# Stochastic Calculus - part 11

**ISEG** 

(ISEG) Stochastic Calculus - part 11 1 / 9

# SDE's - Numerical Approximations

- SDE:

$$dX_{t} = b(X_{t}) dt + \sigma(X_{t}) dB_{t},$$

with initial condition  $X_0 = x$ .

• Partition:  $t_i = \frac{iT}{n}$ , i = 0, 1, ..., n and length of each sub-interval:  $\delta_n = \frac{T}{n}$ 



(ISEG) Stochastic Calculus - part 11

### **Euler Method**

• Exact values of the solution:

$$X(t_{i}) = X(t_{i-1}) + \int_{t_{i-1}}^{t_{i}} b(X_{s}) ds + \int_{t_{i-1}}^{t_{i}} \sigma(X_{s}) dB_{s}.$$
 (1)

Euler approximation

$$\int_{t_{i-1}}^{t_{i}} b\left(X_{s}\right) ds \approx b\left(X\left(t_{i-1}\right)\right) \delta_{n},$$

$$\int_{t_{i-1}}^{t_{i}} \sigma\left(X_{s}\right) dB_{s} \approx \sigma\left(X\left(t_{i-1}\right)\right) \Delta B_{i},$$

where  $\Delta B_{i}:=B\left(t_{i}
ight)-B\left(t_{i-1}
ight)$  .

• Euler scheme:

$$X^{(n)}\left(t_{i}\right)=X^{(n)}\left(t_{i-1}\right)+b\left(X^{(n)}\left(t_{i-1}\right)\right)\delta_{n}+\sigma\left(X\left(t_{i-1}\right)\right)\Delta B_{i}, \quad (2)$$

$$i=1,2,\ldots,n.$$
(ISEG) Stochastic Calculus - part 11

#### **Euler Method**

- In each interval  $(t_{i-1}, t_i)$ , the value of  $X^{(n)}$  is obtained by linear interpolation.
- The approximation error is defined by

$$e_n := \sqrt{E\left[\left(X_T - X_T^{(n)}\right)^2\right]}. \tag{3}$$

• For the Euler scheme, we can show that

$$e_n^{Eul} \leq c\sqrt{\delta_n}$$

where c is a constant.

## Euler Method

- How to simulate a trajectory of the solution using the Euler method?
- ① We have to generate the values of n random variables with normal distribution N(0,1):  $\xi_1, \xi_2, \ldots, \xi_n$ .
- 2 Replace  $\Delta B_i$  in (2) by  $\xi_i \sqrt{\delta_n}$  and calculate the values of  $X^{(n)}(t_i)$  using the recurrence scheme (2).
- 3 In each interval  $(t_{i-1}, t_i)$  calculate  $X^{(n)}$  by linear interpolation between  $X^{(n)}(t_{i-1})$  and  $X^{(n)}(t_i)$ .

(ISEG) Stochastic Calculus - part 11 5 / 9

### Milstein Method

• Apply the Itô formula to  $b(X_t)$  and  $\sigma(X_t)$ , considering  $t_{i-1} \leq t \leq t_i$ . We have

$$\begin{split} & \int_{t_{i-1}}^{t_{i}} b\left(X_{s}\right) ds = \int_{t_{i-1}}^{t_{i}} \left[b\left(X\left(t_{i-1}\right)\right) + \right. \\ & \left. + \int_{t_{i-1}}^{s} \left(bb' + \frac{1}{2}b''\sigma^{2}\right) \left(X_{r}\right) dr + \int_{t_{i-1}}^{s} \left(\sigma b'\right) \left(X_{r}\right) dB_{r}\right] ds, \\ & \int_{t_{i-1}}^{t_{i}} \sigma\left(X_{s}\right) dB_{s} = \int_{t_{i-1}}^{t_{i}} \left[\sigma\left(X\left(t_{i-1}\right)\right) + \right. \\ & \left. + \int_{t_{i-1}}^{s} \left(b\sigma' + \frac{1}{2}\sigma''\sigma^{2}\right) \left(X_{r}\right) dr + \int_{t_{i-1}}^{s} \left(\sigma\sigma'\right) \left(X_{r}\right) dB_{r}\right] dB_{s}. \end{split}$$

Exercise: Prove this equality.

(ISEG)

## Milstein Method

• Then, from (1), we have that

$$X^{(n)}(t_i) - X^{(n)}(t_{i-1}) = b(X(t_{i-1})) \delta_n + \sigma(X(t_{i-1})) \Delta B_i + R_i.$$

One can show that the dominant term of  $R_i$  is the double stochastic integral

$$\int_{t_{i-1}}^{t_i} \left( \int_{t_{i-1}}^{s} \left( \sigma \sigma' \right) (X_r) dB_r \right) dB_s,$$

while the other terms are of higher order and negligible.

Milstein Approximation:

$$R_{i} \approx \int_{t_{i-1}}^{t_{i}} \left( \int_{t_{i-1}}^{s} \left( \sigma \sigma' \right) (X_{r}) dB_{r} \right) dB_{s}$$

$$\approx \left( \sigma \sigma' \right) \left( X \left( t_{i-1} \right) \right) \int_{t_{i-1}}^{t_{i}} \left( \int_{t_{i-1}}^{s} dB_{r} \right) dB_{s}$$

and

$$\begin{split} & \int_{t_{i-1}}^{t_i} \left( \int_{t_{i-1}}^{s} dB_r \right) dB_s = \int_{t_{i-1}}^{t_i} \left( B_s - B\left(t_{i-1}\right) \right) dB_s \\ & = \int_{t_{i-1}}^{t_i} B_s dB_s - B\left(t_{i-1}\right) \left( B\left(t_i\right) - B\left(t_{i-1}\right) \right) \\ & = \frac{1}{2} \left[ B_{t_i}^2 - B_{t_{i-1}}^2 - \delta_n \right] - B\left(t_{i-1}\right) \left( B\left(t_i\right) - B\left(t_{i-1}\right) \right) \\ & = \frac{1}{2} \left[ \left( \Delta B_i \right)^2 - \delta_n \right], \end{split}$$

where, for calculating  $\int_{t_{i-1}}^{t_i} B_s dB_s$ , we can use the Itô formula applied to  $f(B_t) = B_t^2$ .

# Milstein Method

• Milstein Scheme:

$$\begin{split} X^{(n)}\left(t_{i}\right) &= X^{(n)}\left(t_{i-1}\right) + b\left(X^{(n)}\left(t_{i-1}\right)\right)\delta_{n} + \sigma\left(X\left(t_{i-1}\right)\right)\Delta B_{i} \\ &+ \frac{1}{2}\left(\sigma\sigma'\right)\left(X\left(t_{i-1}\right)\right)\left[\left(\Delta B_{i}\right)^{2} - \delta_{n}\right]. \end{split}$$

• One can show that the approximation error in the Milstein methos is

$$e_n^{Mil} \leq c\delta_n$$
.

(ISEG) Stochastic Calculus - part 11 9 / 9