Probability Theory and Stochastic Processes
 LIST 1^{1}
 Measure and probability

(1) Decide if \mathcal{F} is σ-algebra of Ω, where:
(a) $\mathcal{F}=\mathcal{P}(\Omega), \Omega=\mathbb{R}^{n}$.
(b) $\mathcal{F}=\{\emptyset,\{1,2\},\{3,4,5,6\}, \Omega\}, \Omega=\{1,2,3,4,5,6\}$.
(c) $\mathcal{F}=\left\{\emptyset,\{0\}, \mathbb{R}^{-}, \mathbb{R}_{0}^{-}, \mathbb{R}^{+}, \mathbb{R}_{0}^{+}, \mathbb{R} \backslash\{0\}, \mathbb{R}\right\}, \Omega=\mathbb{R}$.
(2) Let (Ω, \mathcal{F}) be a measurable space and $A_{1}, A_{2}, \cdots \in \mathcal{F}$. Prove:
(a) $\bigcap_{i=1}^{+\infty} A_{i} \in \mathcal{F}$
(b) $A_{1} \backslash A_{2} \in \mathcal{F}$
(3) Let Ω be a finite set with $\# \Omega=n$. Compute $\# \mathcal{P}(\Omega)$. Hint: Find a bijection between $\mathcal{P}(\Omega)$ and the space $\left\{v \in \mathbb{R}^{n}: v_{i} \in\right.$ $\{0,1\}\}$.
(4) Determine if the intersection and the union of σ-algebras are still σ-algebras.
(5) Let $\Omega=[-1,1] \subset \mathbb{R}$. Determine if the following collection of sets is a σ-algebra:

$$
\mathcal{F}=\{A \in \mathcal{B}(\Omega): x \in A \Rightarrow-x \in A\} .
$$

(6) Show that
(a) if $\mathcal{A}_{1} \subset \mathcal{A}_{2} \subset \mathcal{P}$, then $\sigma\left(\mathcal{A}_{1}\right) \subset \sigma\left(\mathcal{A}_{2}\right)$.
(b) $\sigma(\sigma(\mathcal{A}))=\sigma(\mathcal{A})$ for any $\mathcal{A} \subset \mathcal{P}$.
(c) $\mathcal{A}=\{[a,+\infty[: a \in \mathbb{R}\}$ generates the Borel σ-algebra of \mathbb{R}.
(7) Let $\mu: \mathcal{P}(\mathbb{R}) \rightarrow[0,+\infty]$ be given by

$$
\mu(\emptyset)=0, \quad \mu(\mathbb{R})=2, \quad \mu(X)=1 \quad \text { se } \quad X \in \mathcal{P}(\mathbb{R}) \backslash\{\emptyset, \mathbb{R}\}
$$

Determine if μ is σ-subadditive and σ-additive.
(8) Prove that if μ_{1}, μ_{2} are measures and $\alpha, \beta \geq 0$, then $\mu=\alpha \mu_{1}+$ $\beta \mu_{2}$ is also a measure.

[^0](9) Let $(\Omega, \mathcal{F}, \mu)$ be a measure space and $A_{1}, A_{2}, \cdots \in \mathcal{F}$. Prove that:
(a) In the definition of measure, the condition $\mu(\emptyset)=0$ can be replaced by the existence of a set $E \in \mathcal{F}$ with finite measure, $\mu(E)<+\infty$.
(b) If $A_{i} \subset A_{i+1}$, then $\mu\left(\bigcup_{i} A_{i}\right)=\lim _{i \rightarrow+\infty} \mu\left(A_{i}\right)$.
(c) If $A_{i+1} \subset A_{i}$ and $\mu\left(A_{1}\right)<+\infty$, then $\mu\left(\bigcap_{i} A_{i}\right)=\lim _{i \rightarrow+\infty} \mu\left(A_{i}\right)$.
(10) Let (Ω, \mathcal{F}, P) probability space, $A_{1}, A_{2}, \cdots \in \mathcal{F}$ and B is the set of points in Ω that belong to an infinite number of A_{n} 's:
$$
B=\bigcap_{n=1}^{+\infty} \bigcup_{k=n}^{+\infty} A_{k} .
$$

Show that:
(a) (First Borel-Cantelli lemma) If

$$
\sum_{n=1}^{+\infty} P\left(A_{n}\right)<+\infty
$$

then $P(B)=0$.
(b) $*$ (Second Borel-Cantelli lemma) If

$$
\sum_{n=1}^{+\infty} P\left(A_{n}\right)=+\infty
$$

and

$$
P\left(\bigcap_{i=1}^{n} A_{i}\right)=\prod_{i=1}^{n} P\left(A_{i}\right)
$$

for every $n \in \mathbb{N}$ (i.e. the events are mutually independent), then $P(B)=1$.

[^0]: ${ }^{1}$ Send comments and/or corrections to jldias@iseg.utl.pt. Harder questions are marked with *. Collaboration among colleagues is encouraged, but each student should write his/her own solutions, understand them and give credit to the collaborators.

