Probability Theory and Stochastic Processes

LIST 1^1

Measure and probability

- (1) Decide if \mathcal{F} is σ -algebra of Ω , where:
 - (a) $\mathcal{F} = \mathcal{P}(\Omega), \ \Omega = \mathbb{R}^n$.
 - (b) $\mathcal{F} = \{\emptyset, \{1, 2\}, \{3, 4, 5, 6\}, \Omega\}, \Omega = \{1, 2, 3, 4, 5, 6\}.$
 - (c) $\mathcal{F} = \{\emptyset, \{0\}, \mathbb{R}^-, \mathbb{R}_0^-, \mathbb{R}^+, \mathbb{R}_0^+, \mathbb{R} \setminus \{0\}, \mathbb{R}\}, \Omega = \mathbb{R}.$
- (2) Let (Ω, \mathcal{F}) be a measurable space and $A_1, A_2, \dots \in \mathcal{F}$. Prove:
 - (a) $\bigcap_{i=1}^{+\infty} A_i \in \mathcal{F}$
 - (b) $A_1 \setminus A_2 \in \mathcal{F}$
- (3) Let Ω be a finite set with $\#\Omega = n$. Compute $\#\mathcal{P}(\Omega)$. Hint: Find a bijection between $\mathcal{P}(\Omega)$ and the space $\{v \in \mathbb{R}^n : v_i \in \{0,1\}\}$.
- (4) Determine if the intersection and the union of σ -algebras are still σ -algebras.
- (5) Let $\Omega = [-1, 1] \subset \mathbb{R}$. Determine if the following collection of sets is a σ -algebra:

$$\mathcal{F} = \{ A \in \mathcal{B}(\Omega) \colon x \in A \Rightarrow -x \in A \}.$$

- (6) Show that
 - (a) if $\mathcal{A}_1 \subset \mathcal{A}_2 \subset \mathcal{P}$, then $\sigma(\mathcal{A}_1) \subset \sigma(\mathcal{A}_2)$.
 - (b) $\sigma(\sigma(\mathcal{A})) = \sigma(\mathcal{A})$ for any $\mathcal{A} \subset \mathcal{P}$.
 - (c) $\mathcal{A} = \{[a, +\infty[: a \in \mathbb{R}\} \text{ generates the Borel } \sigma\text{-algebra of } \mathbb{R}.$
- (7) Let $\mu \colon \mathcal{P}(\mathbb{R}) \to [0, +\infty]$ be given by

$$\mu(\emptyset) = 0, \quad \mu(\mathbb{R}) = 2, \quad \mu(X) = 1 \quad \text{se} \quad X \in \mathcal{P}(\mathbb{R}) \setminus \{\emptyset, \mathbb{R}\}.$$

Determine if μ is σ -subadditive and σ -additive.

(8) Prove that if μ_1, μ_2 are measures and $\alpha, \beta \geq 0$, then $\mu = \alpha \mu_1 + \beta \mu_2$ is also a measure.

¹Send comments and/or corrections to jldias@iseg.utl.pt. Harder questions are marked with *. Collaboration among colleagues is encouraged, but each student should write his/her own solutions, understand them and give credit to the collaborators.

- (9) Let $(\Omega, \mathcal{F}, \mu)$ be a measure space and $A_1, A_2, \dots \in \mathcal{F}$. Prove that:
 - (a) In the definition of measure, the condition $\mu(\emptyset) = 0$ can be replaced by the existence of a set $E \in \mathcal{F}$ with finite measure, $\mu(E) < +\infty$.
 - (b) If $A_i \subset A_{i+1}$, then $\mu(\bigcup_i A_i) = \lim_{i \to +\infty} \mu(A_i)$.
 - (c) If $A_{i+1} \subset A_i$ and $\mu(A_1) < +\infty$, then $\mu(\bigcap_i A_i) = \lim_{i \to +\infty} \mu(A_i)$.
- (10) Let (Ω, \mathcal{F}, P) probability space, $A_1, A_2, \dots \in \mathcal{F}$ and B is the set of points in Ω that belong to an infinite number of A_n 's:

$$B = \bigcap_{n=1}^{+\infty} \bigcup_{k=n}^{+\infty} A_k.$$

Show that:

(a) (First Borel-Cantelli lemma) If

$$\sum_{n=1}^{+\infty} P(A_n) < +\infty,$$

then P(B) = 0.

(b) *(Second Borel-Cantelli lemma) If

$$\sum_{n=1}^{+\infty} P(A_n) = +\infty$$

and

$$P\left(\bigcap_{i=1}^{n} A_i\right) = \prod_{i=1}^{n} P(A_i),$$

for every $n \in \mathbb{N}$ (i.e. the events are mutually independent), then P(B) = 1.