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Existence and uniqueness Theorem for SDEs

Existence and Uniqueness Theorem for SDE's
o Let T>0, b(-,-): [0, T] x R" - R" and (-, ) :
[0, T] x R"” — IR™ ™ be measurable functions such that:
1) E {|Z\2] < 00 and Z independent of B.
2) Linear growth property
b(t,x)|+]o(t,x)| < C(1+|x]), xeR", te |0, T]
3) Lipschitz property
b(t,%) — b(t,y)|+|o (t.x) — 0 (t.y)] < D|x—y|, x,y ER", t€[0,T]
Then the SDE

t t
xtzz+/ b(s,XS)ds—l—/ o (s, X.) dBs (1)
0 0

has a unique solution. Exists a unique stoch. proc.
X ={X;,0 <t < T} continuous, adapted, which satisfies (1) and

T 2
E [/ | X | ds] < 00.
0
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Existence and uniqueness Theorem for SDEs

Proof of the existence and uniqueness theorem

o Consider the space Lng of processes adapted to the filtration
FZ =0 (Z)UF; such that E {foT X[ ds} < 0.

o In this space, consider the norm:

Xl = ([ e [Ixf] os)

where A > 2D? (T +1) .

[ay

o Define the operator L : Lng — LiT by:

(LX), = Z+/otb(s,XS)ds+/0tU(s,Xs) dB;
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Existence and uniqueness Theorem for SDEs

Proof of the theorem

o By the linear growth of b and o, the operator L is well defined.
o By the Cauchy-Schwarz inequality and by It6 isometry, we have:

(/Ot (b(s,X.) — b(s, Ys)) ds)2]

E|I(£x), = (£Y), | <26
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Existence and uniqueness Theorem for SDEs

Proof of the theorem

o By the Lipschitz property, we have:

E (LX), (LY) | <2D*(T+1)E Uo

t

(Xs — Ys)? ds] .

o Define K = 2D? (T + 1). Multiplying the previous inequality by e=**
and integrating in [0, T], we have

[ e E[1£x), — (2] o
0

T t 5
< K/ e ME U (Xs — Y5) ds] dt.
0 0

Interchanging the order of integration, we have
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<

K/OT UsTe—“dt] E 06— v0)?] ds
;/OT e MSE [(Xs . Ys)z} ds
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Existence and uniqueness Theorem for SDEs

Proof of the theorem

o Therefore

I(£X) = (LY < \/?HX— Y

o Choosing A > K, we have \/% < 1, and the operator L is a

contraction in the space Li +-. Hence, by the fixed point theorem,

exists a unique fixed point to £ and that fixed point is exactly the

solution of the SDE:

(LX), = X..

5 /24

o See the book of Oksendal for a proof based on Picard approximations
and the Gronwall inequality.
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Existence and uniqueness Theorem for SDEs

Examples

o The Geometric Brownian motion

0-2
St = Soexp [(]/l_7) t+UBt]

We know that it is the solution of the SDE

dSt = ]/tStdt + U'StdBt,
So = So.

This SDE models the time evolution of the price of a risky financial
asset in the standard Black-Scholes model.
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Existence and uniqueness Theorem for SDEs

Example

o Consider the Black-Scholes SDE with coefficients u (t) and o (t) > 0
depending on time:

dS: =S¢ (p (t) dt + o (t) dB),
So = So.

o How is the solution of this SDE?
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Existence and uniqueness Theorem for SDEs
Example

o Let S; = exp (Z:) and Z; = In (S;). By It6 formula with
f(x) = In(x), we have:

iz = L (S (u (D) dt o (b) dBQ)—%(Sz o (t) dt)

— (y (t) — %02 (t)) dt + o (t) dB;.

Hence,

Zt:Zo+/()t<y( ——(7 )ds—l—/

o Therefore,

stzsoexp(/ot(ﬂ(>——‘7 )ds+/ )
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Ornstein-Uhlenbeck process with mean reversion

Orsntein-Uhlenbeck process with mean reversion

dXt = a(m — Xt) dt+UdBt,

Xo = X.
a,c>0and meR.
o Solution of the associated homogeneous ODE dx; = —ax;dt is
x; = xe .

o Consider that the process is such that X; = Yte t or Yy = Xee?t,

o By the Itd formula applied to f (t, x) = xe?, we have

t
Y;: :X—I—m(eat—l) —I—(T/ e dB:.
0
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Ornstein-Uhlenbeck process with mean reversion

Orsntein-Uhlenbeck process with mean reversion

o Hence,
t

Xe=m+ (x—m)e %" + (Te_at/ e dB;.
0

o This is a Gaussian process, since it is a stochastic integral of the type
[, f (s) dBs, where f is a deterministic function.

o Mean:
E[Xe] =m+ (x—m)e ™
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Ornstein-Uhlenbeck process with mean reversion

Ornstein-Uhlenbeck process with mean reversion:

o Covariance: by Ito isometry

t S
COV [Xt1 Xs] — 0,2e—a(t+s)E [(/ eard8r> (/ eardBr)]
0 0

Note that
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Ornstein-Uhlenbeck process with mean reversion

Ornstein-Uhlenbeck with mean reversion:

o When t — oo, the distribution of X; converges to

o2
=N — .
y [m, 23]

which is the invariant or stationary distribution.

o Note that if Xy has distribution v then X; has the same distribution v
for all t.
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Financial applications of the O-U process with mean reversion

Financial applications of the Ornstein-Uhlenbeck process
with mean reversion

o Vasicek model for the interest rate
drt = a(b— rt) dt+0'dBt,

with a, b, ¢ parameters.

o Solution: .

rr=>b+ (rg—b)e " + (Te_at/ e dB.
0
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Financial applications of the O-U process with mean reversion

Financial applications of the Ornstein-Uhlenbeck process
with mean reversion:

o Black-Scholes model with stochastic volatlity: consider that the
volatility o (t) = f (Y:) is a function of a Ornstein-Uhlenbeck process
with mean reversion.

dYt = a(m — Yt) dt+‘Bth,

with a, m, B parameters and where {W;,0 < t < T} is a Brownian
motion.

o The SDE that models the time evolution of the price of the risky
asset is

dSt = “l/tStdt + f (Yt> StdBt

where {B;,0 < t < T} is a Brownian motion.and the Brownian
motions W; and B; may be correlated, i.e.,

E[B:Ws] =p(sht).
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Financial applications of the O-U process with mean reversion

Example

o Consider the SDE
t t
Xt:x—|—/ f(s,Xs)ds+/ ¢ (s) XsdBs,
0 0

where f and c¢ are continuous deterministic functions and f satisfies
the Lipschitz and linear growth conditions in x.

o By the existence and uniqueness theorem for SDE's, exists one unique
solution for this SDE.

o How can we obtain the solution?
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Financial applications of the O-U process with mean reversion

Example

o Consider the “integrating factor”

Ft:exp(/ot B——/ )

Note that F; is a solution of the SDE if f = 0 and x = 1.

o Suppose that X; = F;Y; or that Y; = (F;) " X;. Then, by Ité

formula,
dYy = (Ft) L (t, FrYy) dt

and Yy = x.
o This equation for Y is a ODE with random coefficients (is a
deterministic ODE parametrized by w € Q).
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Financial applications of the O-U process with mean reversion

Example

o For example, if f(t,x) = f(t)x, then we have the ODE

and therefore

t
Y: = xexp (/ f(s) ds) .
0
Hence

Xt:xexp(/otf(s)ds—l—/otC( dB——/ )
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Linear SDE's

Linear SDE's

o In general, a linear SDE has the form:

dXe = (a(t) + b(t) Xe) dt + (c (t) + d (t) X¢) dBy,
Xo == X,

where a, b, ¢, d are deterministic continuous functions.
o How to obtain the solution of the SDE?
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Linear SDE's

Linear SDE's

o Assume that
Xt — Ut Vt,

where
dVi = a (t) dt + B (t) dBs.

and Up =1, Vp = x.

o From a previous example, we know that

U, = exp (/()tb(s)ds+/()td(s)dss—%/Otd(S)zds)
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Linear SDE's

Linear SDE's

o On the other hand, calculating the differential of (2), by Ito’s formula
with f (u, v) = uv, we have

dX, = VydUy + UpdVs + % (dUy) (dVe) + % (dV4) (dU)
= ((t)Xe+ (£) Us + B (£) d(£)Us) de + (d ()X + B (£) Us) B

o Comparing with the initial SDE for X, we have that
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. !
Linear SDE's
o Hence

o Therefore,

t

Xe= U (et [Tlo(s) — c(s)d(9)] Uy Yot [ e(s) U o)

0

where U is given by (3).
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Linear SDE's

SDE’s - Theorem of existence and uniqueness for the
one-dimensional case

o In the one-dimensional case (n = 1), the Lipschitz condition for ¢ in
the existence and uniqueness theorem can be weakened if
o (t,x) =0 (x),b(t,x) = b(x) (coefficients do not depend on
time).

o Assume that b satisfies the Lipschitz condition and the coefficient o
satisfies the condition

o (t,x)—0o(t,y)| <D|x—y|", x,y €R, te€ [0, T]
with a > % Then, exists one unique solution for the SDE.
o As an example, the SDE for the Cox-Ingersoll-Ross (CIR) model for
Interest rates
drt = a(b— rt) dt+0\/7tdBt
n — X,
has one and only one solution.
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Linear SDE's

Exercise

o The Cox-Ingersoll-Ross (CIR) model for the interest rate R(t) is given
by

dR(t) = (« — BR(t)) dt + o/ R (t) dW (t),

where &, B and ¢ are positive constants. The CIR equation does not
have a solution in closed form. However, one can find the mean and
the variance of R (t).

a) Calculate the mean value of R(t). (Hint: Let X(t) = eP!R(t) and
apply the It formula).
b) Calculate the variance of R(t). (Hint: Calculate d (X?(t)) using the

1t6 formula in the differential form and integrate).
c) Calculate lim Var (R(t)).

t— 400
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