2.2 — SHORT RATE MODELS

* Interest Rate Trees

* Single-Factor short rate models

e Multi-Factor short rate models
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e How can we infer a model for interest rate dynamics r,, and
for all future zero coupon curves T +— L(u,T"), uw > t, only

from knowledge of today's zero-coupon curve 1" — L(t,T),
with ¢ = today?

We may do so by assuming a certain structure for the risk-
neutral dynamics of 7.
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2.2.1 — INTEREST RATE TREES

> General binomial model

= Given the current level of short-term rate r, the next-period short rate
can take only two possible values: an upper value r, and a lower value
r, with equal probability 0.5

= |n period 2, the short-term interest rate can take on four possible
values: r ,, ruy Mw N

= More generally, in period n, the short-term interest rate can take on 2"
values => very time-consuming and computationally inefficient

» Recombining trees

= Means that an upward-downward sequence leads to the same result as
a downward-upward sequence

= For example, r,, =r,
= Only (n+1) different values at period n
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INTEREST RATE TREE - Recombining
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INTEREST RATE TREE — analytical

» We may write down the binomial process as
Ar =1, — I = 08
where &; are independent variables taking on values (+1,-1)
with probability (1/2,1/2)

» Problem: rates can take on negative values with positive
probability

» Fix that problem by working with logs

Alnrt = lnrtJrl — lnrt = 0¢,

— )
=1, =T, xexp(og, ) =1, x u=exp(c)

with probability (1/2,1/2) d = exp(—o)
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» More general models (could be written on log rates)

Al =T — 1 = u(LALE )+ o (AL ) g,

» Specific case
Al =1, — I = AL+ oV Atg,

» Continuous-time limit (Merton (1973))

dr,=r, 4 — 1 = xdt + ocdW,
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INTEREST RATE TREE — calibration

» Calibration of the model is performed so as to make
model consistent with the current term structure

> We have at date 0

Alnry, = Inr,, —Inr, = pAt + Ggox/ﬂ

= Inr, —Inr = 20 At or r, =1 exp(ZG\/Zt)

» We take as given an estimate for g, the current yield curve
y,, and we iteratively find the values r,, r, r ., o, N T
etc., consistent with the input data

uu’ "ul’
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> Consider a 2 period tree with At =1

» The price one year from now of a 2-year Treasury bond (at
the par value) can take two values: a value P associated
with r,, and a value P, associated with r,

100 + y2 NPV~ of  future  cash-flows
(redemption and coupon)

100
= Y and P, =
1+, 1+

P

u

» Then, taking expectations at time 0, we find an equation
that can be solved for r, and r,, given that

= 6Xp(20\/Xt)

100 +
1(1+rex (yéo')Jr 2 1010++ry2+y2\
100 = -| — 1P LT

2 I+y, / 1+,

\ 1st year coupon J
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INTEREST RATE TREE — example

e Consider a 2-year Treasury bond with a coupon rate y, =
4.30% and being the 1-year rate y, = 4%.

e We want to calibrate a binomial interest rate tree,
assuming a volatility of 1% for the one-year interest rate.

.02=2%c =2 0,01
[ 100+423 / 100 + 4.3 \
+4.3 +

: 4.3
100:1 1+, exp(.02) N 1+,
2 1+ 4% 14+ 4%

—
r, = 4.66%

Jorge Barros Luis| Interest Rate and Credit Risk Models



2.2.2 — CT SINGLE FACTOR MODELS

» General expression for a single-factor continuous-time
model

dr, = (t,r, )dt + o (t,r, )dw,

» The term W denotes a Brownian motion - process with
independent normally distributed increments:
= dW represents the instantaneous change.
= |tis stochastic (uncertain)
= |t behaves as a normal distribution with zero mean and variance dt
= |t can be thought of as

dW, = gtx/a
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WHAT IS A GOOoD MODEL?

» A good model is a model that is consistent with reality

» Stylized facts about the dynamics of the term structure
= Fact 1: (nominal) interest rates are positive
= Fact 2: interest rates are mean-reverting

= Fact 3: interest rates with different maturities are imperfectly
correlated

= Fact 4: the volatility of interest rates evolves (randomly) in time

» A good model should also be
= Tractable

= Parsimonious
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Empirical Facts 1,2 and 4
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Empirical Fact 3

IM 3IM 6M 1Y 2Y 3Y 4Y 5Y 6Y 7Y 8Y 9Y | 10Y

IM |1

3M 0992 | 1

6M | 0.775 1 0.775 | 1

1Y 035403 0.637 | 1

2Y |0.214]0.165|042 |0.901 |1

3Y |0.278 10.246 | 0.484 | 0.79 | 0.946 | 1

4Y 1026 |0.225|0.444 | 0.754 1 0913 | 0.983 | 1

5Y 10224 10.179 | 0.381 | 0.737 | 0.879 | 0.935 | 0.981 | 1

6Y |0.2160.168 | 0.352 | 0.704 | 0.837 | 0.892 | 0.953 | 0.991 | 1

7Y 10228 | 0.182 ] 035 | 0.661 | 0.792 | 0.859 | 0.924 | 0.969 | 0.991 | 1

8Y |0.241 | 0.199 | 0.351 | 0.614 | 0.745 | 0.826 | 0.892 | 0.936 | 0.968 | 0.992 | 1

9Y |0.238 | 0.198 1 0.339 | 0.58 | 0.712 ] 0.798 | 0.866 | 0.913 | 0.95 | 0.981 | 0.996 | 1

10Y | 0.202 | 0.158 | 0.296 | 0.576 | 0.705 | 0.779 | 0.856 | 0.915 | 0.952 | 0.976 | 0.985 | 0.99 | 1

Daily changes in French swap markets in 1998
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POPULAR ENDOGENOUS SHORT RATE CT MODELS

» Dynamics of the short-term rate (here represented by x:)
under the risk neutral world probability measure:

1. Vasicek (1977):

Constant volatility
dry = k(0 — x4)dt + cdWi, o = (k,0,0). models

2. Cox-Ingersoll-Ross (CIR, 1985): Stochastic

volatility models

dzy = k(0—x)dt+o /o dWs, o = (k,0,0), 2k6 > o .
3. Dothan / Rendleman and Bartter:

(a.—%r:rg}t—i—r:ﬂ-{ft

dr; = arydtt+ox,dW,, (z; = xge , o = (a,0)).

4. Exponential Vasicek:

ry = exp(zt), dzy = k(0 —zy)dt+odW,, o = (k, 0, (T).



VASICEK MODEL

» The Vasicek model has some peculiarities that make it
attractive:

- Linear equation
- Gaussian disturbances

- Mean reverting — expected value of the short rate tends to a
constant value 6, with velocity given by k.
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However, this model features also some drawbacks.

» Rates can assume negative values with positive probability.

» Gaussian distributions for the rates are not compatible with
the market implied distributions.
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COX-INGERSOLL AND ROSSs MODEL

dr(t) = k[0 — x(t)|dt + o| \/x(t) [dW (t), 7 = xy

» The model is mean reverting: The expected value of the short
rate tends to a constant value @ with velocity depending on £ as
time grows towards infinity, while its variance does not explode.

» This model maintains a certain degree of analytical
tractability, but is less tractable than Vasicek, especially as

On the other hand,

» CIR is usually closer to market implied distributions of rates
than Vasicek.
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WHY ARE THESE MODELS CALLED ENDOGENOUS?

» Because they can be computed as a function of the
parameters of the dynamics of the short rate itself.

» For example, in Vasicek and CIR, given k, 6,0 and 7(t), once
the function 1" +— P(t,1'; k,0,0,r(t)) is known, we know the
whole interest-rate curve at time t. At £ = 0 (initial time), the
interest rate curve is an output of the model, rather than an
input, depending on k. 8, o, o in the dynamics.

Jorge Barros Luis| Interest Rate and Credit Risk Models 163



POPULAR EXOGENOUS SHORT RATE CT MODELS

Exogenous short-rate models are built by suitably modifying
the above endogenous models. The basic strategy that is used to
transform an endogenous model into an exogenous model is the
inclusion of "time-varying' parameters.

Dynamics of 7, = @+ under the risk—neutral measure:

1. Ho-Lee:
dr; = 0(t) dt + o dW}.

2. Hull-White (Extended Vasicek):
dry = k(0(t) — x4)dt + odW;.
3. Hull-White (Extended CIR):

dry = R(Q(t) — x¢)dt + o Sy AWy .
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4. Black-Derman-Toy (Extended Dothan):

Tt = T Lu(t)+o(H)Wy

5. Black-Karasinski (Extended exponential Vasicek):
xy = exp(zy), dzy = k[0(t) — 2] dt + ocdW;.
6. CIR++ (Shifted CIR model, Brigo & Mercurio (2000)):

re = x+ + ¢(t; ), day = k(0 — x4)dt + o /i dWy
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2.2.3 — CT MuLti FACTOR MODELS
MosT PoPULAR MODELS

» Fong and Vasicek (1991) model

= Fong and Vasicek (1991) take the short rate and its volatility as two
state variables

= Variance of the short-rate changes is a key element in the pricing of
fixed-income securities, in particular interest rates derivatives

» Longstaff and Schwartz (1992) model
= Longstaff and Schwartz (1992) use the same two state variables,
but with a different specification

= Allows them to get closed-form solution for the price of a discount
bond and a call option on a discount bond
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» Chen (1996) and Balduzzi et al. (1996) models

"= Chen (1996) and Balduzzi et al. (1996) suggest the use of a three-
factor model by adding the short-term average of the short rate.

= These three state variables can be assimilated to the three factors
which can be empirically obtained through a principal
components analysis of the term structure dynamics.
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2.2.4 — MODELING THE TERM STRUCTURE: AFFINE MODELS

 Fundamental asset pricing concept - The pricing of any financial
asset is based on a very intuitive result - the price corresponds to
the present value of the future asset pay-off:

(1) Pf = Ef[PHl*Mt—l]

being Pt the price of a financial asset providing nominal cash-flows and Mt+1
the nominal stochastic discount factor (sdf) or pricing kernel, as it is the
determining variable of Pt . In fact, solving equation (1) forward, the asset
price may be written solely as a function of the pricing kernel, as:

(2) R = Ef[*Mhl'“‘Mf-t-n]
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* Asset prices and returns are related to their risk, i.e., to the asset
capacity of offering higher cash-flows when they are more
needed and valued.

* Actually, the more an asset helps to smooth income fluctuations,
the less risky it is and the higher will be its demand for ensuring
against “bad times”.

* Considering that
E(XY)=E(X)E(Y)+COV(X,Y)
e Equation (1) may be written as:

(3) P, = Et[Pnl]Ef[*Mtu] + C(’Z’t[Pf+1 r-"-?\/IHl]
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* When the asset is riskless, its pay-off in t+1 is known in t with

certainty. Thus, it may be considered as a constant in t, which
implies, from (1):

(4)

o Et[ 1\/If+1]

t+1

 As the LHS of (4) is the inverse of the risk-free asset’s gross

return, denoted by 1+’ ,replacingin equation (3) E[M,,,] by
1/1+i/,, it is obtained:

() P =E]P +1] — + Cov,[P,

r+l

t+17 t+1]
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* This result shows that the asset price is the discounted expected
value of its future pay-off or price, adjusted by the covariance of
its return with the sdf.

 As it will become clear later, this covariance consists in a risk
factor and it is positive for assets that pay higher returns when
they are more needed.

* The same result may be obtained for interest rates, instead of
prices. Actually, dividing both sides of equation (1) by P:, one
gets:

(6) I :Er[(l'i'ir—] )Mm]
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* Applying the well-known statistical result
E(XY)=E(X)E(Y)+COV(X,Y)
 to (6)itis obtained

[l Coo(i,,y, Mm.)]
E(M,.)

E,(1+1,,)E (M,)+Co0(iyy,M,) =1 E (1+i,,)=

* Following equation (4) we obtain:

1 Cooli,.,,M ; Coo(i,.,,M,,,
E (l+’r+1) —r = U(,(lm ‘r+1) E (l+’r+1) (l+’r+1) U(‘(IM Hl‘)
ti’(MH-l) tf(MH-l) tf‘(MH‘l)
° Therefore, we get: The interest rate of an asset results from the risk-free

Cov,[M,., .1,,,] rate, adjusted by a risk factor => the lower the

(7) Eliwl=it -5
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 With some additional self-explanatory algebra, the following
result is obtained:

(8) Er [I.H_]] - Ir,+1 + C(_)'(?; [MH] ’lr‘+1] ( V(”} [Mr+1]

B =iy + B, mat
Vﬂl}[Mr+l] Er[MHl] ] lis +ﬁ.'.‘+|.;t‘l,+1

* In equation (8), ﬁ,.‘m,,um is the coefficient of a regression of
if+1 on MH—I'

 Therefore, it measures the correlation between the asset’s return
and the stochastic discount factor (sdf) or the quantity of risk.
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« Market price of risk: - Var,[M,,, ]
Ef[MHl]

* From equation (7), denoting p,; . by the correlation
coefficient between the sdf and the asset’s rate of return and
Ou,, and o, -, the excess return of any asset over the risk-free

asset is:
o, O,

L4l '1+1

e 0]

(9) A =Elin]-ila=-p

e Equations (7) and (9) illustrate a basic result in finance theory: the
excess return of any asset over the risk-free asset depends on the
covariance of its rate of return with the sdf => an asset with pay-
off negatively correlated to the sdf is riskier.
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* The mean-variance frontier will correspond to the limiting values
of equation (9) => expected values and standard-deviations must
lieintheinterval | o, o, o,

EIM.] E[M,.]

\

mean-variance region
minimum risk (frontier): 2, = ]

t+l: +1

* As on the frontier all asset returns are perfectly correlated with
the sdf, all asset returns are also perfectly correlated with each
other => it is possible to define the return of any asset as a linear
combination of the returns of any 2 other assets - market or
wealth portfolio and the risk-free asset:

(10) E[i.]=8 . Hil\]+(1-8,

in )’Hl =iy +‘H"F|--‘j§| (t[lffl]_lf+l)

+l t+1 /

;¥ - Rate of return of market portfolio \ CAPM

f+1
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C()pf [Mf+l'if+l] ( Vﬂ’}[Mf-@-I]
Vm‘,[MM] Ef[Mm]

(8) E, ["Hi] - i511 ¥ ] - ’.}11 + ﬁ:‘,,,] My 4.

(10) Efi]=8, . Hit [+(1-8, . il =il + B, . (EliL]-i)

!

e (8) + (10) => CAPM assumes the sdf as a function of the gross rate
of return of the wealth market portfolio, while the market price of
risk is the spread between the expected market portfolio return
and the risk-free asset return.

e CCAPM: an asset will pay a higher return or is riskier when the
covariance of its return with the marginal utility of consumption is
lower, i.e. when consumption is higher.
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* Affine models: log-linear relationship between asset prices and
the sdf, on one side, and the factors or state variables, on the
other side.

 These models were originally developed by Duffie and Kan (1996),
for the term structure of interest rates.

e Equation (1) in logs:

(11) p, =log(E[P.M,.,])

* Assuming joint log-normality of asset prices and discount factor
=> if log X ~ N(u,0?) then log E(X) = 1 + 0?/2 => basic equation
considered in the affine models:

(12) ». = l;‘t[mﬁl + pm] +0.5- Var, [mf_1 +I"r+1]
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e DK models: multifactor affine models of the term structure, where
the pricing kernel is a linear function of several factors

T /
p— 4 — - —
'-j_ — (li-l'j,co'r"l\-r )

e DK models advantages:

(i) Accommodate the most important term structure models, from
Vasicek (1977) and CIR one-factor models to multi-factor models.

(i) Allow the estimation of the term structure simultaneously on a
cross-section and time-series basis.

(iii) Provide a way of computing and estimating simple closed-form
expressions for the spot, forward, volatility and term premium
curves.
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 Discount factors:
e, V(Zt) - variance matrix of the random

(1 3) —m,,, =&+ 'z, +AV(z,) "€,  shocks on the sdf, defined as a diagonal
matrix with elements o.(z, )=, + .z,
& - independent shocks &, ~ N(0,I)
A'= market prices of risks, as they govern
the covariance between the stochastic
discount factor and the yield curve factors.

* Higher As < higher covariance between the discount factor and
the asset return < lower expected rate of returns or the less risky

the asset is.

* Another way to write the pricing kernel (from (13)):

(14)
_’”Hl :g+/1 i +/2 2:+ +/"‘H +/110-1r 10+ 1+/1’O-’r€’r+1+"')’10-r’.f€.‘~..f+l

Jorge Barros Luis| Interest Rate and Credit Risk Models 179



* The k-dimensional vector of factors z, is defined as follows:

(1 5) Zpq = ([ —(D)@-I-(I),_ +V( )1/2 £, ® - has positiYe diagonal

elements, ensuring that the
factors are stationary;

@ - long-run mean of the
factors.

* From (15), we have the factors as follows:

(1 6) :r'.f+1 :(l_(fb:)g +¢.'"". +O_ gr J+1 Whereo_ \’0’ +ﬁ;1 =1t +IB’ 7;+ +ﬂ'“'r

e Asset prices are also Iog—linear functions of the factors.

(17) -p,,=A,+B' n - term to maturity
An and Bn - vectors of parameters to be estimated.
Bn - factor loadings (impact of a random shock on

the factors over the log of asset prices).
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* In term structure models, the identification of the parameters is
easier assuming that the term structure is modelled using zero-
coupon bonds paying 1 monetary unit => the log of the maturing
bond price =0 => (from (17)) A, =B, =0

* |t is possible to show that the factor loading can be obtained
recursively:

Au = Au—l * : + BH—IT (1 o (D)B - %(& £y Bn—l )T (Z(ﬂ + Bn—l )
(18) -
Bn ! = J/T +Bu—1r(b_%(i +Bu—ll)T/8T::‘ (A +Bu—1 )

* Considering that the continuously compounded vyield is

log P

= n.i

(19) V.. =—
n
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* From (17) the yield curve is defined as:

1 /
(20) v.=—(4,+8'z)

n

* From equations (18) and (20), as well as the normalisation
A,=B,=0" it is obtained the short-term rate:

. 1 .7 o F 1 .7 19 |
(21) Y :5_5)‘ 0-%'*'[/ _5/1 p /1}-1

* Correspondingly, using the definition of the factors in (15) and
solving z,, backwards, the expected value of the short rate is:

(22) Ei(Jll.f+IJ ) . t[(:_%if aﬂ' +|:y] _%A’ ﬁll.j’:l:fﬂ; )

e Barei Bor Liraribhee
=i Nad+|y —S A B AE (2.)

s Aan+|y S A BA(1-0 e+,
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e Variance matrix in the specification of the factors (from (15) and
(20)) => volatility of the yields:

(23) Var,(y,,.1) = 13 B,'V(z)B,

ni+1
H

* |nstantaneous or one-period forward rate = log of the inverse of the
gross return =>

.fH.l = pu.f - l)fH-l_l

* |[nstantaneous or one-period forward curve:

/ t = (An+1 +Bn+]: :r)—(Au +Bn ‘, :r' ) = (Au+1 - Au )+(Bu+l _Bu " ):I =
(24) N T PO |
=|£+B, (l—cb)e—zé( . +B,,) @ |+|7" +B, (cb—f)—gg( +B.,) B! |z
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* Term premium - one-period log excess return of the n-period bond

over the short-rate: (from (15) for the factor definition, (17)
for the current and the one-period
(25) ahead bond prices and for the

independent term in the price equation,
K SEf ao—P, ~ T, (18) for the recursive restrictions on the

: g 2 ; g 2 factor loadings and (21) for the short-
:—Zl:ﬂ,Bm-i— - }1[—2()&:8 + }ﬁ,":. term interest rate)
i=1 et

[N
2

i=1

* The term premium can alternatively be calculated from the basic
pricing equation (12):

(26) EfP,...m —Puart = _Er”’m o V‘”}"("u.m ) F2— Vm} (”’m ) /2-CO V(_"u.m -”’m)
* (12) + p,, =0 => short-term bond price:
(27) Pi: = E, [”IHI] +"_1_' Var, [’”Hl]
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* Term premium:

| Short-term interest rate is obtained from
(25) A, =-COV, ( by il m,ﬂ) I'(u',(i_,,_,ﬂ),-"2 (19) and (27).

/

Risk premium determined by the covar. of the asset’s rate of return with the
stochastic discount factor => the lower the covar., the higher the risk premium is.

(26) A,, =B/COV(z,,,m,)- B.Var(z,,)B, /2 As from (17)
~ Pusry :_A _B Z + A +B

ln G+l = pu t+1 n “t+l n+l u+1 t

— the Cov in (25)is -B,COV(z,,,.m,,)
e From (13) and (15): while the Var of the factors is

B'Var,(z,.,)B,

=-A'V(z,)B, -—-

2 at least one of the market prices of
> risk must be negative in order to
have a positive term premium.
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* One-factor models were the first step in modelling the term
structure of interest rates.

* These models are grounded on the estimation of bond yields as
functions of the short-term interest rate.

* Vasicek (1977) presented the whole term structure as a function of a
single factor, the short-term interest rate, whose volatility was
assumed to be constant.

 The Cox et al. (1985a) model added the stochastic volatility feature
to the Vasicek model, avoiding interest rates to go negative, as in the
Vasicek model. Thus, it corresponds to an analogous particular case
of the DK model, with «. =0 nd g =¢?.
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* Affine models may be classified according to the number of factors
considered or to volatility properties.

e According to Litterman and Scheinkman (1991), the pronounced
hump-shape of the US vyield curve => 3 factors are required to
explain the shifts in the whole term structure of interest rates.

* These factors are usually identified as the level, the slope and the
curvature, being the level often responsible for the most important
part of interest rate variation.

* Given the stochastic properties of interest rates volatility, Gaussian
or constant volatility models are often rejected. Besides, these
models impose constant volatility and one-period term premium
curves (non-pure version of expectations theory).
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* Additionally, the forward rate in these models exhibits some

shortcomings. In fact, under constant volatility, the forward rate may
be written as:

£, =E+B, (I- ¢)9—%Z(ﬂ,+8,_,,)2a,+[y"+B”"'(<I>—[.)]:,

= =]

* Factor loadings in a multifactor Vasicek model:

1 —¢" 1_(0‘;.'
B. =1+, +0. +...+ = = :
i, q): q): go.' 290 ”1 1 —7r 1_¢)

 The one-period forward rate may thus be written as:
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* |f the factors that determine the dynamics of the yield curve are
non-observable and the parameters are unknown, a usual
estimation methodology is the Kalman filter and a maximum
likelihood procedure.

e Kalman Filter - algorithm that computes the optimal estimate for the
state variables at t using the information available up to t-1.

* The starting point for the derivation of the Kalman filter is to write
the model in state-space form:

observation or measurement equation 't = A A * 24+ @,

X / \
(rx1) \ (nxl1)

state or transition equation. / Z, = C+ F-Z_,+G v,

L-vn 1) i 1-%
(kx1)  (kx1)  (kxk) (kx1)  (kx1)

(kx1) (rx1)

r — No. variables to estimate
n - No. observable exogenous variables
k - No. non-observable or latent exogenous variables (the factors).
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The variance matrices are written as:

R =E(w,w,’)

(rxr)

Q = E(l‘l+l"u‘+l ’)

(kxk)

e 2-factor model:

Y (y; b,y by, |- Wy
. . . = v .
= -+
=
Y| || by by s
Zi | [P0 0 [ 2y o, 010,
Zp t+1 0 @, ]z 0 0, ] 0z
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2.3 -HIM

Goal: Model the dynamics of the entire yield curve.
The vyield curve itself (rather than the short rate r) is the
explanatory variable.

Proposed by Heath-Jarrow and Morton (1992).
Use the observed yield curve as initial data. » 7(0,7)

Model (instantaneous) forward rates. One SDE for each
maturity date T. (infinite dimensional system)

Q-dynamics:  df(t,T) = a(t,T)dt+ o(t,T)dW(2),
f(0.7) = f*(0,7).
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Main Theorem: (HJM:s drift condition)
Under the martingale measure @, the following
must hold

T
a(t. T) = o(t.T) /t o (£, s)ds.

v
df (¢t,1") =| o(t,T) (/f U(t,s)ds) dt+o(t,T)dW (t)

> HIJM shows that there is a link between the drift and the
standard deviation of the instantaneous forward rate.
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df (£, T) = a(t, T)dt + o(t, T)dW (t)

_ Ologp(t.T)
f@&T) = e
T
p(t,T) = eXD{/?; f(trs)ds}

Specifying forward rates.

Thus: =
Specifying bond prices.

» Problem: short rate is non-Markovian, i.e. its values depend on
the previous poath followed => Monte Carlo simulation or
nonrecombining trees have to be used (a binomial tree with 30

steps means 23° nodes, roughly 2B).
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