Solutions to Problems - Part 1

1.

(a)

$$
d X_{t}=\mu d t+\sigma d B_{t}
$$

(b)

$$
d S_{t}=\left(\mu+\frac{1}{2} \sigma^{2}\right) S_{t} d t+\sigma S_{t} d B_{t}
$$

(c)

$$
P\left[S_{t}<S_{t-1}\right]=\ldots=P\left[B_{t}-B_{t-1}<\frac{-\mu}{\sigma}\right]=\ldots=\Phi(-0.24)=0.405
$$

2.

(a) In the long term, $\mathbb{E}\left[\sigma_{t}\right]=0.2$ and $\operatorname{Var}\left[\sigma_{t}\right]=0.002976$. The long term distribution is N [0.2;0.002976]
(c) $\mu=0.2$ and $\frac{\beta^{2}}{2 \alpha}=\operatorname{Var}\left[\sigma_{t}\right]=0.002976$.
(d) The parameter values can be such that, in the long term, we have that correlation between times $t-1$ and t is the same for both models, i.e.,

$$
\operatorname{corr}\left[\sigma_{t-1}, \sigma_{t}\right]
$$

is the same for both models.
(e)

$$
d V_{t}=\left[-2 \alpha V_{t}+2 \alpha \mu \sqrt{V_{t}}+\beta^{2}\right] d t+2 \beta \sqrt{V_{t}} d B_{t}
$$

