FIXED INCOME PRODUCTS AND MARKETS

III - Fixed Income Derivatives and Models

José Azevedo Pereira and Sergio F. Silva

III - Fixed Income Derivatives and Models

1. Swaps, Fra's and Short Term Interest Rate Futures
2. Bond Futures
3. Interest Rate Dynamics
4. Credit Spread Dynamics
5. Bonds with embedded options and Bond Options
6. Futures Options, Caps, Floors and Swaptions
7. Exotic Options and Credit Derivatives

2. Bond Futures

2.0 Bond Futures

Underlying assets: notional bond issued by the treasury with a given maturity

Contracts:
$\left.\begin{array}{l|l}\left.\begin{array}{l}\text { - Euro Bund (10 Y notional) } \\ \text { - Euro Bobl (5 Y notional) } \\ \text { - Euro Schatz (2 Y notional) } \\ \text { - Long Gilt (10 Y notional) } \\ \text { - 30-Years US Treasury Bonds } \\ -10-\text { Years US Treasury Notes } \\ -5 \text { Years US Treasury Notes } \\ -2 \text { Years US Treasury Notes } \\ -\ldots\end{array}\right\} \quad \text { UK Treasury } \\ \end{array}\right\} \quad$ US Treasury $\left.\begin{array}{l} \\ \end{array}\right\}$

2.1 Euro Bund Futures

Contract Specifications (Eurex):

Trading unit (contract size):
Notional bond issued by the Federal Republic of Germany
Maturity: 10 years
Coupon rate: 6\%
Principal: 100000 EUR
(Eligible bonds to delivery: Bunds with a remaining maturity, on the delivery date, of 8,5 years to 10,5 years)

Quotation:
as a percentage of the nominal value

Tick size
0,01\% (tick value = 10 EUR)

Delivery months

The three nearest quarterly months of the March, June, September and December cycle.

Contract Specifications (cont.):

Delivery date
The tenth calendar day of the respective quarterly month, if this day is an exchange day; otherwise, the exchange day immediately succeeding that day.

Last trading day
Two exchange days prior to the Delivery Day of the relevant maturity month.

Settlement
Physical settlement (deliverable bonds list: Bunds with a remaining maturity between 8,5 and 10,5 years and with a minimum issue amount of EUR 5 billion)

Deliverable bonds list on April 2008, for June 2008 delivery month future contract:

- Bund 3,75\% Jan. 2017
- Bund 4,25\% Jul. 2017
- Bund 4,00\% Jan. 2018

Settlement

- The seller of the contract selects the bond to deliver from the deliverable bonds list
- Delivers EUR 100000 of principal of the bond per contract
- Amount received by the seller (short position) and paid by the buyer (long position) per contract: the invoice price
[PF x CF + AI] x 100000

PF - Final settlement price of the future contract (in \%)
CF - Conversion factor of the delivered bond
AI - Accrued interest (in \%) (convention: Act/Act)

Settlement

Example: Settlement of March 08 Euro Bund contract (10/03/2008)

$$
P F=117,40
$$

Deliverable bonds:

Bonds	Conversion Factors
Bund 3,75\% Jan. 2017	0,849146
Bund 4,25\% Jul. 2017	0,877457
Bund 4,00\% Jan. 2018	0,854343

Suppose the seller delivers the Bund 3,75\% Jan. 2017:

Last coupon date	04/01/2008	66 days (Act/Act)
Delivery date (futures):	10/03/2008	
Next coupon date:	04/01/2009	
		$A I=3,75 \% \frac{66}{366}=0,676$
Invoice price (per contract): 366		
$[117,40 \% \times 0,849146+0,67623 \%] \times 100000=100365,97$		
9/2/2016 Fixed Income Products and Markets		

2.2 Conversion Factors

Deliverable bond list: Bund with 8,5 to 10,5 years of remaining maturity, from the delivery date and with a minimum issue amount of EUR 5 billion

$$
\begin{array}{ll}
\text { For June } 2008 \text { contract, the deliverable bond are: } & \begin{array}{l}
\text { Bund 3,75\% Jan. } 2017 \\
\\
\text { Bund 4,25\% Jul. } 2017 \\
\text { Bund 4,00\% Jan. } 2018
\end{array} ~
\end{array}
$$

EURO-BUND FUTURE	Jun08	RXM	$8 \quad 11$	36
	(Mid)		Conv.	
OrderDR re-sort?Y	Price	Source	Yield	C. Factor
1) DBR $3{ }^{3} 401 / 04 / 17$	98.240	BGN	3.991	. 852348
2) DBR $41_{4}{ }^{1}$ 07/04/17	102.020	BGN	3.982	. 880218
3) DBR $401 / 04 / 18$	100.060	BGN	3.989	. 857079

	97) Export to Exce	98) Settings		
RXM6 Comdty FURO-BUND FUTURE	Price	163.48		Trade Settle
Sort By				
Implied Repo - Decreasing				
Cash Security	Price	Source	Conven Yield	Conver Factor
Adjust Value				
1) DBR $0 \frac{1}{2} 02 / 15 / 25$	104.1600	BGN	0.0278	0.635989
2) DBR $108 / 15 / 25$	108.4100	BGN	0.0932	0.654708
3) DBR $0{ }_{2}^{1} 202 / 15 / 26$	103.3100	BGN	0.1601	0.604688

The deliverable bonds have:

- different maturities
- different coupon rates

It makes no sense to deliver different bonds and receive the same amount

Need for a method that transforms the price of the futures contract into an equivalent price for each Bond, and vice versa

For each deliverable bond, of a given delivery month, there exist a conversion factor that homogenize the value of the different bonds

The bond Conversion factor, for a given delivery month, is:

The clean price of the bond on the delivery date, assuming a yield-tomaturity equal to the contract coupon rate (6,0\%)

Bond clean price:
Bund 4,00\% Jan. $2018{ }_{(\text {утм }=6,0 \%)}=85,7079$

Example:
Conversion factor calculation for the bond: Bund 4,00\% Jan. 2018, for June 2008 delivery month: 10/06/2008

Coupon rate	$4,00 \%$
Maturity	$4 / 01 / 2018$
Last coupon date / Issue date	$16 / 11 / 2007$
Next coupon date	$4 / 01 / 2009$
Number of coupons	10

Long first coupon:
$\left.\left.\begin{array}{l}16 / 11 / 2007 \\ 04 / 01 / 2008 \\ 04 / 01 / 2009\end{array}\right\} \begin{array}{l}4 \% \frac{49}{365}=0,5370 \% \\ 4 \%\end{array}\right\} \quad 4,5370 \%$

	Date: 10/06/2008				$C_{2}=0 /{ }^{2}$
	Dates	t_{i}	Discount factor	Cash-flows	Discounted Cash-flows
	04-01-2009	0,568306	0,967428	4,5370\%	4,3892\%
	04-01-2010	1,568306	0,912668	4\%	3,6507\%
	04-01-2011	2,568306	0,861007	4\%	3,4440\%
	04-01-2012	3,568306	0,812271	4\%	3,2491\%
	04-01-2013	4,568306	0,766293	4\%	3,0652\%
	04-01-2014	5,568306	0,722918	4\%	2,8917\%
	04-01-2015	6,568306	0,681998	4\%	2,7280\%
	04-01-2016	7,568306	0,643395	4\%	2,5736\%
	04-01-2017	8,568306	0,606976	4\%	2,4279\%
	04-01-2018	9,568306	0,572619	104\%	59,5524\%
	Total				87,9717\%
	91/20016		Fixed Income Products and Markets		17

Cheapest to Delivery (CTD) Bond

On the delivery date, the seller will choose the bond, within the deliverable bond list, to deliver for settlement. What bond?

Cheapest to delivery

The bond that maximizes the difference between the amount received from the contract settlement and the bond's acquisition cost

$$
\operatorname{Máx}_{i}\left[P F \times C F_{i}+A I_{i}-\left(P_{i}+A I_{i}\right)\right] \Leftrightarrow \min _{i}\left[\frac{P_{i}}{C F_{i}}\right]
$$

Example: on 5/03/2008 we observe the march 2008 (10/03/2008) deliverable bond's prices. PF $=117,40$

Deliverable bonds	Price	CF	PFxFC $_{\mathrm{i}}-\mathrm{P}_{\mathrm{i}}$	$\mathrm{P}_{\mathrm{i}} / \mathrm{FC}_{\mathrm{i}}$
Bund 3,75\% Jan. 2017	99,715	0,849146	$-0,025$	117,43

Bund 4,00\% Jan. 2018	101,326	0,854343	$-1,026$	118,60

2.3 Contract valuation

Forward price vs Future Equivalent price

Buying forward the bond \Leftrightarrow Buy spot with borrowed money

Forward price $=$ Spot price + Cost of carry
(financial cost - income received from holding the bond)

Future Equivalent price $\left(\mathrm{PF}_{\mathrm{e}}\right)$:

Convert the forward price of the bond into an equivalent future price using the respective conversion factor:

$$
P F_{i}^{e}=\frac{P_{\text {forward }, i}}{C F_{i}}
$$

Implied repo rate: the return that is achieved through the acquisition of the bond in the cash market and simultaneously selling it through the future contract. Corresponds to the (annual) rate \mathbf{r} that solves the following equation (considering up to 1 coupon payment until the delivery date of the contract)

$$
\begin{aligned}
& \left(P_{\text {spot }}+A I_{0}\right)\left(1+r \frac{T}{360}\right)=P F(C F)+A I_{T}+X_{1} C\left(1+r \frac{T-T_{1}}{360}\right) \\
& r=\left[\frac{P F(C F)+A I_{T}+X_{1} C\left(1+r_{1} \frac{T-T_{1}}{360}\right)}{\left(P_{\text {spot }}+A I_{0}\right)}-1\right] \frac{360}{T}
\end{aligned}
$$

Note: the implied repo rate may also be calculated (e.g. Bloomberg) as:
$\left(\mathrm{P}_{\text {spot }}+\mathrm{AI}_{0}\right)\left(1+\mathrm{r} \frac{\mathrm{T}}{360}\right)=\operatorname{PF}(\mathrm{CF})+\mathrm{AI}_{\mathrm{T}}+\mathrm{X}_{1} \mathrm{C}\left(1+\mathrm{r} \frac{\mathrm{T}-\mathrm{T}_{1}}{360}\right)$

$$
r=\left[\frac{\operatorname{PF}(C F)+A I_{T}-\left(P_{\text {spot }}+A I_{0}\right)+X_{1} C}{\left(P_{\text {spot }}+A I_{0}\right)\left(\frac{T}{360}\right)+X_{1} C\left(\frac{T-T_{1}}{360}\right)}\right]
$$

(Note: when $\mathrm{X}_{1}=0$, no coupon payments during the period, the results are the same)

Before the delivery date, the Cheapest to Delivery is the bond with:
the lower equivalent future price
the highest Implied repo rate

Example: On 10 April (settlement: 15/04/2008), the deliverable Bonds for the June 2008 Euro Bund future contract are:

	Bund 3,75\% Jan. $\mathbf{2 0 1 7}$	Bund 4,25\% Jul. $\mathbf{2 0 1 7}$	Bund 4,00\% Jul. $\mathbf{2 0 1 8}$
Coupon rate	$3,75 \%$	$4,25 \%$	$4,00 \%$
Last coupon date/issue date	$04 / 01 / 2008$	$25 / 05 / 2007$	$16 / 11 / 2007$
Next coupon date	$04 / 01 / 2009$	$04 / 07 / 2008$	$04 / 01 / 2009$
Accrued Interest* (year base)	$102(366)$	$286(366)+$	$102(366)+$
Price	$\mathbf{9 8 , 2 4 \%}$	$\mathbf{4 0}(365)$	$49(365)$
Accrued Interest*	$\mathbf{1 , 0 4 5 0 8 2 \%}$	$\mathbf{3 , 7 8 6 7 9 2 \%}$	$\mathbf{1 , 6 5 1 7 4 0 \%}$
Conversion factor	$\mathbf{0 , 8 5 2 3 4 8}$	$\mathbf{0 , 8 8 0 2 1 8}$	$\mathbf{0 , 8 5 7 0 7 9}$

[^0]Number of days until the future's delivery date (10/06/2008): 56 days
Financing rate: 4,52\%

Future equivalent price for Bund 3,75\% Jan. 2017:

Acquisition cost (gross price): $\quad 98,24 \%+1,045082 \%=99,285082 \%$
Financial cost: $\quad 99,285082 \%(4,52 \%)\left(\frac{56}{360}\right)=0,698084 \%$
Accrued interest (delivery date): $\quad 3,75 \%\left(\frac{102+56}{366}\right)=1,618852 \%$

Forward price: $\quad 99,285082 \%+0,698084 \%-1,618852 \%=98,364314 \%$

Future equivalent price: $\quad \frac{98,364314 \%}{0,852348}=115,404 \%$

Note: Cost of carry =
$1,045082 \%+0,698084 \%-1,618852 \%=0,124314 \%$

Implied repo rate calculation for Bund 3,75\% Jan. 2017, considering that on $10 / 04 / 2007$ the future was quoted at 115,36\%:

Since there isn't any coupon payment betwen 10/04 e 10/06, the implied repo rate will be given by:

$$
\begin{gathered}
r=\left[\frac{P F(F C)+J D_{T}}{\left(P_{\text {vista }}+J D_{0}\right)}-1\right] \frac{360}{T} \\
r=\left[\frac{115,36 \%(0,852348)+1,618852 \%}{(98,24 \%+1,045082 \%)}-1\right] \frac{360}{56}=4,28 \%
\end{gathered}
$$

Theoretical value of the Euro Bund future contract

Contract theoretical value $=\operatorname{Min} \mathrm{PF}_{\mathrm{i}}{ }^{\mathrm{e}} \quad \mathrm{i}=1,2, \ldots, \mathrm{~m}$
m - \# of Bonds of the deliverable list for a given delivery date
$P F_{i}{ }^{\mathrm{e}}$ - future equivalent price of the i -th deliverable bond

Cheapest to delivery
(the future equivalent price of the bond that maximizes the cash \& carry strategy result)

2.4 Arbitrage strategies

- Price distortions
- Does not require any expectations about future changes in interest rates
- Riskless strategies
\Rightarrow Cash \& Carry Arbitrage
\Rightarrow Reverse Cash \& Carry Arbitrage

Cash \& Carry Arbitrage

\Rightarrow Future contract overvalued

Conditions to implement:

- Future price higher than the theoretical value
- Implied repo rate higher than the financing rate (repo rate)

Which bond to use? To maximize the arbitrage gain
\Downarrow
CTD

Strategy implementation:

Buying bonds (bund's) in the cash market
and
Selling futures contracts

Start of operations ($\mathbf{t = 0}$)

Repo market Price	Bund
Bond Market	Bund
Eurex (futures market)	

Strategy implementation:
At the delivery date, deliver the bonds to settle the futures contracts, receiving the corresponding cash and liquidate the loan

Final operation $(t=T)$

Repo Market	Price + Interest Bund	Arbitrageur Bund
Future price		

Eurex (futures

 market)Example: On April 10th (settlement: 15/04/2008), the CTD bond is "Bund $3,75 \%$ Jan. 2017", and is quoted at $98,24 \%$, while the price of the Euro Bund Future contract for June 2008 is $115,48 \%$

	Bund 3,75\% Jan. $\mathbf{2 0 1 7}$
Price	$98,24 \%$
Accrued Interest (settlement date)	$1,045082 \%$
Accrued Interest (delivery date)	$1,618852 \%$
Repo rate	$4,52 \%$
Conversion factor	0,852348
Future equivalent price	$115,404 \%$
Implied repo rate	$4,94 \%$

Future price $(115,48 \%)>$ Theoretical price $(115,404 \%)$
Implied repo rate $(4,94 \%)>$ repo rate $(4,52 \%)$

Future contract is overvalued

Consider $1000000 €$ of nominal:

- Buy 1.000.000 € of nominal value of the CTD bond
- Sell 10 Euro Bund Futures contract (June): $\quad\left(\frac{1000000}{100000}=10\right)$
- Financing rate: $4,52 \%$

Different scenarios for the Euro bund future contract price on the delivery date:

	Scenario 1	Scenario 2	Scenario 3
Future price	115,00	115,48	116,00

Scenario 1:

$$
\begin{array}{lr}
\text { - Acquisition cost: } & 1000000(98,24 \%+1,045082 \%)=992850,82 \\
\text { - Financing cost: } & 992850,82\left(4,52 \% \frac{56}{360}\right)=6980,84 \\
\text { - Margin adjustments: } & \left(\frac{115,48-115,00}{0,01}\right) \times 10 \times 10=4800
\end{array}
$$

- Future contract settlement:

$$
[115,00 \%(0,852348)+1,618852 \%] \times 10 \times 100000=996388,72
$$

- Final Results

$$
996388,72+4800-6980,84-992850,82=1357,06
$$

Different scenarios results :

	Scenario 1	Scenario 2	Scenario 3
Future price	115,00	115,48	116,00
Arbitrage result	1357,06	648,33	$-119,46$

The results depend on the future price evolution - risk

Need to adjust the futures position by the conversion factor:
$\frac{\text { NV cash position }}{\text { NV Euro Bund }} \times$ Conversion Factor $=\frac{1000000}{100000} \times 0,852348=8,52 \approx 9$

At the initial date sell 9 contracts, and at the last trading day, sell 1 more contract:

	Scenario 1	Scenario 2	Scenario 3
Future price	115,00	115,48	116,00
Arbitrage Result	877,06	648,33	400,54

Reverse Cash \& Carry Arbitrage

\Rightarrow Future contract undervalued

Conditions to implement:

- Future price lower than the theoretical value
- Implied repo rate lower than deposit rates

Strategy implementation:

Sell bonds (bund's) in the cash market and
Buy Euro Bund futures contracts

Incorporating transaction costs \Rightarrow No arbitrage gap

2.5 Hedging

Futures contracts are low cost highly liquid instruments. They are frequently used for hedge purposes.

- Duration hedge:

$$
\text { Hedge ratio: } \quad \phi_{f}=-\frac{\$ \text { Dur }_{\mathrm{P}}}{\$ \operatorname{Dur}_{\mathrm{B}}} \times \mathrm{CF}
$$

Where SDur $_{p}$ e \$Dur ${ }_{B}$ correspond, respectively to the \$duration of the bond/portfolio to hedge and of the CTD bond of the future contract, being CF the respective conversion factor

Possibility to adjust the hedge ratio by the yield beta:

$$
\Delta y_{P}=\alpha+\beta \Delta y_{B}+e
$$

Example:

On 02/04/2008 an investor holds $2000000,00 €$ of NV of an OT 4,35\% 16/10/2017 which has the following characteristics:

Price (\%)	Coupon rate (\%)	Yield (\%)	\$Dur (\%)
100,30	4,35	4,3080	$-770,903$

He wants to hedge his position using Euro bund futures contracts (June delivery)

The CTD bond is the Bund $3,75 \%$ 04/01/2017 which has the following characteristics:

Price (\%)	Coupon Rate (\%)	Yield (\%)	\$Dur (\%)	Conversion factor
98,20	3,75	3,9958	$-719,210$	0,852348

Future price: 115,18

How many contracts?

$$
\text { Hedge ratio: } \quad \phi=-\frac{2000000}{100000} \times \frac{770,903}{719,210} \times 0,852348=-18,27
$$

Sell 18 futures contracts

Suppose that on 28/04/2008 the positions are closed:

	Price (\%)	Yield (\%)	Yield change
OT 4,35\% 16/10/2017	98,53	4,5413	$23,33 \mathrm{bp}$
Bund 3,75\% 04/01/2017	96,75	4,2020	$20,62 \mathrm{bp}$
Futures (June)	113,53		

Example:

Results analysis:

The imperfect hedge is explained by:

- basis evolution (basis risk)
- Correlation risk
(equal changes in the YTM where assumed when the number of contracts was calculated)
- Indivisibility risk

Hedging:

- hedge a bond acquisition in the future
- Hedge a bond issue in the future
- Hedge the balance sheet structure in terms of duration

[^0]: *at date 15/04/2008

