by Itô isometry, we have:

$$
\begin{aligned}
& E\left[\left|(\mathcal{L} X)_{t}-(\mathcal{L} Y)_{t}\right|^{2}\right] \leq 2 E\left[\left(\int_{0}^{t}\left(b\left(s, X_{s}\right)-b\left(s, Y_{s}\right)\right) d s\right)^{2}\right] \\
& +2 E\left[\left(\int_{0}^{t}\left(\sigma\left(s, X_{s}\right)-\sigma\left(s, Y_{s}\right)\right) d B_{s}\right)^{2}\right] \\
& \leq 2 T E\left[\int_{0}^{t}\left(b\left(s, X_{s}\right)-b\left(s, Y_{s}\right)\right)^{2} d s\right]+ \\
& +2 E\left[\int_{0}^{t}\left(\sigma\left(s, X_{s}\right)-\sigma\left(s, Y_{s}\right)\right)^{2} d s\right]
\end{aligned}
$$

Proof of the theorem

- By the Lipschitz property, we have:

$$
E\left[\left|(\mathcal{L} X)_{t}-(\mathcal{L} Y)_{t}\right|^{2}\right] \leq 2 D^{2}(T+1) E\left[\int_{0}^{t}\left(X_{s}-Y_{s}\right)^{2} d s\right]
$$

- Define $K=2 D^{2}(T+1)$. Multiplying the previous inequality by $e^{-\lambda t}$ and integrating in $[0, T]$, we have

$$
\begin{aligned}
& \int_{0}^{T} e^{-\lambda t} E\left[\left|(\mathcal{L} X)_{t}-(\mathcal{L} Y)_{t}\right|^{2}\right] d t \\
& \leq K \int_{0}^{T} e^{-\lambda t} E\left[\int_{0}^{t}\left(X_{s}-Y_{s}\right)^{2} d s\right] d t
\end{aligned}
$$

Interchanging the order of integration, we have

$$
\begin{aligned}
& =K \int_{0}^{T}\left[\int_{s}^{T} e^{-\lambda t} d t\right] E\left[\left(X_{s}-Y_{s}\right)^{2}\right] d s \\
& \leq \frac{K}{\lambda} \int_{0}^{T} e^{-\lambda s} E\left[\left(X_{s}-Y_{s}\right)^{2}\right] d s
\end{aligned}
$$

Existence and uniqueness Theorem for SDEs

Proof of the theorem

- Therefore

$$
\|(\mathcal{L} X)-(\mathcal{L} Y)\| \leq \sqrt{\frac{K}{\lambda}}\|X-Y\|
$$

- Choosing $\lambda>K$, we have $\sqrt{\frac{K}{\lambda}}<1$, and the operator \mathcal{L} is a contraction in the space $L_{a, T}^{2}$. Hence, by the fixed point theorem, exists a unique fixed point to \mathcal{L} and that fixed point is exactly the solution of the SDE:

$$
(\mathcal{L} X)_{t}=X_{t}
$$

- See the book of Oksendal for a proof based on Picard approximations and the Gronwall inequality.

Examples

- The Geometric Brownian motion

$$
S_{t}=S_{0} \exp \left[\left(\mu-\frac{\sigma^{2}}{2}\right) t+\sigma B_{t}\right]
$$

We know that it is the solution of the SDE

$$
\begin{aligned}
d S_{t} & =\mu S_{t} d t+\sigma S_{t} d B_{t} \\
S_{0} & =S_{0}
\end{aligned}
$$

This SDE models the time evolution of the price of a risky financial asset in the standard Black-Scholes model.

Example

- Consider the Black-Scholes SDE with coefficients $\mu(t)$ and $\sigma(t)>0$ depending on time:

$$
\begin{aligned}
d S_{t} & =S_{t}\left(\mu(t) d t+\sigma(t) d B_{t}\right) \\
S_{0} & =S_{0}
\end{aligned}
$$

- How is the solution of this SDE?

Example

- Let $S_{t}=\exp \left(Z_{t}\right)$ and $Z_{t}=\ln \left(S_{t}\right)$. By Itô formula with $f(x)=\ln (x)$, we have:

$$
\begin{aligned}
d Z_{t} & =\frac{1}{S_{t}}\left(S_{t}\left(\mu(t) d t+\sigma(t) d B_{t}\right)\right)-\frac{1}{2 S_{t}^{2}}\left(S_{t}^{2} \sigma^{2}(t) d t\right) \\
& =\left(\mu(t)-\frac{1}{2} \sigma^{2}(t)\right) d t+\sigma(t) d B_{t}
\end{aligned}
$$

Hence,

$$
Z_{t}=Z_{0}+\int_{0}^{t}\left(\mu(s)-\frac{1}{2} \sigma^{2}(s)\right) d s+\int_{0}^{t} \sigma(s) d B_{s}
$$

- Therefore,

$$
S_{t}=S_{0} \exp \left(\int_{0}^{t}\left(\mu(s)-\frac{1}{2} \sigma^{2}(s)\right) d s+\int_{0}^{t} \sigma(s) d B_{s}\right)
$$

Orsntein-Uhlenbeck process with mean reversion

$$
\begin{aligned}
d X_{t} & =a\left(m-X_{t}\right) d t+\sigma d B_{t} \\
X_{0} & =x
\end{aligned}
$$

$a, \sigma>0$ and $m \in \mathbb{R}$.

- Solution of the associated homogeneous ODE $d x_{t}=-a x_{t} d t$ is $x_{t}=x e^{-a t}$.
- Consider that the process is such that $X_{t}=Y_{t} e^{-a t}$ or $Y_{t}=X_{t} e^{a t}$.
- By the Itô formula applied to $f(t, x)=x e^{a t}$, we have

$$
Y_{t}=x+m\left(e^{a t}-1\right)+\sigma \int_{0}^{t} e^{a s} d B_{s}
$$

Orsntein-Uhlenbeck process with mean reversion

- Hence,

$$
X_{t}=m+(x-m) e^{-a t}+\sigma e^{-a t} \int_{0}^{t} e^{a s} d B_{s}
$$

- This is a Gaussian process, since it is a stochastic integral of the type $\int_{0}^{t} f(s) d B_{s}$, where f is a deterministic function.
- Mean:

$$
E\left[X_{t}\right]=m+(x-m) e^{-a t}
$$

Ornstein-Uhlenbeck process with mean reversion:

- Covariance: by Itô isometry

$$
\begin{aligned}
\operatorname{Cov}\left[X_{t}, X_{s}\right] & =\sigma^{2} e^{-a(t+s)} E\left[\left(\int_{0}^{t} e^{a r} d B_{r}\right)\left(\int_{0}^{s} e^{a r} d B_{r}\right)\right] \\
& =\sigma^{2} e^{-a(t+s)} \int_{0}^{t \wedge s} e^{2 a r} d r \\
& =\frac{\sigma^{2}}{2 a}\left(e^{-a|t-s|}-e^{-a(t+s)}\right)
\end{aligned}
$$

Note that

$$
X_{t} \sim N\left[m+(x-m) e^{-a t}, \frac{\sigma^{2}}{2 a}\left(1-e^{-2 a t}\right)\right] .
$$

Ornstein-Uhlenbeck with mean reversion:

- When $t \rightarrow \infty$, the distribution of X_{t} converges to

$$
v:=N\left[m, \frac{\sigma^{2}}{2 a}\right] .
$$

which is the invariant or stationary distribution.

- Note that if X_{0} has distribution v then X_{t} has the same distribution v for all t.

Financial applications of the Ornstein-Uhlenbeck process with mean reversion

- Vasicek model for the interest rate

$$
d r_{t}=a\left(b-r_{t}\right) d t+\sigma d B_{t}
$$

with a, b, σ parameters.

- Solution:

$$
r_{t}=b+\left(r_{0}-b\right) e^{-a t}+\sigma e^{-a t} \int_{0}^{t} e^{a s} d B_{s} .
$$

Financial applications of the Ornstein-Uhlenbeck process with mean reversion:

- Black-Scholes model with stochastic volatlity: consider that the volatility $\sigma(t)=f\left(Y_{t}\right)$ is a function of a Ornstein-Uhlenbeck process with mean reversion.

$$
d Y_{t}=a\left(m-Y_{t}\right) d t+\beta d W_{t}
$$

with a, m, β parameters and where $\left\{W_{t}, 0 \leq t \leq T\right\}$ is a Brownian motion.

- The SDE that models the time evolution of the price of the risky asset is

$$
d S_{t}=\mu S_{t} d t+f\left(Y_{t}\right) S_{t} d B_{t}
$$

where $\left\{B_{t}, 0 \leq t \leq T\right\}$ is a Brownian motion.and the Brownian motions W_{t} and B_{t} may be correlated, i.e.,

$$
E\left[B_{t} W_{s}\right]=\rho(s \wedge t)
$$

Example

- Consider the SDE

$$
X_{t}=x+\int_{0}^{t} f\left(s, X_{s}\right) d s+\int_{0}^{t} c(s) X_{s} d B_{s}
$$

where f and c are continuous deterministic functions and f satisfies the Lipschitz and linear growth conditions in x.

- By the existence and uniqueness theorem for SDE's, exists one unique solution for this SDE.
- How can we obtain the solution?

Example

- Consider the "integrating factor"

$$
F_{t}=\exp \left(\int_{0}^{t} c(s) d B_{s}-\frac{1}{2} \int_{0}^{t} c(s)^{2} d s\right)
$$

Note that F_{t} is a solution of the SDE if $f=0$ and $x=1$.

- Suppose that $X_{t}=F_{t} Y_{t}$ or that $Y_{t}=\left(F_{t}\right)^{-1} X_{t}$. Then, by Itô formula,

$$
d Y_{t}=\left(F_{t}\right)^{-1} f\left(t, F_{t} Y_{t}\right) d t
$$

and $Y_{0}=x$.

- This equation for Y is a ODE with random coefficients (is a deterministic ODE parametrized by $\omega \in \Omega$).

Example

- For example, if $f(t, x)=f(t) x$, then we have the ODE

$$
\frac{d Y_{t}}{d t}=f(t) Y_{t}
$$

and therefore

$$
Y_{t}=x \exp \left(\int_{0}^{t} f(s) d s\right)
$$

Hence

$$
X_{t}=x \exp \left(\int_{0}^{t} f(s) d s+\int_{0}^{t} c(s) d B_{s}-\frac{1}{2} \int_{0}^{t} c(s)^{2} d s\right)
$$

Linear SDE's

- In general, a linear SDE has the form:

$$
\begin{aligned}
d X_{t} & =\left(a(t)+b(t) X_{t}\right) d t+\left(c(t)+d(t) X_{t}\right) d B_{t} \\
X_{0} & =x
\end{aligned}
$$

where a, b, c, d are deterministic continuous functions.

- How to obtain the solution of the SDE?

Linear SDE's

- Assume that

$$
\begin{equation*}
X_{t}=U_{t} V_{t} \tag{2}
\end{equation*}
$$

where

$$
\left\{\begin{array}{c}
d U_{t}=b(t) U_{t} d t+d(t) U_{t} d B_{t} \\
d V_{t}=\alpha(t) d t+\beta(t) d B_{t}
\end{array}\right.
$$

and $U_{0}=1, V_{0}=x$.

- From a previous example, we know that

$$
\begin{equation*}
U_{t}=\exp \left(\int_{0}^{t} b(s) d s+\int_{0}^{t} d(s) d B_{s}-\frac{1}{2} \int_{0}^{t} d(s)^{2} d s\right) \tag{3}
\end{equation*}
$$

Linear SDE's

- On the other hand, calculating the differential of (2), by Ito's formula with $f(u, v)=u v$, we have

$$
\begin{aligned}
d X_{t} & =V_{t} d U_{t}+U_{t} d V_{t}+\frac{1}{2}\left(d U_{t}\right)\left(d V_{t}\right)+\frac{1}{2}\left(d V_{t}\right)\left(d U_{t}\right) \\
& =\left(b(t) X_{t}+\alpha(t) U_{t}+\beta(t) d(t) U_{t}\right) d t+\left(d(t) X_{t}+\beta(t) U_{t}\right) d B_{t}
\end{aligned}
$$

- Comparing with the initial SDE for X, we have that

$$
\begin{aligned}
& a(t)=\alpha(t) U_{t}+\beta(t) d(t) U_{t} \\
& c(t)=\beta(t) U_{t}
\end{aligned}
$$

Linear SDE's

- Hence

$$
\begin{aligned}
& \beta(t)=c(t) U_{t}^{-1} \\
& \alpha(t)=[a(t)-c(t) d(t)] U_{t}^{-1}
\end{aligned}
$$

- Therefore,

$$
X_{t}=U_{t}\left(x+\int_{0}^{t}[a(s)-c(s) d(s)] U_{s}^{-1} d s+\int_{0}^{t} c(s) U_{s}^{-1} d B_{s}\right)
$$

where U_{t} is given by (3).

SDE's - Theorem of existence and uniqueness for the one-dimensional case

- In the one-dimensional case $(n=1)$, the Lipschitz condition for σ in the existence and uniqueness theorem can be weakened if $\sigma(t, x)=\sigma(x), b(t, x)=b(x)$ (coefficients do not depend on time).
- Assume that b satisfies the Lipschitz condition and the coefficient σ satisfies the condition

$$
|\sigma(t, x)-\sigma(t, y)| \leq D|x-y|^{\alpha}, x, y \in \mathbb{R}, t \in[0, T]
$$

with $\alpha \geq \frac{1}{2}$. Then, exists one unique solution for the SDE.

- As an example, the SDE for the Cox-Ingersoll-Ross (CIR) model for interest rates

$$
\begin{aligned}
d r_{t} & =a\left(b-r_{t}\right) d t+\sigma \sqrt{r_{t}} d B_{t} \\
r_{0} & =x,
\end{aligned}
$$

has one and only one solution.
(ISEG)

Linear SDE's

Exercise

- The Cox-Ingersoll-Ross (CIR) model for the interest rate $R(t)$ is given by

$$
d R(t)=(\alpha-\beta R(t)) d t+\sigma \sqrt{R(t)} d W(t)
$$

where α, β and σ are positive constants. The CIR equation does not have a solution in closed form. However, one can find the mean and the variance of $R(t)$.
a) Calculate the mean value of $R(t)$. (Hint: Let $X(t)=e^{\beta t} R(t)$ and apply the It formula).
b) Calculate the variance of $R(t)$. (Hint: Calculate $d\left(X^{2}(t)\right)$ using the Itô formula in the differential form and integrate).
c) Calculate $\lim _{t \rightarrow+\infty} \operatorname{Var}(R(t))$.

