

Fundamentals of Capital Budgeting: Cash Flows

Gestão Financeira I Gestão Financeira Corporate Finance I Corporate Finance

Licenciatura 2017-2018

Outline Outline

- Forecasting Earnings
- From Earnings to Cash Flows
- Determining Free Cash Flow and NPV
- Further Adjustments to Free Cash Flow

Introduction to Capital Budgeting

- Goal: maximize the value of the assets?
- Corporate investment project fixed assets:
 - Tangibles (e.g., new plant and equipment)
 - Intangibles (e.g., R&D, advertising)
- Cash flows matter—not accounting earnings (but earnings are a good starting point!)
 - Sunk costs do not matter
 - Incremental cash flows matter
 - Opportunity costs matter
 - Side effects like cannibalism and erosion matter
 - Taxes matter: we want incremental after-tax cash flows

Forecasting Earnings

- Capital Budget
 - Lists the investments that a company plans to undertake
- Capital Budgeting
 - Process used to analyze alternate investments and decide which ones to accept
- Incremental Earnings
 - The amount by which the firm's earnings are expected to change as a result of the investment decision

Revenues and Costs Estimates

Example

- Linksys has completed a \$300,000 feasibility study to assess the attractiveness of a new product,
 HomeNet. The project has an estimated life of four years.
- Revenue Estimates
 - Sales = 100,000 units/year
 - Per Unit Price = \$260

Revenues and Costs Estimates

Example

- Cost Estimates
 - Up-Front R&D = \$15,000,000
 - Up-Front New Equipment = \$7,500,000
 - Expected life of the new equipment is 5 years
 - Housed in existing lab
 - Annual Overhead = \$2,800,000
 - Per Unit Cost = \$110

Incremental Earnings Forecasts

HomeNet's Incremental Earnings Forecast

	Yes	ar O	1	2	3	4	5		
Inc	Incremental Earnings Forecast (\$000s)								
1	Sales	_	26,000	26,000	26,000	26,000	_		
2	Cost of Goods Sold	_	(11,000)	(11,000)	(11,000)	(11,000)	_		
3	Gross Profit	_	15,000	15,000	15,000	15,000	_		
4	Selling, General, and Administrative	· —	(2,800)	(2,800)	(2,800)	(2,800)	-		
5	Research and Development	(15,000)	_	_	_	_			
6	Depreciation	_	(1,500)	(1,500)	(1,500)	(1,500)	(1,500)		
7	EBIT	(15,000)	10,700	10,700	10,700	10,700	(1,500)		
8	Income Tax at 40%	6,000	(4,280)	(4,280)	(4,280)	(4,280)	600		
9	Unlevered Net Income	(9,000)	6,420	6,420	6,420	6,420	(900)		

Comments...

- Capital Expenditures and Depreciation:
 - The \$7.5 million in new equipment is a cash expense, but it is not directly listed as an expense when calculating earnings.
 - Instead, the firm deducts a fraction of the cost of these items each year as depreciation.
 - Straight Line Depreciation: The asset's cost is divided equally over its life.

Annual Depreciation = $$7.5 \text{ million} \div 5 \text{ years} = 1.5 million/year

Comments...

- Interest Expense: In capital budgeting decisions, interest expense is typically not included. The rationale is that the project should be judged on its own, not on how it will be financed.
- Taxes: Marginal Corporate Tax Rate
 - The tax rate on the marginal or incremental dollar of pretax income. Note: A negative tax is equal to a tax credit.

Income Tax = EBIT
$$\times \tau_c$$

Unlevered Net Income Calculation:

Unlevered Net Income = EBIT ×
$$(1 - \tau_c)$$

= (Revenues – Costs – Depreciation) × $(1 - \tau_c)$

Indirect Effects on Incremental Earnings

- Opportunity Cost: The value a resource could have provided in its best alternative use.
- HomeNet example: Even though the equipment will be housed in an existing lab, the opportunity cost of not using the space in an alternative way (e.g., renting it out) must be considered.
 - Suppose HomeNet's new lab will be housed in warehouse space that the company would have otherwise rented out for \$200,000 per year during years 1 – 4.
 - This represents an Incremental loss per year, after tax, of: \$200,000*(1-40%)=\$120,000.

Indirect Effects on Incremental Earnings

- Project Externalities: Indirect effects of the project that may affect the profits of other business activities of the firm.
 - Cannibalization is when sales of a new product displaces sales of an existing product.
 - Likewise, some new projects may help promoting sales of other existing products of the firm (Synergies).

- HomeNet example: 25% of sales come from customers who would have purchased an existing Linksys wireless router if HomeNet were not available.
 - We must include the lost sales of existing Linksys wireless routers when calculating HomeNet's incremental earnings.
 - Suppose the existing router wholesales for \$100/unit.
 Then, the expected loss in sales is:

25%*100,000 units*\$100/unit=\$2.5 million

 The cost of producing the existing router is \$60/unit.
 Hence, the incremental cost of goods sold for the new HomeNet project is:

25%*100,000 units*\$60/unit=\$1.5 million.

HomeNet's Incremental Earnings Forecast Including Cannibalization and Lost Rent:

	Y	⁄ear	0	1	2	3	4	5	
Incr	Incremental Earnings Forecast (\$000s)								
1	Sales		_	23,500	23,500	23,500	23,500	_	
2	Cost of Goods Sold		_	(9,500)	(9,500)	(9,500)	(9,500)	_	
3	Gross Profit			14,000	14,000	14,000	14,000	_	
4	Selling, General, and Administration	ve	_	(3,000)	(3,000)	(3,000)	(3,000)	_	
5	Research and Development		(15,000)	_	_	_	_	_	
6	Depreciation		_	(1,500)	(1,500)	(1,500)	(1,500)	(1,500)	
7	EBIT		(15,000)	9,500	9,500	9,500	9,500	(1,500)	
8	Income Tax at 40%		6,000	(3,800)	(3,800)	(3,800)	(3,800)	600	
9	Unlevered Net Income		(9,000)	5,700	5,700	5,700	5,700	(900)	

Indirect Effects on Incremental Earnings

- Sunk costs are costs that have been or will be paid regardless of the decision whether or not the investment is undertaken.
 - Sunk costs should not be included in the incremental earnings analysis.
 - Example: Money that has already been spent on "feasibility study" is a sunk cost and therefore irrelevant right now. The decision to continue or abandon a project should be based only on the incremental costs and benefits of the product going forward.
- Fixed Overhead Expenses
 - Typically overhead costs are fixed and not incremental to the project and should not be included in the calculation of incremental earnings.

Real World Complexities

Typically,

- sales will change from year to year.
- the average selling price will vary over time.
- the average cost per unit will change over time.

• Example:

in \$000s	Year 1	Year 2	Year 3	Year 4	
Sales	100000	125000	125000	50000	
Price	0,26	0,234	0,2106	0,1895	down 10%
Up-Front R&D	15000				
Up-Front New					
Equipment	7500				
Life	5				

Annual Overhead	2800	2912	3028,5	3149,6up 4%
Cost	0,11	0,099	0,0891	0,0802 down 10%
Tax Rate	40%			

Lost Sales %	0,25	0,25	0,25	0,25	
Unit Price	0,10	0,09	0,081	0,0729	down 10%
Incremental reduction					
COGS%	0,25	0,25	0,25	0,25	
Unit Cost	0,06	0,054	0,049	0,044	down 10%
Lost Rent	200	208	216,32	224,97	up 4%

Incremental Earnings with Changing Prices

		Year	0	1	2	3	4	5				
Increm	Incremental Earnings Forecast (\$000s)											
1	Sales		0	23500	26438	23794	8566	0				
2	Cost of Goods Sold		0	9500	10688	9619	3463	0				
3	Gross Profit		0	14000	15750	14175	5103	0				
	Selling, General and											
4	Administrative		0	3000	3120	3245	3375	0				
	Research and											
5	Development		15000	0	0	0	0	0				
6	Depreciation		0	1500	1500	1500	1500	1500				
7	EBIT		-15000	9500	11130	9430	228	-1500				
8	Income Tax at 40%		-6000	3800	4452	3772	91,36	-600				
9	Unlevered Net Incon	ne	-9000	5700	6678	5658	137	-900				

- The incremental effect of a project on a firm's available cash is its free cash flow. Timing is crucial! Which corrections need to be made?
 - Capital Expenditures and Depreciation:
 - Include Capital Expenditures: they are the actual cash outflows when an asset is purchased.
 - Exclude Depreciation: it is a non-cash expense.

• Include Net Working Capital (NWC):

```
Net Working Capital = Current Assets - Current Liabilities
= Cash + Inventory + Receivables - Payables
```

- Most projects will require an investment in net working capital.
- The increase in net working capital is defined as:

$$\Delta NWC_{t} = NWC_{t} - NWC_{t-1}$$

Free Cash Flow:

Free Cash Flow = (Revenues - Costs - Depreciation) ×
$$(1 - \tau_c)$$

+ Depreciation - CapEx - ΔNWC

OR:

Free Cash Flow = (Revenues – Costs) × (1 –
$$\tau_c$$
) – CapEx – ΔNWC
+ τ_c × Depreciation

– The term $\tau_c \times Depreciation$ is called the depreciation tax shield.

- HomeNet Example:
 - Capital Expenditures:
 - Subtract CapEx= \$7,500,000 in Year 0;
 - Depreciation:
 - Add back annual depreciation Years 1-5;
 - Change in Net Working Capital:
 - Compute Working Capital each Year, and then compute its changes.
 - Subtract the annual change in NWC.
 - Assume: (i) HomeNet Project has no Cash Requirements and no Inventory, (ii) Receivables are 15% of Sales; (iii) Payables are 15% of COGS.

• Example:

Capital	0	2100	2363	2126	765,5	0	5=1+2+3-4
5. Net Working							
4. Payables	0	1425	1603	1443	519,4	0	15%COGS
3. Receivables	0	3525	3966	3569	1285	0	15%Sales
2. Inventory	0	0	0	0	0	0	
Requirements	0	0	0	0	0	0	
1. Cash							
in \$000s	Year 0	Year 1	Year 2	Year 3	Year 4	Year 5	

		Year	0	1	2	3	4	5
Incremental Ea	rnings Forecast (\$000s	_						
1	Sales		0	23500	26438	23794	8566	0
2	Cost of Goods Sold		0	9500	10688	9619	3463	0
3=1-2	Gross Profit		0	14000	15750	14175	5103	0
	Selling, General and							
4	Administrative		0	3000	3120	3245	3375	0
	Research and							
5	Development		15000	0	0	0	0	0
6	Depreciation		0	1500	1500	1500	1500	1500
7=3-4-5-6	EBIT		-15000	9500	11130	9430	228	-1500
8	Income Tax at 40%		-6000	3800	4452	3772	91,36	-600
9=7-8	Unlevered Net Incom	1e	-9000	5700	6678	5658	137	-900
Free Cash Flow	(\$000s)							
10	Depreciation		0	1500	1500	1500	1500	1500
11	Capital Expenditures		7500	0	0	0	0	0
12	Increases in NWC		0	2100	262,5	-236	-1361	-765
13=9+10-11-12	2 Free Cash Flow		-16500	5100	7916	7394	2998	1365

Determining the FCF and the NPV

 To compute the NPV of any project you need to know its FCFs and the cost of capital r:

$$NPV = \sum_{t=0}^{N} \frac{FCF_{t}}{(1+r)^{t}} = FCF_{0} + \frac{FCF_{1}}{1+r} + \frac{FCF_{2}}{(1+r)^{2}} + \dots + \frac{FCF_{N}}{(1+r)^{N}}$$

Example: Assuming a discount rate r=12%

	Year	0	1	2	3	4	5
9	Unlevered Net Income	-9000	5700	6678	5658	137	-900
Free Cash Flov	v (\$000s)						
10	Depreciation	0	1500	1500	1500	1500	1500
11	Capital Expenditures	7500	0	0	0	0	0
12	Increases in NWC	0	2100	263	-236	-1361	-765
13	Free Cash Flow	-16500	5100	7916	7394	2998	1365
14	Discounted FCF	-16500	4553,57	6310	5263	1905	775
	NPV	2307					

Discount Rate 12%

Further Adjustments to FCF

- Other Non-cash Items
 - Amortization
- Timing of Cash Flows
 - Cash flows are often spread throughout the year.
- Accelerated Depreciation

Further Adjustments to FCF

Liquidation or Salvage Value

Capital Gain = Sale Price - Book Value

Book Value = Purchase Price - Accumulated Depreciation

After-Tax Cash Flow from Asset Sale = Sale Price - $(\tau_c \times \text{Capital Gain})$

- Terminal or Continuation Value: This amount represents the market value of the free cash flow from the project at all future dates.
 - Many times assume that after a certain period, the future FCFs follow a perpetuity structure with a constant growth rate g.

Terminal or Continuation Value

Example:

Continuation Value with Perpetual Growth

Problem

Base Hardware is considering opening a set of new retail stores. The free cash flow projections for the new stores are shown below (in millions of dollars):

After year 4, Base Hardware expects free cash flow from the stores to increase at a rate of 5% per year. If the appropriate cost of capital for this investment is 10%, what continuation value in year 4 captures the value of future free cash flows in year 5 and beyond? What is the NPV of the new stores?

-

g

Terminal or Continuation Value

 To compute the NPV we consider the initial 4 years plus a Continuation Value:

$$NPV = -10.5 - \frac{5.5}{1.1} + \frac{0.8}{1.1^2} + \frac{1.2}{1.1^3} + \frac{1.3}{1.1^4} + \frac{CV_4}{1.1^4}$$

 For the Continuation Value we consider a Growing Perpetuity:

$$CV_4 = \frac{FCF_5}{r - g} = \frac{FCF_4 \times (1 + g)}{r - g} = \frac{1.3(1 + 0.05)}{0.1 - 0.05} = 27.3$$

• Finally, the NPV: $NPV = -10.5 - \frac{5.5}{1.1} + \frac{0.8}{1.1^2} + \frac{1.2}{1.1^3} + \frac{1.3}{1.1^4} + \frac{27.3}{1.1^4} =$

= \$5.597million

Further Adjustments to FCF

- Tax Carryforwards: Tax loss carryforwards and carrybacks allow corporations to take losses during the current year and offset them against gains in nearby years.
- Example: Verian Industries has outstanding tax loss carryforwards of \$100 million from losses over the past 6 years. If Verian earns \$30 million per year in pre-tax income from now on, when will it first pay taxes?

Year	1	2	3	4	5
Past Losses	100	70	40	10	0
Pre-Tax Income	30	30	30	30	30
Tax Loss Carryforward	30	30	30	10	0
Taxable Income	0	0	0	20	30

