Stochastic Calculus - part 15

ISEG

(ISEG) Stochastic Calculus - part 15 1 / 14

Girsanov Theorem - What is it?

- The Girsanov theorem states, in it's simpler version, that the Brownian motion with drift: $\widetilde{B}_t = B_t + \lambda t$, may be seen as a standard Brownian motion if we change the probability measure.
- In a broader way, the theorem states that if we change the drift coefficient of an It process then the law of the process does not radically change.

Changing the probability measure

• Assume that $L \ge 0$ is a random variable with mean 1 defined on the probab. space (Ω, \mathcal{F}, P) . Then

$$Q(A) = E[\mathbf{1}_A L]$$

defines a new probability measure It is clear that $Q(\Omega)=E\left[L
ight]=1.$

• $Q(A) = E[\mathbf{1}_A L]$ is equivalent to

$$\int_{\Omega} \mathbf{1}_{A} dQ = \int_{\Omega} \mathbf{1}_{A} L dP.$$

ullet We say that L is the density of Q with respect to P and is written

$$\frac{dQ}{dP} = L.$$

L is also the Radon-Nikodym of Q with respect to P.

(ISEG) Stochastic Calculus - part 15 3 / 14

Changing the probability measure

• The expected value of a r.v. X defined in the probability space (Ω, \mathcal{F}, P) is calculated by the formula

$$E_Q[X] = E[XL]$$
.

 The probability measure Q is absolutely continuous with respect to P, which means that

$$P(A) = 0 \Longrightarrow Q(A) = 0.$$

• If the random variable L is strictly positive (L > 0), the measures P and Q are equivalent (that is, they are mutually absolutely continuous), which means that

$$P(A) = 0 \iff Q(A) = 0.$$

(ISEG) Stochastic Calculus - part 15

Example - Simple Version of Girsanov Theorem

- Let $X \sim N(m, \sigma^2)$. Is there a probability measure Q with respect to which $X \sim N(0, \sigma^2)$?
- Consider the r.v.

$$L = \exp\left(-\frac{m}{\sigma^2}X + \frac{m^2}{2\sigma^2}\right).$$

• It is easily verified that E[L] = 1. Consider the density of the normal distribution $N(m, \sigma^2)$ and it follows that

$$E[L] = \int_{-\infty}^{+\infty} \exp\left(-\frac{m}{\sigma^2}x + \frac{m^2}{2\sigma^2}\right) \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(x-m)^2}{2\sigma^2}\right) dx$$
$$= \frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^{+\infty} \exp\left(-\frac{x^2}{2\sigma^2}\right) dx = 1.$$

(ISEG) Stochastic Calculus - part 15 5 / 14

Example - Simple version of the Girsanov theorem

• Assume that Q has density L with respect to P. Then, in (Ω, \mathcal{F}, Q) , X has the characteristic function:

$$\begin{split} E_{Q}\left[e^{itX}\right] &= E\left[e^{itX}L\right] \\ &= \frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^{+\infty} \exp\left(itx - \frac{m}{\sigma^{2}}x + \frac{m^{2}}{2\sigma^{2}}\right) \exp\left(-\frac{(x-m)^{2}}{2\sigma^{2}}\right) dx \\ &= \frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^{+\infty} \exp\left(itx - \frac{x^{2}}{2\sigma^{2}}\right) dx = e^{-\frac{\sigma^{2}t^{2}}{2}}. \end{split}$$

Conclusion: $X \sim N(0, \sigma^2)$.

Girsanov Theorem - 1st version

- $\{B_t, t \in [0, T]\}$ is a Brownian motion.
- ullet Fix a real number λ and consider the martingale

$$L_t = \exp\left(-\lambda B_t - \frac{\lambda^2}{2}t\right). \tag{1}$$

• Exercise: Prove that $\{L_t, t \in [0, T]\}$ is a positive martingale with expected value 1 and satisfies the SDE

$$L_t = 1 - \int_0^t \lambda L_s dB_s$$

(ISEG) Stochastic Calculus - part 15

7 / 14

Girsanov Theorem - 1st version

• A r.v. $L_T = \exp\left(-\lambda B_T - \frac{\lambda^2}{2}T\right)$ is a density in $(\Omega, \mathcal{F}_T, P)$, and we can define a new probability measure

$$Q(A) = E[\mathbf{1}_{A}L_{T}],$$

for each $A \in \mathcal{F}_T$.

- As $\{L_t, t \in [0, T]\}$ is a martingale, then $L_t = \exp\left(-\lambda B_t \frac{\lambda^2}{2}t\right)$ is a density in $(\Omega, \mathcal{F}_t, P)$ and the probability measure Q has the density L_t .
- ullet In fact, if $A \in \mathcal{F}_t$ then

$$Q(A) = E \left[\mathbf{1}_{A} L_{T} \right] = E \left[E \left[\mathbf{1}_{A} L_{T} | \mathcal{F}_{t} \right] \right]$$
$$= E \left[\mathbf{1}_{A} E \left[L_{T} | \mathcal{F}_{t} \right] \right] = E \left[\mathbf{1}_{A} L_{t} \right],$$

by the conditional expectation properties and the martingale property of $\{L_t, t \in [0, T]\}$.

Girsanov Theorem - 1st version

Theorem

(Girsanov Theorem I): On the probability space $(\Omega, \mathcal{F}_T, Q)$, where Q is defined by $Q(A) = E[\mathbf{1}_A L_T]$, the stochastic process

$$\widetilde{B}_t = B_t + \lambda t$$

is a Brownian motion

(ISEG) Stochastic Calculus - part 15 9 / 14

Technical Lemma

We need the following lemma.

Lemma

Suppose X is a real r.v. and that G is a σ -algebra such that:

$$E\left[e^{iuX}|\mathcal{G}
ight]=e^{-rac{u^2\sigma^2}{2}}.$$

Then the random variable X is independent from the σ -algebra $\mathcal G$ and has normal distribution $N\left(0,\sigma^2\right)$.

The proof of the above lemma may be found in the lecture notes of Nualart, pgs. 63-64.

Proof of the Girsanov theorem

Proof.

It suffices to show that in $(\Omega, \mathcal{F}_T, Q)$, the increment $\widetilde{B}_t - \widetilde{B}_s$, with $s < t \le T$, is independent from \mathcal{F}_s and has normal distribution N(0, t - s).

Taking into account the previous lemma, the result follows from the relation:

$$E_{Q}\left[\mathbf{1}_{A}e^{iu\left(\widetilde{B}_{t}-\widetilde{B}_{s}\right)}\right]=Q\left(A\right)e^{-\frac{u^{2}}{2}\left(t-s\right)},\tag{2}$$

for all s < t, $A \in \mathcal{F}_s$ and $u \in \mathbb{R}$. In fact, if (2) is verified, then, from the definition of conditional expectation and the previous lemma, $\left(\widetilde{B}_t - \widetilde{B}_s\right)$ is independent from \mathcal{F}_s and has normal distribution $N\left(0, t - s\right)$. Now, we only need to prove the equality (2).

(ISEG) Stochastic Calculus - part 15 11 / 14

Proof of the Girsanov Theorem

Proof.

(contin.) Proof of the equality (2):

$$\begin{split} E_{Q} \left[\mathbf{1}_{A} e^{iu\left(\widetilde{B}_{t} - \widetilde{B}_{s}\right)} \right] &= E \left[\mathbf{1}_{A} e^{iu\left(\widetilde{B}_{t} - \widetilde{B}_{s}\right)} L_{t} \right] \\ &= E \left[\mathbf{1}_{A} e^{iu(B_{t} - B_{s}) + iu\lambda(t-s) - \lambda(B_{t} - B_{s}) - \frac{\lambda^{2}}{2}(t-s)} L_{s} \right] \\ &= E \left[\mathbf{1}_{A} L_{s} \right] E \left[e^{(iu-\lambda)(B_{t} - B_{s})} \right] e^{iu\lambda(t-s) - \frac{\lambda^{2}}{2}(t-s)} \\ &= Q(A) e^{\frac{(iu-\lambda)^{2}}{2}(t-s) + iu\lambda(t-s) - \frac{\lambda^{2}}{2}(t-s)} \\ &= Q(A) e^{-\frac{u^{2}}{2}(t-s)}, \end{split}$$

Where the definition of E_Q and L_t , independence of $(B_t - B_s)$ from L_s and A, and the definition of Q were used.

Girsanov Theorem - second version

Theorem

(Girsanov Theorem II): Let $\{\theta_t, t \in [0, T]\}$ be an adapted stochastic process that satisfies the Novikov condition:

$$E\left[\exp\left(\frac{1}{2}\int_0^T \theta_t^2 dt\right)\right] < \infty. \tag{3}$$

Then, the stochastic process

$$\widetilde{B}_t = B_t + \int_0^t \theta_s ds$$

is a Brownian motion with respect to the measure Q defined by $Q(A) = E[\mathbf{1}_A L_T]$, where

$$L_t = \exp\left(-\int_0^t heta_s dB_s - rac{1}{2}\int_0^t heta_s^2 ds
ight).$$

(ISEG) Stochastic Calculus - part 15 13 / 14

Note that L_t satisfies the linear SDE

$$L_t = 1 - \int_0^t \theta_s L_s dB_s.$$

- It is necessary, for the process L_t to be a density, that $E[L_t] = 1$. However, condition (3) is sufficient to guarantee that this is in fact verified.
- The second version of the Girsanov theorem generalizes the first: note that, taking $\theta_t \equiv \lambda$, we obtain the previous version.