FIXED INCOME PRODUCTS AND MARKETS

III - Fixed Income Derivatives and Models

José Azevedo Pereira and Sergio F. Silva

III - Fixed Income Derivatives and Models

1. Swaps, Fra's and Short Term Interest Rate Futures
2. Bond Futures
3. Interest Rate Dynamics
4. Credit Spread Dynamics
5. Bonds with embedded options and Bond Options
6. Futures Options, Caps, Floors and Swaptions
7. Exotic Options and Credit Derivatives

(1)
 1. Swaps, Fras and Short Term Interest Rate

Futures

1.0 Introduction

Spot Market

- Equity, bonds,...
- Settlement of transactions occurs few days after

Forward Market

- Futures, options, forwards, swaps, caps, floors, collars, etc.
- Settlement of transactions (delivery) occurs in the future, but the price is agreed today
- Main purpose: Hedging

Forward Markets

- OTC markets
- Taylor made
- Counterparty risk
- Organized markets (Exchanges)
- Standardized contracts
- Liquidity
- Transparency
- No counterparty risk
- OTC Market
- Forwards, Fra's, repos
- Swaps
- Options, caps, floors, collars
- Exchanges
- Futures
- Options

1.1 Swaps

- Definition
- Agreement between two parties
- They exchange interest payments
- Computed on a "notional" principal
- Principal is not exchanged
- Classic swap (plain vanilla)
- One side pays a fixed rate
- Counterpart pays floating rate
- Floating rate is usually Libor / Euribor
- Rate is reset at every payment date

Example (plain vanilla swap)

- Date: 01/01/2008
-6- months Euribor Swap with 2 years maturity, fixed rate r ${ }^{f}$
- Notional amount: N

Schedule of payments (pay floating receive fixed)

Datas	$01 / 07 / 2008$	$01 / 01 / 2009$	$01 / 07 / 2009$	$01 / 01 / 2010$
Fixed leg		$r^{\mathrm{f}} \times \mathrm{N}$		$\mathrm{r}^{\mathrm{f}} \times \mathrm{N}$
Floating leg	$-\frac{\mathrm{N}}{2} \times \mathrm{E}_{6 \mathrm{~m}(01 / 01 / 2008)}$	$-\frac{\mathrm{N}}{2} \times \mathrm{E}_{6 \text { (01//07/2008)}}$	$-\frac{\mathrm{N}}{2} \times \mathrm{E}_{6 M(01 / 01 / 2009)}$	$-\frac{\mathrm{N}}{2} \times \mathrm{E}_{6 \mathrm{~m}(01 / 07 / 2009)}$

Where $E_{6 M(i)}$ is the 6-months Euribor rate at date i

Swap specifications (fixed/floating):

- Principal amount

A swap is composed of two legs a fixed leg whose payments depends on a fixed rate and a floating leg whose payments depends on a floating rate The notional, or principal, amount allows one to calculate the exact amount of the different payments on the two legs of the swap

- Maturity date: date of termination of the swap contract
- Frequency

Payments on the fixed-leg take place either annually or semi-annually (e.g., in the US); Payments on the floating leg match the maturity of the reference rate (e.g., 4 times a year if the reference rate is a 3 months rate)

- Rate (day count convention) and payments

The floating rate for each period is fixed at the start of the period The first interest payment of the swap is known in advance by both parties Note that even if both parties pay and receive interest payments, at a payment date only the net difference between the two interest payments
$9 / 2120$ change hands

- Exchange of a fixed-rate (F) for a floating-rate (V) security
- Initially, both have the same value
- Otherwise it would not be a fair dea

$$
F_{o}=V_{o}
$$

Later on, prices can differ depending on the evolution of the term structure

- Fixed-rate notes have longer duration => a rise (decline) in interest rates tends to lower (increase) the value of the fixed-leg more than that of the variable leg
- This raises (lowers) the value of the swap to the buyer and lowers (raises) the value of the swap to the seller
- Value of the swap (party that receives fixed): $F_{t}-V_{t}$

妾 Swap value

- Party that receives fixed
$\operatorname{SWAP}_{\mathrm{t}}=\mathrm{N} \times\left(\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{F}\left(\frac{\mathrm{T}_{\mathrm{ki}}-\mathrm{T}_{\mathrm{k}(\mathrm{i}-1)}}{360}\right) \mathrm{B}\left(\mathrm{t}, \mathrm{T}_{\mathrm{ki}}\right)-\sum_{\mathrm{j}=1}^{m} \mathrm{~V}_{\mathrm{j}-1}\left(\frac{\mathrm{~T}_{\mathrm{j}}-\mathrm{T}_{\mathrm{j}-1}}{360}\right) B\left(\mathrm{t}, \mathrm{T}_{\mathrm{j}}\right)\right)$
(considering Actual/360 convention)
N - Notional principal
V_{j-1} - Floating rate at date T_{j-1}, paid at date T_{j}
m - number of cash-flows of the floating leg
F - Fixed rate
n - number of cash-flows of the fixed leg (k is a coeficient equal to the payment frequency on the variable leg divided by the payment frequency on the fixed leg: $k n=m$)
$\mathrm{T}_{\mathrm{j}}-\mathrm{T}_{\mathrm{j}-1}$ - number of days between the j th and the $(\mathrm{j}-1)$ th payments

Swap value - zero coupon

- Assume that the notional is also exchanged (the fixed leg corresponds to a fixed rate bond and the variable leg to a FRN)
- Then, the floating will pay notional plus market rate
- The present value of notional plus market rate is:
=> Notional

The price of a floating rate note on each and every coupon date $\left(T_{j-1}, j\right.$ $=2,3, . . \mathrm{m}$, incluiding T_{0}) is equal to par, thus:

$$
\mathrm{SWAP}_{\mathrm{T}_{\mathrm{j}-1}}=\underbrace{\mathrm{N} \times\left(\sum_{i=a}^{n} F\left(\frac{T_{k i}-T_{k(i-1)}}{360}\right) \mathrm{B}\left(\mathrm{~T}_{\mathrm{j}-1}, T_{\mathrm{ki}}\right)+\mathrm{B}\left(\mathrm{~T}_{\mathrm{j}-1}, T_{m}\right)\right.})-\mathrm{N}
$$

fixed part value

Swap value at date $\mathrm{te} \mathrm{T}_{\mathrm{j}-1}<\mathrm{t}<\mathrm{T}_{\mathrm{j}}$

$$
\operatorname{SWAP_{t}}=\underbrace{N \times\left(\sum_{i=a}^{n} F\left(\frac{T_{k i}-T_{k(i-1)}}{360}\right) B\left(t, T_{k i}\right)+B\left(t, T_{m}\right)\right)}_{\text {fixed part value }}-\underbrace{N \times\left(v_{j-1}\left(\frac{T_{j}-T_{j-1}}{360}\right)+1\right) B\left(t, T_{j}\right)}_{\begin{array}{c}
\text { variable part value }
\end{array}}
$$

Example:
Today is $1 / 1$: remaining life of 9 months
Notional principal of \$1,000
Receives 10\% a year (Semiannually paid coupons, on 3/31 and 9/30)
Pays 6-month LIBOR (Next payment based on LIBOR at 6\%)
Term structure: $\mathrm{r}(0 ; 0,25)=5 \%$ and $\mathrm{r}(0 ; 0,75)=7 \%$

Swap value - zero coupon method

Example (Cont.):

Fixed: $\quad F=\frac{50}{(1+0,05)^{0,25}}+\frac{1050}{(1+0,07)^{0,75}}=1047,44$

Floating:

$$
V=\frac{1030}{(1+0,05)^{0,25}}=1017,51
$$

Swap value (receive fixed rate):

$$
F-V=1047,44-1017,51=29,93
$$

Replace $\mathrm{V}_{\mathrm{j}-1}$ by its forward value $\mathrm{F}\left(\mathrm{t}, \mathrm{V}_{\mathrm{j}-1}\right)$
(Receives fixed)
$S W A P_{t}=N \times\left(\sum_{i=1}^{n} F\left(\frac{T_{k i}-T_{k(i-1)}}{360}\right) B\left(t, T_{k i}\right)-\sum_{j=1}^{m} F\left(t, V_{j-1}\right)\left(\frac{T_{j}-T_{j-1}}{360}\right) B\left(t, T_{j}\right)\right)$

For the plain vanilla swaps, where the payments frequency and the maturity of the variable rate is the same, we have:

$$
F\left(t, V_{j-1}\right)=\left(\frac{B\left(t, T_{j-1}\right)}{B\left(t, T_{j}\right)}-1\right) \frac{360}{T_{j}-T_{j-1}}
$$

And both methods are equivalent

Market convention:

- set the floating leg at flat rate (Libor or Euribor)
- quote the fixed rate, called the swap rate, that makes the value of the swap equal to zero

The swap rate is then the value of the fixed rate that makes the swap's fixed leg equal to its floating leg

When the swap is initiated, the value of the floating leg equals to par, thus the value of the fixed leg also equals to par

The Swap rate is a par yield

Quotation - example

A market maker is quoting a 5 years 3-months Libor swap:

Bid
4,25\% The bank is willing to pay a fixed rate of $4,25 \%$ and to receive 3months Libor

Ask
4,30\%

The bank is willing to pay 3-months Libor and to receive a fixed rate of 4,30\%

A swap is also quoted as a swap spread. The swap spread of a swap with a given maturity is equal to the difference between the fixed rate of the swap and the benchmark treasury bond yield of the same maturity. It is expressed as a number of basis points

Example: A market maker quotes a 5 years 3-month Libor swap: 45-50

- Means that he is willing to enter a swap paying fixed 45 points above the 5years benchmark bond yield and receiving the Libor
- And receiving fixed 50 basis points above the 5 -years bond yield and paying the Libor

Uses of Swaps

Swaps may be used to:
\rightarrow Optimize the financial conditions of a debt
\rightarrow Convert the financial conditions of a debt
\rightarrow Create new synthetic assets
\rightarrow Hedge a bond or another fixed-income security against any change of the yield curve

Optimize the financial conditions of a debt

Financial conditions for two firms:

	Fixed rate	Floating rate
A	8%	Libor $6 M+\mathbf{0 , 5 0 \%}$
B	$\mathbf{1 0 \%}$	Libor $6 M+1,00 \%$

- A would prefer floating and B fixed
- A has "comparative advantage" at fixed:
- 200 basis points better than B for fixed
- 50 basis points better than B for floating
- A borrows at fixed and B at floating
- They enter a swap

Optimize the financial conditions of a debt

- Terms of the swap
- A will pay 6-month Libor
- B will pay $8,5 \%$

- After the swap:
- A pays: 8\% + Libor 6M - 8,5\% = Libor - 0,50\%
- B pays: Libor 6M + 1\% + 8,5\% - Libor 6M = 9,5\%
- Advantage:
- A saves 100 basis points (pays Libor-.5\% instead of Libor +.5\%)
- B saves 50 basis points (pays 9,5\% instead of 10\%)

Convert the financial conditions of a debt

A firm issued a 5 years fixed rate (7\%) bond.
At 2 years from maturity, the firm decides to transform its debt at a fixed rate into a floating-rate debt through a swap

Suppose the 2 years 6-months libor swap rate is 5,5\% (or 7\% against Libor $6 \mathrm{M}+1,5 \%)$

After the swap, the firm pays Libor $6 \mathrm{M}+1,5 \%$

斋 Create synthetic securities - Asset Swap

Combination of a long position in a fixed rate bond and a swap creates a synthetic floating rate bonds, whose value depends on the credit spread:

Hedging interest rate risk

- Duration hedge:

$$
\text { Hedge ratio: } \quad \phi_{s}=-\frac{\$ D u r_{p}}{\$ D u r_{s}}
$$

Where \$Dur ${ }_{P}$ e \$Dur ${ }_{S}$ are, respectively, the \$duration of portfolio P and of the fixed-coupon bond contained in the swap

- Duration/Convexity hedge:

$$
\left\{\begin{array}{l}
\phi_{1} \$ \text { Dur }_{\mathrm{s}_{1}}+\phi_{2} \$ \text { Dur }_{\mathrm{s}_{2}}=-\$ \text { Dur }_{\mathrm{p}} \\
\phi_{1} \$ \text { Conv }_{\mathrm{s}_{1}}+\phi_{2} \$ \text { Conv }_{\mathrm{s}_{2}}=-\$ \text { Conv }_{\mathrm{p}}
\end{array}\right.
$$

Where \$Dur $_{p}\left(\$ \operatorname{Conv}_{\mathrm{p}}\right)$, DDur $_{\mathrm{s} 1}\left(\$ \operatorname{Conv}_{\mathrm{s} 1}\right)$ e $\$ \operatorname{Dur}_{\mathrm{S} 2}\left(\$ \operatorname{Conv}_{\mathrm{S} 2}\right)$ are, respectively, the \$duration (\$Convexity) of portfolio P and of the fixed-coupon bond contained in swaps S_{1} e S_{2}

高 Hedging interest rate risk

- Hedge in a Three-Factor model (Nelson e Siegel):

$$
\left\{\begin{array}{l}
\phi_{1} \frac{\partial \mathrm{~S}_{1}}{\partial \beta_{0}}+\phi_{2} \frac{\partial \mathrm{~S}_{2}}{\partial \beta_{0}}+\phi_{3} \frac{\partial \mathrm{~S}_{3}}{\partial \beta_{0}}=-\frac{\partial \mathrm{P}}{\partial \beta_{0}} \\
\phi_{1} \frac{\partial \mathrm{~S}_{1}}{\partial \beta_{1}}+\phi_{2} \frac{\partial \mathrm{~S}_{2}}{\partial \beta_{1}}+\phi_{3} \frac{\partial \mathrm{~S}_{3}}{\partial \beta_{1}}=-\frac{\partial \mathrm{P}}{\partial \beta_{1}} \\
\phi_{1} \frac{\partial \mathrm{~S}_{1}}{\partial \beta_{2}}+\phi_{2} \frac{\partial \mathrm{~S}_{2}}{\partial \beta_{2}}+\phi_{3} \frac{\partial \mathrm{~S}_{3}}{\partial \beta_{2}}=-\frac{\partial \mathrm{P}}{\partial \beta_{2}}
\end{array}\right.
$$

Where $\partial \mathrm{P} / \partial \beta_{\mathrm{i}}, \partial \mathrm{S}_{1} / \partial \beta_{\mathrm{i}}, \partial \mathrm{S}_{2} / \partial \beta_{\mathrm{i}}$ e $\partial \mathrm{S}_{3} / \partial \beta_{\mathrm{i}}$ are, respectively, the sensitivity of portfolio P and of swaps S_{1}, S_{2} e S_{3} with respect to factors $\beta_{\mathrm{i}}(\mathrm{i}=0,1,2)$

Non Plain Vanilla Swaps

Acrrediting swap: the notional principal increases in amount over time

Amortizing swap: the notional principal decreases in a predetermined way over the life of the swap

Roller Coaster swap: the notional principal can rise or fall from period to period

Basis swap: a floating-for-floating interest rate swap

- That exchanges floating rate of two different markets ...
- ...or that exchanges the same floating rate but with different maturities ...
- ...or that exchanges floating rate of two different markets and with different maturities

(i)
 Other types of Swaps (Nonplain Vanilla)

Constant maturity swap (CMS): is a floating-for-floating interest rate swap exchanging a Libor/Euribor rate for a particular swap rate

Example: 6-months Euribor against 5-years Swap rate

Forward-start swap: allows the counterparties to initiate it at a specified deferred date

Back-set swap: the floating rate is fixed at the end of each period

Zero-coupon swap: is a swap which allows a counterparty to exchange:

- a fixed or floating index that delivers regular coupon
- for an index that delivers only one coupon at the beginning or at the end of the swap

1.2 Short Term Interest Rate Futures

Future contract:

- negotiable
- in an exchange
- where the parties agree to buy/sell
- an underlying asset
- with normalized quantity and quality
- to be delivered in a future date
- at an agreed-upon price today

Future contract - underlying asset

- Commodities
- Bonds
- Index
- Equity
- Interest rate
- ...

Futures contracts - standardized characteristics

Characteristics

- Quantity (contract size)
- Quality
- Last trading day
- Delivery day (delivery month)
- Delivery place
- Type of delivery (Settlement)
- Quotation method / tick size

Short term interest rate futures contracts

Main Contracts:

- 3-month Euribor Futures
- 3-month Eurodollar Futures
- 3-month Euroswiss futures
- 3-months EuroYen futures
- 3-month Short Sterling futures
- Main Exchanges
- NYSE Euronext (https://globalderivatives.nyx.com/nyse-liffe)
- Eurex (www.eurexchange.com)
- Chicago Mercantile Exchange (www.cme.com)

Quotation	European Interbank Offered Rate (EURIBOR) for three-month euro term deposits - 1 000 000€
Unit of trading (contract size)	100,000 - implied interest rate
Tick size	$0,005 \%$, ie, $1 / 2$ basis point (tick value $=12,50$ euros)
Contract months (delivery months)	Nyse Euronext: 6 consecutive months and the next 22 months from the quarterly cycle: March, June, September and December Eurex: 12 months of the quarterly cycle
Settlement	Cash settlement
EDSP (Exchange Delivery Settlement Price)	100,000 - Euribor 3M
Last Trading Day	two exchange days prior to the third Wednesday of the respective delivery month
Final Settlement Day	Eurex: last trading day; Nyse Euronext: First business day after the Last Trading Day
9/220016	Fixed Income Products and Markels

Contract Table

豪 Hedging with 3-months Euribor futures contracts

Risk expousure:

	Risk of an increase in interest rate	Risk of a decrease in interest rate
Need to finance in the future	\times	
Excess cash in the future	\times	\times
Bonds indexed to Euribor rate: - Issuer - Investors		\times

- Types of hedging:
- Risk of an increase in interest rate

Sell Futures
 (short hedge)

- Risk of a decrease in interest rate \qquad Buy Futures
(long hedge)
- Substitution of risks:

Interest rate risk \quad\begin{tabular}{l}
\square

- - Indivisibility risk

- Basis Risk

- Correlation risk

- Spread risk
\end{tabular}

(i)
 Hedging with 3 -months Euribor futures contracts

- Fixing a loan rate

Example 1:
On 7/04, a firm knows that it will need 50 millions euros on 16/06 (last trading day of futures contracts) for 90 days. The loan rate is 3 -months Euribor $+0,50 \%$.

Cash-Euribor 3 Month: 4,742\%
3-Months Euribor future (Junho): 95,43 (implied rate: 4,57\%)

Risk of an increase in interest rates \Rightarrow Sell futures

Number of contracts to sell*: $\frac{50000000}{1000000}=50$

* Without considering the tailing

9/2/2016
Fixed Income Products and Markets

Hedging with 3 -months Euribor futures contracts

Scenario 1 On 16/06:
3-months Euribor = 4\%
Futures = 96,00

Hedging with 3 -months Euribor futures contracts

On 16/06:

	Scenario 1 Decrease in rate	Scenario 2	Scenario 3 Rise in rate
Euribor 3 m.	$4,00 \%$	$4,74 \%$	$5,50 \%$
Futures Euribor 3 m.	96,00	95,26	94,50
Financing rate	$4,50 \%$	$5,242 \%$	$6,00 \%$
Interest	$562500 €$	$655250 €$	$750000 €$
Results on futures*	$-71962,50 €$	$21754,88 €$	$117848,44 €$
Net financing costs	$634462,50 €$	$633495,12 €$	$632151,56 €$
Net financing rate	$5,076 \%$	$5,068 \%$	$5,057 \%$

* Capitalized for 90 days at Euribor 3 m rate
- The hedging with futures allowed to fix on 7/04 a value (the implied rate on the future price) for the 3 -months euribor rate on 16/06.

笽 Hedging with 3-months Euribor futures contracts

- Fixing the Financing rate (cont.)
\Rightarrow When the date of the future loan doesn't coincide with the future's last trading day

$$
\Downarrow
$$

Basis Risk

(financing rate obtained \approx initial financing rate (cash) + basis change)

$$
\text { (Basis = Future price }-(100-\text { Euribor } 3 \mathrm{M}) \text {) }
$$

\Rightarrow When the financing rate is related to other than 3-months Euribor reference rate
\Downarrow
Correlation risk
(financing rate obtained \approx initial financing rate (cash) + basis change + change in the difference between the financing rate and the 3-month euribor rate)

- Fixing the lending rate

Buy futures contracts
\Rightarrow If the future lending date coincides with the future's last trading day :

Lending rate obtained \approx futures implied rate - spread between Euribor 3M and the lending rate on the last trading day
\Rightarrow If the future lending date doesn't coincide with the future's last trading day :

Lending rate obtained \approx initial lending rate (cash) + basis change - change in spread (Euribor 3M - lending rate)

孫 forward bid-ask rates

Remember that:
Borrowing for a short period (D_{s} days) + lending for a long period (D_{L} days)

Allows to fix today the rate for a future lending starting in D_{s} days from now, for a period of $\left(D_{L}-D_{s}\right)$ days
(forward bid rate)

Lending for a short period (D_{S} days) + borrowing for a long period (D_{L} days)

Allows to fix today the rate for a future borrowing starting in Ds days from now, for a period of (DL - Ds) days
(forward ask rate)
forward bid rate $=\left[\frac{1+R_{L}^{\text {bid }} \frac{D_{L}}{360}}{1+R_{S}^{\text {ask }} \frac{D_{C}}{360}}-1\right] \times \frac{360}{D_{L}-D_{S}}$
forward ask rate $=\left[\frac{1+R_{L}^{\text {ask }} \frac{D_{L}}{360}}{1+R_{S}^{\text {bid }} \frac{D_{C}}{360}}-1\right] \times \frac{360}{D_{L}-D_{S}}$
$R_{L}^{\text {bid }}$ - bid rate for the long period
$\mathrm{R}_{\mathrm{S}}^{\text {bid }}$ - bid rate for the short period
$R_{L}^{\text {ask }}$ - ask rate for the long period
$R_{s}^{\text {ask }}$ - ask rate for the short period
$D_{S}-$ \# of days in the short period
D_{L} - \# of days in the long period

Example:

Term	Euribid	Euribor
3 months (90d)	$4,65 \%$	$4,75 \%$
6 months (180d)	$4,50 \%$	$4,60 \%$

> forward bid rate $=\left[\frac{1+0,0450 \frac{180}{360}}{1+0,0475 \frac{90}{360}}-1\right] \times \frac{360}{180-90}=0,04200$
> forward ask rate $=\left[\frac{1+0,0460 \frac{180}{360}}{1+0,0465 \frac{90}{360}}-1\right] \times \frac{360}{180-90}=0,044977$

Compare the forwards rates obtained through the money market cash rates with the implied rates of the future's price

Relevant dates:

Moment 0 - Position opening in the futures market and the interbank market

Moment T - Futures contract delivery date

Moment T+90-lending/borrowing settlement

骨 Cash and Carry Arbitrage

Conditions to implement: overvalued future contract

Future price Implied rate < forward bid rate

Strategy:

- Borrow in the money market for T days (short period: $(0 ; T)$)
- Sell ("expensive") futures contracts, with delivery in T days, ensuring the borrowing roll-over rate for 90 days
- Lend in the money market for $\mathrm{T}+90$ days (long periord: $(0 ; \mathrm{T}+90)$)

Cash and Carry Arbitrage

Example (cont.):

Moment 0 :

- Borrow for 90 days (rate: $4,75 \%$) so as to liquidate $20.000 .000 €$ at the end :

$$
19765287,21=\frac{20000000}{\left(1+0,0475 \frac{90}{360}\right)}
$$

- Lend for 180 days (4,5\%): - 19765 287,21

$$
\text { the final value will be: } \quad 19765287,21\left(1+0,045 \frac{180}{360}\right)=20210006,18
$$

- Sell futures contracts:

$$
N=\frac{20000000}{1000000}=20
$$

Cash and Carry Arbitrage

Example (cont.):

Moment T:

	Scenario 1 Euribor $3 m=4,00 \%$	Scenario 2 Euribor $3 m=4,75 \%$	Scenario 3 Euribor $3 m=5,50 \%$
Second borrowing for 90 days*	20009907,11	19972828,83	19935887,72
maturity of first borrowing	$-20000000,00$	$-20000000,00$	$-20000000,00$
Result in futures	$-1000,00$	36500,00	74000,00
Arbitrage gain	8907,11	9328,83	9887,72

*The amount of the second borrowing is such that its maturity value matches the final value of the initial lending, (this way the arbitrage gain is available on T):

$$
20009 \text { 907,11 }=\frac{20210006,18}{\left(1+0,04 \frac{90}{360}\right)}
$$

䇫
 Reverse Cash and Carry Arbitrage

Conditions to implement: undervalued future contract

Future prices implied rate >

forward ask rate + bid-ask spread expected for the last trading day

Strategy:

- Lend in the money market for T days $(0 ; T)$
- Buy ("cheap") futures, with delivery in T days, "ensuring" the lending roll-over rate for 90 days
- Borrow in the money market for $\mathrm{T}+90$ days $(0 ; T+90)$

1.3 Fra - Forward Rate Agreement

Definition

FRA - is an agreement between two parties whereby:

- the seller of FRA agrees to pay floating interest rate and receive a fixed interest rate;
- the buyer of FRA agrees to pay the fixed interest rate and receive the floating interest;
- on an agreed notional amount
- over an agreed forward period

Buying Fras allows to fix a borrowing rate (to hedge against rising interest rates)
Selling Fra allows to fix a lending rate (to hedge against decreasing interest rates)

亭 Fra - characteristics

- definition of two periods
- "waiting period": period of time between today and the starting of the forward period - y months
- "contract period": length of the forward period (term of the loan/deposit) - z months

- Definition of two rates
- the fixed rate (Fra rate)
- the reference rate (exp: Euribor, Libor,...)

FRA - Characteristics

- Interest difference:

$$
N\left(r_{\text {ref }}-r_{\text {Fra }}\right) \frac{n}{360}
$$

$r_{\text {ref }}$ - reference rate
$\mathrm{r}_{\mathrm{Fra}}$ - Fra rate
n - \# of days of contract period
N - notional amount

- Settlement amount:

$$
\frac{N\left(r_{\text {ref }}-r_{\text {Fra }}\right) \frac{n}{360}}{1+r_{\text {ref }} \frac{n}{360}}
$$

If:

- $r_{\text {ref }}>r_{\text {Fra }}$ - the seller pays to the buyer the settlement amount
- $r_{\text {ref }}<r_{\text {Fra }}$ - The buyer pays to the seller the settlement amount

Example:

On 07/04/2008, a firm bought an $\mathrm{Fra}_{1 \times 4}$:

- Fra rate: 4,5\%
- Reference rate: Euribor 3m
- Notional amount: 10 millions $€$

On $07 / 05 / 2008$, the Euribor $3 m$ rate is $4,15 \%$, so the firm will pay to the bank:

$$
\frac{10000000(0,045-0,0415) \frac{92}{360}}{1+0,0415 \frac{92}{360}}=8850,58
$$

高 FRA vs Futures

The 3-months Euribor future contract is equivalent to an FRA (with a contract period of 3 months), with daily mark to market.

Quotation:		Bid	Ask
FRA : Interest rate	(exp.	4,25	$4,28)$
Future: $100-$ implied rate	(exp.	95,54	$95,555)$

Hedging interest rate risk

Risk of...	Decrease	Increase
Futures	Buy	Sell
FRAs	Sell	buy

高 Futures vs FRAs Arbitrage

Example:

ON 16/04 the quotes of FRAs and 3-months euribor futures contracts for June were:

	Bid	Ask
FRA $_{2 \times 5}{ }^{*}$	$4,44 \%$	$4,47 \%$
3 -months Euribor futures	95,46	95,48

FRA ask rate (4,47\%)
<
ask future price implied rate(4,52\%)

Arbitrage opportunity:
buy FRA
buy Futures
*the reference rate is 3 -months Euribor

(i)
 Futures vs FRAs Arbitrage

Relevant dates:
$\left.\begin{array}{ll}\text { Future last trading day: } & 16 / 06 / 2008 \\ \text { FRA fixing date: } & 16 / 06 / 2008 \\ \text { Futures settlement date: } & 17 / 06 / 2008 \\ \text { FRA settlement date } & 18 / 06 / 2008 \\ \text { FRA maturity date } & 18 / 09 / 2008\end{array}\right\} 92$ days

Considering an FRA notional amount of 20 millions, how many futures contracts should be transactd?

- Impact of 0,5 bp change on 3 months euribor rate:

$$
\begin{aligned}
& \text { - FRA value: } \quad \frac{20000000(0,00005) \frac{92}{360}}{1+0,0453 \frac{92}{360}}=252,631 \\
& \text { - Value of } 1 \text { future contract: } \\
& \begin{array}{ll}
\text { \# of contracts to transact: } & 12,5 \text { (tick size) } \\
\end{array}
\end{aligned}
$$

Futures vs FRAs Arbitrage			$\frac{C_{2}}{c_{2}}$
	$\begin{gathered} \text { Scenario } 1 \\ \text { Euribor }=4,00 \% \\ \text { Futures }=96,00 \end{gathered}$	$\begin{gathered} \text { Scenario } 2 \\ \text { Euribor }=4,50 \% \\ \text { Futures }=95,50 \end{gathered}$	$\begin{gathered} \text { Scenario } 3 \\ \text { Euribor }=5,00 \% \\ \text { Futures }=95,00 \end{gathered}$
FRA settlement	-23779,15	1515,90	26747,12
Result on futures	26000,00	1000,00	-24000,00
Total	2220,85	2515,90	2747,12
9122016	Fixed l C	ucts and Marels	${ }^{61}$

