Masters in FINANCE

RISKY DEBT - II

Anderson and Sundaresan (1996)

Corporate Investment Appraisal

Fall 2017

0. General View

Integrates literature of:

corporate finance; pricing (options).

Strategic Concerns in a valuation model.

How?

Game in extensive form, determined by:

Covenants/clauses of the debt contract; Bankruptcy law (and enforcement).

Determine "sub-game perfect" *Equilibrium*, with endogenous:

cash-flow allocation;

"boundaries of reorganization" of the firm (i.e., for which values of the parameters is control transferred from shareholders to creditors).

Shareholders (owner-manager) and creditors play *non-cooperatively*.

Complete Information about the structure of the game and cash flows.

Objectives: How to design an optimal debt contract? (e.g., cash-payout ratio, level of leverage, tax effects).

Results:

Possibility of Strategic Debt Service; Higher Default Premium than in previous studies; And many others...

1. Model

Technology:

Vt is the present value of all cash flows (future and current).

Cash Flows: ft = \(\mathbb{G} \)Vt

ß is the payout ratio;

- a high ß corresponds to a "cash cow" project;
- a low ß corresponds to growth opportunities.

Risk neutral Probability "up":

$$p = \frac{R(1-\beta)-d}{u-d}$$

Liquidation Cost: K (fixed)

Contracted Debt Service, date t: CSt

Actual Debt Service, date t: St $S_t \in [0, f_t]$

$$S_t \in [0, f_t]$$

• Game from date (t-1) to date (t): an example

Equilibrium:

At terminal date T:

```
VT is observed;
```

Shareholder decides ST;

If $S_T > = CS_T$, game ends with payoffs: $(V_T - S_T; S_T)$ for shareholder and creditor, respectively;

If $S_T < CS_T$, the creditor may accept or reject;

If the creditor accepts, the payoffs are: (VT-ST;ST);

If the creditor rejects, the payoffs are: $(0, \max(V_T-K, 0))$;

In equilibrium the Value of Equity is:

$$E(V_T) = V_T - B(V_T)$$

And the Value of Debt is:

$$B(V_T) = \min(CS_T, \max(V_T - K, 0))$$

Argument for equilibrium:

- If the shareholders decide $S_T >= CS_T$, payoffs are: $(V_T-S_T;S_T)$. In this case they would choose $S_T = CS_T$.
- If the shareholders decide ST < CST, then:

```
Creditor accepts if: ST >= max(VT-K,0).
In this case, the shareholders would choose:
ST = max(VT-K,0)
```

 Hence, shareholders choose to pay whichever minimizes the Value of Debt.

Moving backwards in time... until <u>date t</u>:

- Realization of Vt (and of ft);
- Shareholders choose St;
 - •If St > = CSt, the game continues to date (t+1);
 - •If St < CSt, creditors decide to:

Reject, obtaining: max(Vt-K,0); or

Accept, getting:

$$S_t + \frac{pB(uV_t) + (1-p)B(dV_t)}{R}$$

They choose the largest of the two.

Shareholders anticipate this decision when choosing St.

For relatively high values of Vt, there will be no default;

For relatively low values of V, they choose "strategic default", paying an amount that leaves creditors just indifferent.

If no liquidation takes place, in state Vt, the Debt Service is:

$$S(V_t) = \min\left(CS_t, \max\left(0, \max(V_t - K, 0) - \frac{pB(uV_t) + (1 - p)B(dV_t)}{R}\right)\right)$$

The Value of Debt is:
$$B(V_t) = S(V_t) + \frac{pB(uV_t) + (1-p)B(dV_t)}{R}$$

And the Value of Equity: $E(V_t) = f_t - S(V_t) + \frac{pE(uV_t) + (1-p)E(dV_t)}{R}$

In some cases, forced liquidation will occur: S(Vt)>ft; the Debt Value being:

$$B(V_t) = \max(0, \min(V_t - K, CS_t + P_t))$$

And Equity Value: E(Vt)=Vt-K-B(Vt)

2. Valuation

• For "straight debt", with fixed coupon and 100% reimbursement at maturity T (CSt=cP and t<T; CSt=(c+1)P if t=T).

- With c=0 and K=0, this is the case of Merton (1974). Useful to compare for "calibration". Denominate a ratio "d" of *quasi*-debt:
 - Obtain the same results as Merton in terms of risk premium.
 - When we consider K≠0: the spread in this model changes significantly!! Much more so than in Merton. (Check the tables).

The analysis is extended in order to include non-zero coupon debt.

The paper also makes adjustments with taxes so as to consider the Tax Shield of Debt in the valuation, with tax-deductible coupons:

$$E(V_t) = (f_t - S(V_t))(1 - \tau) + \frac{pE(uV_t) + (1 - p)E(dV_t)}{R}; t < T$$

$$E(V_T) = (1 - \beta)V_T + (f_T - s_T cP)(1 - \tau) - s_T P; s_T = \frac{S(V_T)}{(1 + c)P}$$

In case of forced liquidation, the taxes are deducted before computing the liquidation value – this is the only difference in the way in which the value of Debt is computed.

As T*ß*Vt is small relative to Vt, taxes don't have too large an effect in the strategies for "St".

But Taxes do affect to a large extent the value of "E". They constitute an important factor for the "design".

Security Design Problem:

$$\max_{c,T,P,g} E(V_0;\sigma^2,\beta,R,K,\tau)$$

s.t.

$$D \le B(V_0; \sigma^2, \beta, R, K, \tau)$$

c = coupon

T = maturity

P =face value

g = number of "grace periods" (no reimbursement of principal)

 A_t = amortization at date t

$$A_{t} = \begin{cases} 0 & \text{if } t \leq g \\ \frac{P}{T - g} & \text{if } t > g \end{cases}$$

Some Results:

High growth (Low Beta) use low coupons;

Low growth use high coupons;

When the Tax Rate rises, tendency to choose higher coupons;

Highly levered firms use low coupons;

etc...