First Semester 2017/2018
Problem Set I

| Question: | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | Total |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Points: | 4 | 4 | 4 | 4 | 34 | 50 |

Justify all your answers. You are required to show your work on each problem (except for multiple choice questions). Organize your work. Work scattered all over the page will receive very little credit. A correct answer in a multiple choice question worths 4 points; an incorrect one worths -1 point. Delivery date: 10 of October.
(4) 1. Consider the following Multiple Linear Regression Model (MLRM)

$$
y_{i}=\beta_{0}+\beta_{1} x_{i 1}+\beta_{2} x_{i 2}+\ldots+\beta_{k} x_{i k}+u_{i}, \quad i=1, \ldots, n
$$

Assume that the assumptions MLR. 1 to MLR. 5 hold. For the OLS estimator of the unknown coefficients, which of the following statements is true?
\bigcirc The sum of squared residuals (SSR) is equal to zero.
\bigcirc It is proven that $\sum_{i=1}^{n} u_{i}=0$.
\bigcirc The OLS minimizes the residuals, therefore $\hat{u}_{i}=0$.
$\sqrt{ }$ The SSR is minimum.
(4) 2. Which of the following statements is true?
\bigcirc The R-squared, R^{2}, cannot be calculated if the dependent variable is logarithmic.
\bigcirc Adding an irrelevant variable to the model may result in a reduction of the R^{2}.
$\sqrt{ }$ The R^{2} is always greater or equal than the adjusted R-squared, \bar{R}^{2}.
\bigcirc The R^{2} can be negative if the explanatory variables of the model are strongly correlated.
(4)
3. Consider the following MLRM:

$$
y_{i}=\beta_{0}+\beta_{1} x_{i 1}+\beta_{2} x_{i 2}+u_{i}, \quad i=1, \ldots, n
$$

Assume that the assumptions MLR. 1 to MLR. 4 hold. For the OLS estimator of the unknown coefficients, choose the correct statement:
\bigcirc The OLS estimator is the Best Linear Unbiased Estimator (BLUE).
$\bigcirc \mathrm{E}\left(y_{i} \mid x_{i 1}, x_{i 2}\right)=0$.
\bigcirc Because the assumption MLR. 5 does not hold, the OLS estimator may be biased.
$\sqrt{ }$ The error term, u_{i}, is uncorrelated with $x_{i 1}$ and $x_{i 2}$.
(4) 4. The omission of a relevant variable in a given model:
\bigcirc Is never a problem if one is not interested on estimating the coefficient of that variable.
$\sqrt{ }$ Implies that the assumption MLR. 4 does not hold, if the omitted variable is correlated with at least one of the explanatory variables included in the model.

O Implies that the OLS estimator is necessarily biased.
\bigcirc Increases the variance of the OLS estimates.
5. Use the data set apple.WF1, to explain the quantity (in pounds) of ecolabeled apples purchased by a family, ecolbs.
(a) Estimate the following regression by OLS:

$$
\begin{equation*}
\text { ecolbs }_{i}=\beta_{0}+\beta_{1} \log \left(\text { faminc }_{i}\right)+\beta_{2} \text { regpr }_{i}+\beta_{3} \text { ecoprc }_{i}+u_{i} \tag{7}
\end{equation*}
$$

where faminc is the family income (in thousands of dollars), regprc is the price of regular apples (in dollars), ecoprc is the price of ecolabeled apples (in dollars). Write the estimated equation with the corresponding standard errors.

(b) Interpret the estimated coefficients. Discuss the signs of these estimates.

Solution:

$\hat{\beta}_{1}=0.2388$: a raise of 1% in the family income, ceteris paribus, makes the estimated quantity of ecolabeled apples bought increase, on average, by $\frac{0.2388}{100}=0.002388$ pounds.

- $\hat{\beta}_{1}$ is positive, corresponding to an income effect: if a family has more money to spend, their demand for ecolabeled apples will rise.
$\hat{\beta}_{2}=3.0350$: Holding all other factors fixed, if the price of regular apples increases by 1 dollar, families will buy, on average, an estimated more 3.0350 pounds of ecolabeled apples.
- $\hat{\beta_{2}}$ is positive, once again an expected result due to the substitution effect: a raise in the price of regular apples means that its price will become less competitive - the ecolabeled's price remains constant in this analysis - making families buy more of the ecolabeled type.
$\hat{\beta}_{3}=-2.8812$: ceteris paribus, if the price of ecolabeled apples increases by 1 dollar, families will buy an estimated less 2.8812 pounds of that product (on average).
- $\hat{\beta}_{3}$ is negative, which follows the law of demand - if the price of ecolabeled apples increases, their demand is expected to fall.
(c) Estimate the quantity of ecolabeled apples purchased by a family with an income of 45 thousand dollars when the price of both types of apples is equal to 1 dollar.

Solution:

Considering faminc $=45$ (faminc is expressed in thousands of dollars), regprc $=1$, ecoprc $=1$, and making the substitution in the estimated equation, we get:

$$
\widehat{\text { ecolbs }}=1.0098+0.2388 \times \log (45)+3.0350 \times 1-2.8812 \times 1=2.0726 \text { pounds }
$$

(6) (d) Suppose that the family referred in part (c) has, in fact, purchased 2 pounds of ecolabeled apples. Calculate the corresponding residual and comment on this result.

Solution:

For this family, we have $\widehat{\text { ecolbs }}=2.0726$ (predicted value) and ecolbs $=2$ (actual value).
Residual: $\hat{u}=$ ecolbs $-\widehat{\text { ecolbs }}=2-2.0726=-0.0726$
The estimated model predicted a (slightly) higher consumption of ecolabeled apples than the value that actually ocurred, hence the negative value of \hat{u}. This family is consuming slightly under the amount estimated for the average consumption of the families facing the same characteristics.
(6) (e) Interpret the value obtained for the R^{2} of the regression.

Solution:

The R^{2} of the regression is 0.04013 , which means that, for this sample, the variables faminc, regprc and ecoprc explain only 4.013% of the total variation in ecolabeled apples purchased.

