Stochastic Calculus - part 18

ISEG

(ISEG) Stochastic Calculus - part 18 1 / 21

The Black-Scholes model

Black-Scholes model: 2 assets with dynamics

$$dB(t) = rB(t) dt, (1)$$

$$dS_t = \alpha S_t dt + \sigma S_t d\overline{W}_t, \tag{2}$$

where r, α and σ are parameters.

- B(t) represents the deterministic price of a riskless asset (a bond or a bank deposit).
- S_t is the (stochastic) price process of a risky asset (a stock or an index).
- \overline{W}_t is a standard Brownian motion with respect to the original probability measure P.

- r: risk-free interest rate (or short rate of interest).
- \bullet α : mean rate of return of the risky asset
- σ : Volatility of the risky asset
- The solution of (2) is the geometric Brownian motion:

$$S_t = S_0 \exp\left(\left(\alpha - rac{1}{2}\sigma^2
ight)t + \sigma\overline{W}_t
ight).$$

(ISEG) Stochastic Calculus - part 18 3 / 21

Financial Derivatives

 Consider a contingent claim (a financial derivative), with payoff given by

$$\chi = \Phi\left(S\left(T\right)\right). \tag{3}$$

Its price process is represented by

$$\Pi(t)$$
, $t \in [0, T]$.

Portfolios

- Portfolio $\left(h^{0}\left(t\right),h^{*}\left(t\right)\right)$
- $h^{0}(t)$: number of bonds (or number of units of the riskless asset) at time t.
- $h^*(t)$: number of of shares of stock in the portfolio at time t.

(ISEG)

Stochastic Calculus - part 18

5 / 21

Portfolios

• Value of the portfolio at time *t*:

$$V^{h}(t) = h^{0}(t) B_{t} + h^{*}(t) S_{t}.$$

• It is supposed that the portfolio is self-financed, that is,

$$dV_{t}^{h} = h^{0}(t) dB_{t} + h^{*}(t) dS_{t}.$$

• In integral form:

$$V_{t} = V_{0} + \int_{0}^{t} h^{*}(s) dS_{s} + \int_{0}^{t} h^{0}(s) dB_{s}$$

$$= V_{0} + \int_{0}^{t} (\alpha h^{*}(s) S_{s} + rh^{0}(s) B_{s}) ds + \sigma \int_{0}^{t} h^{*}(s) S_{s} d\overline{W}_{s}.$$
(4)

 Assume that the contingent claim (or financial derivative) has the payoff

$$\chi = \Phi\left(S\left(T\right)\right). \tag{5}$$

and it is replicated by the portfolio $h = (h^0(t), h^*(t))$, that is, $V_T^h = \chi = \Phi(S(T))$ a.s. Then, the unique price process that is compatible with the no-arbitrage principle is

$$\Pi\left(t\right) = V_{t}^{h}, \quad t \in \left[0, T\right]. \tag{6}$$

Moreover, assume also that

$$\Pi\left(t\right) = V_{t}^{h} = F\left(t, S_{t}\right). \tag{7}$$

where F is a differentiable function of class $C^{1,2}$.

(ISEG) Stochastic Calculus - part
$$18$$
 7 / 21

Black-Scholes model

• Applying It's formula to (7) and considering (2),

$$dF(t, S_t) = \left(\frac{\partial F}{\partial t}(t, S_t) + \alpha S_t \frac{\partial F}{\partial x}(t, S_t) + \frac{1}{2}\sigma^2 S_t^2 \frac{\partial^2 F}{\partial x^2}(t, S_t)\right) dt + \left(\sigma S_t \frac{\partial F}{\partial x}(t, S_t)\right) d\overline{W}_t.$$

That is,

$$F(t, S_t) = F(0, S_0) + \int_0^t \left(\frac{\partial F}{\partial t}(s, S_s) + AF(s, S_s)\right) ds + \int_0^t \left(\sigma S_s \frac{\partial F}{\partial x}(s, S_s)\right) d\overline{W}_s,$$
(8)

where

$$Af(t,x) = \alpha x \frac{\partial f}{\partial x}(t,x) + \frac{1}{2}\sigma^2 x^2 \frac{\partial^2 f}{\partial x^2}(t,x)$$

is the infinitesimal generator associated to the diffusion S_t .

(ISEG) Stochastic Calculus - part 18 9 / 21

Black-Scholes model

Comparing (4) and (8), we have

$$\sigma h^{*}(s) S_{s} = \sigma S_{s} \frac{\partial F}{\partial x}(s, S_{s}),$$

$$\alpha h^{*}(s) S_{s} + rh^{0}(s) B_{s} = \frac{\partial F}{\partial t}(s, S_{s}) + AF(s, S_{s}).$$

• Therefore,

$$\frac{\partial F}{\partial x}\left(s,S_{s}\right)=h^{*}\left(s\right),$$

$$\frac{\partial F}{\partial t}\left(s,S_{s}\right)+rS_{s}\frac{\partial F}{\partial x}\left(s,S_{s}\right)+\frac{1}{2}\sigma^{2}S_{s}^{2}\frac{\partial^{2}F}{\partial x^{2}}\left(s,S_{s}\right)-rF\left(s,S_{s}\right)=0.$$

Therefore, we have

- A portfolio h with value $V_t^h = F(t, S_t)$, composed of risky assets with price S_t and riskless assets of price B_t .
- ullet Portfolio h replicates the contingent claim χ at each time t, and

$$\Pi\left(t\right)=V_{t}^{h}=F\left(t,S_{t}\right).$$

In particular,

$$F(T, S_T) = \Phi(S(T)) = Payoff.$$

(ISEG) Stochastic Calculus - part 18 11 / 21

Black-Scholes model

• The portfolio should be continuously updated by acquiring (or selling) $h^*(t)$ shares of the risky asset and $h^0(t)$ units of the riskless asset, where

$$h^{*}\left(t\right) = \frac{\partial F}{\partial x}\left(t, S_{t}\right),$$

$$h^{0}\left(t\right) = \frac{V_{t}^{h} - h^{*}\left(t\right)S_{t}}{B_{t}} = \frac{F\left(t, S_{t}\right) - h^{*}\left(t\right)S_{t}}{B_{t}}.$$

• The derivative price function satisfies the PDE (Black-Scholes eq.)

$$\frac{\partial F}{\partial t}\left(t,S_{t}\right)+rS_{t}\frac{\partial F}{\partial x}\left(t,S_{t}\right)+\frac{1}{2}\sigma^{2}S_{t}^{2}\frac{\partial^{2} F}{\partial x^{2}}\left(t,S_{t}\right)-rF\left(t,S_{t}\right)=0.$$

Theorem

(Black-Scholes eq.) Suppose that the market is specified by eqs. (1)-(2) and we want to price a derivative with payoff (3). Then, the only pricing function that is consistent with the no-arbitrage principle is the solution F of the following boundary value problem, defined in the domain $[0,T]\times\mathbb{R}^+$:

$$\frac{\partial F}{\partial t}(t,x) + rx \frac{\partial F}{\partial x}(t,x) + \frac{1}{2}\sigma^2 x^2 \frac{\partial^2 F}{\partial x^2}(t,x) - rF(t,x) = 0, \qquad (9)$$

$$F(T,x) = \Phi(x).$$

(ISEG) Stochastic Calculus - part 18 13 / 21

Black-Scholes model

 The Black-Scholes equation may be solved analytically or with probabilistic methods.

Proposition

(Feynman-Kac formula) Let F be a solution of the boundary values problem

$$\frac{\partial F}{\partial t}(t,x) + \mu(t,x)\frac{\partial F}{\partial x}(t,x) + \frac{1}{2}\sigma^{2}(t,x)\frac{\partial^{2} F}{\partial x^{2}}(t,x) - rF(t,x) = 0,$$

$$(10)$$

$$F(T,x) = \Phi(x).$$

Assume that $\sigma(s, X_s) \frac{\partial F}{\partial x}(s, X_s)$ is a process in L^2 (i.e. $E \int_0^t \left(\frac{\partial F}{\partial x}(s, X_s) \sigma(s, X_s) \right)^2 ds < \infty$). Then,

$$F(t,x) = e^{-r(T-t)}E_{t,x}\left[\Phi(X_T)\right]$$
,

where X satisfies

$$dX_s = \mu\left(s, X_s\right) ds + \sigma\left(s, X_s\right) dB_s,$$
 (ISEG) $X_t = x$. Stochastic Calculus - part 18

Black-Scholes model

• Applying the Feynman-Kac formula from the previous proposition to the eq. (9), we obtain:

$$F(t,x) = e^{-r(T-t)} E_{t,x} [\Phi(X_T)],$$
 (11)

where X is a stochastic process with dynamics:

$$dX_s = rX_s ds + \sigma X_s d\overline{W}_s,$$

$$X_t = x.$$
(12)

- Note that the process X is not the same as the process S, as the drift of X is rX and not αX .
- ullet idea: change from process X to process S, using the Girsanov Theorem.

- Denote by P the original probability measure ("objective" or "real" probability measure). The P-dynamics of the process S is given in (2).
- Note that (2) is equivalent to

$$dS_{t} = rS_{t}dt + \sigma S_{t} \left(\frac{\alpha - r}{\sigma} dt + d\overline{W}_{t} \right)$$
$$= rS_{t}dt + \sigma S_{t}d \underbrace{\left(\frac{\alpha - r}{\sigma} t + \overline{W}_{t} \right)}_{W_{t}}.$$

• By the Girsanov Theorem, there exists a probability measure Q such that, in the probability space $(\Omega, \mathcal{F}_T, Q)$, the process

$$W_t := \frac{\alpha - r}{\sigma} t + \overline{W}_t$$

is a Brownian motion, and S has the Q-dynamics:

$$dS_t = rS_t dt + \sigma S_t dW_t. \tag{13}$$

(ISEG) Stochastic Calculus - part 18 18 / 21

- consider the following notation: E denotes the expected value with respect to the original measure P, while E^Q denotes the expected value with respect to the new probability measure Q (that comes from the application of the Girsanov theorem). Also, let \overline{W}_t denote the original Brownian motion (under the measure P) and W_t denote the Brownian motion under the measure Q.
- Getting back to (11) and (12), and taking into account that under the measure Q the equations (12) and (13) are the same, we may represent the solution of the Black-Scholes equation by

$$F(t,s) = e^{-r(T-t)} E_{t,s}^{Q} \left[\Phi(S_T) \right]$$
,

where the dynamics of S under the measure Q is

$$dS_t = rS_t dt + \sigma S_t dW_t.$$

(ISEG) Stochastic Calculus - part 18 19 / 21

We may finally state the theorem that provides us a pricing formula for the contingent claim in terms of the new measure Q.

Theorem

The price (absent of arbitrage) of the contingent claim $\Phi(S_T)$ is given by the formula

$$F(t, S_t) = e^{-r(T-t)} E_{t,s}^{Q} [\Phi(S_T)],$$
 (14)

where the dynamics of S under the measure Q is

$$dS_t = rS_t dt + \sigma S_t dW_t.$$

- In the Black-Scholes, the diffusion coefficient σ may depend on t and S be a function $\sigma(t, S_t)$ and in this case, the calculations needed would be analogous to the ones we have done.
- The measure Q is called equivalent martingale measure. The reason for this has to do with the fact that the discounted process

$$\widetilde{S}_t := \frac{S_t}{B_t}$$

is a Q-martingale (martingale under the measure Q). In fact,

$$\widetilde{S}_{t} = \frac{S_{t}}{B_{t}} = e^{-rt} S_{t} = e^{-rt} S_{0} \exp\left(\left(\alpha - \frac{1}{2}\sigma^{2}\right) t + \sigma \overline{W}_{t}\right)$$

$$= S_{0} \exp\left(-\frac{1}{2}\sigma^{2}t + \sigma W_{t}\right)$$

is a martingale.

(ISEG) Stochastic Calculus - part 18 21 / 21