Some supplementary problems - part 1 Lévy Processes and Applications

1. Consider the Lévy measure

$$
\nu(x)=\frac{1}{x^{\frac{3}{2}}} \mathbf{1}_{\{x>0\}}(x)
$$

associated to the Lévy process $X(t)$.
(a) Calculate

$$
\begin{aligned}
& \mathbb{E}\left[\int_{\varepsilon}^{1} x^{2} N(t, d x)\right], \quad \text { and } \\
& \operatorname{Var}\left[\int_{\varepsilon}^{1} x^{2} N(t, d x)\right]
\end{aligned}
$$

(b) Show that

$$
\sum_{\{0 \leq s \leq t: \Delta X(s) \in[\varepsilon, 1]\}}(\Delta X(s))^{2}-\frac{2}{3} t\left(1-\varepsilon^{\frac{3}{2}}\right)
$$

is a martingale .
2. Consider the Poisson integral

$$
\int_{1}^{+\infty} x^{\frac{1}{4}} N(t, d x)
$$

and the associated Lévy measure $\nu(x)=\frac{1}{x^{\frac{7}{4}}} \mathbf{1}_{\{x>0\}}(x)$. Calculate $\operatorname{Var}\left[\int_{1}^{+\infty} x^{\frac{1}{4}} N(t, d x)\right]$.
3. Consider a simple process

$$
F(t, x)=\sum_{j=1}^{m} \sum_{k=1}^{n} F_{k}\left(t_{j}\right) \mathbf{1}_{\left(t_{j}, t_{j+1}\right]}(t) \mathbf{1}_{A_{k}}(x),
$$

where the sets A_{k} are disjoint for different values of k and $t \in[0, T]$. Show that

$$
\mathbb{E}\left[(I(F))^{2}\right]=\int_{0}^{T} \int_{E} \mathbb{E}\left[|F(t, x)|^{2}\right] \nu(d x) d t
$$

4. Let X be a Lévy-type of integral of the form

$$
d X(t)=\mu(t) d t+\sigma(t) d B(t)+\int_{|x|>1} \gamma(t, x) N(d t, d x)+\int_{|x| \leq 1} \gamma(t, x) \tilde{N}(d t, d x)
$$

with $\mu(t)+\frac{(\sigma(t))^{2}}{2}+\int_{\mathbb{R}}\left(e^{\gamma(t, x)}-1-\gamma(t, x) \mathbf{1}_{\{|x| \leq 1\}}(x)\right) \nu(d x)=0$ a.s. for all t.
(a) Show that

$$
e^{X(t)}=e^{X_{0}}+\int_{0}^{t} F(s) d B(s)+\int_{0}^{t} \int_{\mathbb{R}} H(s, x) \tilde{N}(d s, d x)
$$

and find expressions for the processes $F(s)$ and $H(s, x)$.
(b) Assume that $|\sigma(t)|$ and $\left|\int_{\mathbb{R}}\left(e^{\gamma(t, x)}-1\right)^{2} \nu(d x)\right|$ are bounded by a constant C. Use Gronwall's Lemma in order to show that $e^{X(t)}$ is a squareintegrable martingale.
(Note: Gronwall's Lemma: Let ϕ be a positive and locally bounded function on \mathbb{R}_{0}^{+}such that $\phi(t) \leq a+b \int_{0}^{t} \phi(s) d s$ for all t, with $a, b \geq 0$. Then $\phi(t) \leq$ $a e^{b t}$.)
5. Consider the stochastic differential equation (of the so-called Geometric Lévy process):
$d X(t)=X(t-)\left[b d t+\sigma d B(t)+\int_{|x|<1} H(t, x) \widetilde{N}(d t, d x)+\int_{|x| \geq 1} K(t, x) N(d t, d x)\right]$,
where b, σ are constants, $H(t, x) \geq-1$ for all t and x and $H(t, x)$ and $K(t, x)$ are processes such that the Poisson integrals above are well defined.

Determine the solution of this equation
6. Let
$d X_{i}(t)=\alpha_{i}(t) d t+\sigma_{i}(t) d B(t)+\int_{|x|<1} H_{i}(t, x) \widetilde{N}(d t, d x)+\int_{|x| \geq 1} K_{i}(t, x) N(d t, d x)$, for $i=1,2$.
(a) Calculate $d\left(X_{1}(t) X_{2}(t)\right)$.
(b) Knowing that $X(t) Y(t)=X(0) Y(0)+\int_{0}^{t} X(s) d Y(s)+\int_{0}^{t} Y(s) d X(s)+$ $[X, Y](t)$, and from the result obtained in (a), calculate $\left[X_{1}, X_{2}\right](t)$.
7. Let $X(t)$ be a Lévy-type of integral of the form

$$
d X(t)=\alpha(t) d t+\sigma(t) d B(t)+\int_{\mathbb{R} \backslash\{0\}} \gamma(t, x) \widetilde{N}(d t, d x)
$$

Consider the process $Y(t)=f(X(t))$ and determine the processes $a(t), b(t)$ and $c(t, x)$ such that

$$
d X(t)=a(t) d t+b(t) d B(t)+\int_{\mathbb{R} \backslash\{0\}} c(t, x) \widetilde{N}(d t, d x)
$$

in the following cases:
(a) $Y(t)=(X(t))^{2}$
(b) $Y(t)=\cos (X(t))$

