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PART IV
RISK NEUTRAL DENSITY FUNCTIONS
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Risk‐Neutral Density Functions
 Prices of financial derivatives reflect the expectations of

economic agents regarding the future path of the prices of the
underlying assets.

 While forward and futures contracts provide information on the
expected value of the prices of the underlying assets, option
prices allow the estimation of the RND function of the prices of
the underlying assets, giving a more complete picture about the
expectations on their future evolution.

 One can derive a relationship between European option prices
and the RND, starting by considering the basic pricing equation
applied to call‐option prices: where  denotes that the expected

value is computed using the true or
original probability measure ,
represented by a density function .
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Risk‐Neutral Density Functions
 From the consumption‐based CAPM, the stochastic discount

factor is the nominal intertemporal marginal rate of substitution,
denoted by , where is the nominal price index.

 In order to compute the expected value, one uses the density t
related to the probability measure:
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Risk‐Neutral Density Functions
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Risk‐Neutral Density Functions
 It can be easily concluded that is a probability density

function, as it assumes values only in the interval between 0 and
1 and its integral is equal to 1.

 Differentiating in order to the strike price, we obtain:

 This function is monotonously increasing and is bounded
between 0 and 1, as the call‐option price curve is also
monotonous and negatively sloped (between –1 and 0).
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Risk‐Neutral Density Functions
 It assumes higher absolute values at the left tail, when the call‐

options are deep‐in‐the‐money and their prices are higher, and
lower absolute values at the right tail, when the call‐options are
deep‐out‐of‐the‐money and their prices are zero.

 Obviously, the density function will be obtained by the
differentiation of the LHS:

 Identical relationships can be obtained for put‐options. As the
pay‐off of a put‐option is , the cumulative
probability distribution function is given as:
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Risk‐Neutral Density Functions
 Main techniques to estimate the RND functions from European

option prices:

(i) non‐parametric methods ‐ avoids any kind of parametric
specification on the stochastic process of the underlying financial
asset price, the option premium function, the implied volatility or
even the RND.

(ii) Direct parametric methods ‐ based on assumptions about the
stochastic process or the terminal distribution of the underlying
asset price => RND parameters are given by minimising the
squared difference between observed and estimated option
prices.

(iii) Indirect parametric methods ‐ assumes a parametric specification
for a function that is related to the RND, namely the option price
or the implied volatility function.
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Risk‐Neutral Density Functions
 Non‐parametric methods can be implemented directly from the

theoretical relationship between option prices and the RND
functions, corresponding the latter to the prices of state‐contingent
claims or Arrow‐Debreu securities.

 Though these securities are not usually available in financial
markets, one can construct them from the option prices.

 Following Breeden and Litzenberger (1978), a portfolio resulting
from buying two call‐options with strike price X and selling two call‐
options, with strike prices X‐ and X+, has a pay‐off function
usually called butterfly spread.
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Risk‐Neutral Density Functions
Pay‐off function of a butterfly spread

pa
y-
of
f XX- X+

 Price of the symmetric of the butterfly spread:
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Risk‐Neutral Density Functions
 In derivative exchange traded options, strike prices are spaced by

small intervals, though not necessarily close to zero. Thus, a
discrete approximation may be used:
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Risk‐Neutral Density Functions
 However, density functions obtained with these approaches are

frequently too irregular.
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Risk‐Neutral Density Functions
Estimation methodologies – non‐parametric methodologies:

 Kernel smoothing ‐ estimate the option prices based on a weighted
average of the option prices observed, with the weights decreasing
with the distance to the strike price evaluated:

C X0 ( )
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Risk‐Neutral Density Functions
Estimation methodologies –parametric methodologies:

(i) Linear combination of two log‐normal distributions

 It consists in solving the following optimisation problem:

C X0 ( )

343



Jorge Barros Luís

Risk‐Neutral Density Functions
Estimation methodologies –parametric methodologies:

C X0 ( )
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Risk‐Neutral Density Functions
Estimation methodologies –parametric methodologies:

 This technique is due to Ritchey (1990) and Melick and Thomas
(1997).

 Though this method imposes some structure on the density
function and raises some empirical difficulties, it offers some
advantages, as it is sufficiently flexible and fast.

C X0 ( )
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Risk‐Neutral Density Functions
C X0 ( )

Estimation methodologies –parametric methodologies:

(ii) Fitting of the volatility smile

 One can also estimate the volatility smile (relationship between
implied vols and strike prices, namely through a polynomial
adjustment.

 After estimating the vols, one can calculate the corresponding
option prices.

 From these, the RND can be computed directly.
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