Hotelling Rule

The problem is:
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where
- Q(t) is the rate of extraction;
- S(t) is the stock of the resource;
- C are the constant extraction costs.
Remark 1 we assume that S(T) = 0.

Then,
H(Q., S, q,t) = [P)Q(t) — Cle™™ — q(t)Q(1),

where ¢(t) is the shadow price of the stock in present value (i.e., in moment 0).

The necessary conditions for an optimum are:
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Alternatively, we can consider H in current values:
HC(Q) S, q, t) = P(t)Q(t) -C - ‘LL(t)Q(t),

where p(t) = q(t)e™ is the shadow price of the stock in moment ¢.

The necessary conditions for an optimum are:
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From (1) we have:

Since P(t) = u(t),
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the famous Hotelling rule. Integrating,
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& P(t) = P(0)e™,

a different expression for the Hotelling rule.



