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The Markov property for diffusion processes

The solutions of SDE’s are called Diffusion Processes.

Let X = {Xt , t ≥ 0} be a diffusion process (of dimension n) which
satisfies the SDE

dXt = b (t,Xt) dt + σ (t,Xt) dBt , (1)

where B is a m-dimensional Brownian motion and b and σ satisfy the
conditions of the existence and uniqueness theorem.
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The Markov property for diffusion processes

Definition

We say that a process X = {Xt , t ≥ 0} is a Markov process if ∀s < t, we
have that

E [f (Xt) |Xr , r ≤ s ] = E [f (Xt) |Xs ] .

for any bounded and measurable function f defined on Rn.

In particular, if C ⊂ Rn is measurable, then

P [Xt ∈ C |Xr , r ≤ s ] = P [Xt ∈ C |Xs ] .
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Markov property: the future values of a process depend only of its
present value and not from its past values (if the present value is
known).

The probability law for Markov processes is described by the
transition probabilities:

P (C , t, x , s) := P (Xt ∈ C |Xs = x) , 0 ≤ s < t.
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The Markov property for diffusion processes

P (·, t, x , s) is the law of probability of Xt conditional to Xs = x . if
this conditional probability has an associated density, we represent it
by

p (y , t, x , s) .
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Example

The Brownian motion is a Markov process with transition probabilities

p (y , t, x , s) =
1√

2π (t − s)
exp

(
− (x − y)2

2 (t − s)

)
. (2)

Indeed,

P [Bt ∈ C |Fs ] = P [Bt − Bs + Bs ∈ C |Fs ]

= P [Bt − Bs + x ∈ C ] |x=Bs

= P [Bt ∈ C |Bs = x ] ,

where we have used the properties of conditional probability and the fact
that Bt − Bs is independent of Fs and Bs is known if we know the
”information”Fs (that is, Bs is Fs -measurable).
Since Bt −Bs + x has normal distribution with mean x and variance t − s,
then the density of the transition probability is given by (2).
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The Markov property for diffusion processes

Notation: {X s,x
t , t ≥ s} is the solution of the SDE (1) defined in

[s,+∞) and with initial condition X s,x
s = x .

If s = 0, we use the notation X 0,x
t = X x

t .

Properties

1 Exists a continuous version (in all the parameters s, t, x) of the process
{X s,x

t , 0 ≤ s ≤ t, x ∈ Rn}.
2 For any t ≥ s, we have

X x
t = X

s,X x
s

t . (3)
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The Markov property for diffusion processes

Theorem

(Markov property for diffusion processes): Let f be a bounded function in
Rn. Then, for any 0 ≤ s ≤ t, we have

E [f (X x
t ) |Fs ] = E [f (X s,y

t )] |y=Xs (4)

The diffusion processes are Markov processes.
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The Markov property for diffusion processes

The transition probabilities for a diffusion process are the probabilities

P (C , t, x , s) = P(X s,x
t ∈ C ).

If a diffusion process is homogeneous in time (the coefficients b and σ
do not depend on t) then the Markov property (4) can be written as

E [f (X x
t ) |Fs ] = E [f (X y

t−s)] |y=X x
s

.
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The Markov property for diffusion processes
Exercise: Calculate the transition probabilities of the Ornstein-Uhlenbeck
process with mean reversion.

Solution:
dXt = a (m− Xt) dt + σdBt .

Solution in [s,+∞), with initial condition Xs = x :

X s,x
t = m+ (x −m) e−a(t−s) + σe−at

∫ t

s
eardBr .

We know that
{∫ t

s eardBr , t ≥ s
}

is a Gaussian process with mean

and variance given by (see previous lecture)

E [X s,x
t ] = m+ (x −m) e−a(t−s),

Var [X s,x
t ] =

σ2

2a

(
1− e−2a(t−s)

)
.
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The Markov property for diffusion processes

(solution) The transition probability

P (·, t, x , s) is obtained from the Distribution of X s,x
t .

Therefore, it can be calculated from the normal distribution with the
mean and variance presented before.
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The Stratovonich integral and SDE’s

In the Itô stochastic integral for simple processes, when we define∫ t
0 usdBs using sums of the Riemann type, we use always the value of

u at point tj−1 and assume that the process is constant in [tj−1, tj ) .

As a consequence, the expected value of the Itô integral is zero and
its variance can be calculated by the Itô isometry. Moreover, the
undefined Itô integral is a Martingale.

The drawback of the Itô integral is that in the “chain rule” (or Itô
formula) we have an unusual term of 2nd order (term that does not
appear in the chain rule of classical calculus).
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The Stratovonich integral and SDE’s

The Stratonovich integral
∫ T
0 us ◦ dBs is defined as the limit in

probability of the sequence of

n

∑
i=1

1

2
(uti−1 + uti )∆Bi ,

where ti =
iT
n .
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The Stratovonich integral and SDE’s

Relationship between the Itô integral and the Stratonovich integral: If
u is a Itô process of the form

ut = u0 +
∫ t

0
βsds +

∫ t

0
αsdBs , (5)

then it is possible to show that∫ T

0
us ◦ dBs =

∫ T

0
usdBs +

1

2

∫ T

0
αsds.
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The Stratovonich integral and SDE’s

The Itô formula for the stochastic integral of Stratonovich is the usual
chain rule used in classical calculus.

Indeed, if u is a process of the form (5) and

Xt = X0 +
∫ t

0
vsds +

∫ t

0
us ◦ dBs

then one can show that

df (Xt) = f ′ (Xt) ◦ dXt
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The Stratovonich integral and SDE’s

A SDE in the sense of Itô can be transformed in a SDE in the sense
of Stratonovich, using the formula that relates both integrals

Itô SDE:

Xt = X0 +
∫ t

0
b (s,Xs) ds +

∫ t

0
σ (s,Xs) dBs .

Equivalent Stratonovich SDE:

Xt = X0+
∫ t

0
b (s,Xs) ds−

1

2

∫ t

0

(
σσ′
)
(s,Xs) ds+

∫ t

0
σ (s,Xs) ◦dBs .

This is a simple consequence of the Itô decomposition of σ (t,Xt),
which is

σ (t,Xt) = σ (0,X0) +
∫ t

0
hsds +

∫ t

0

(
σσ′
)
(s,Xs) dBs .
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