

ISEG – Lisbon School of Economics and Management ECONOMETRICS First Semester 2017/2018 Problem Set II

Question:	1	2	3	4	5	Total
Points:	4	4	4	4	34	50

Justify all your answers (except for multiple choice questions). You are required to show your work on each problem (except for multiple choice questions). **Organize your work**. Work scattered all over the page will receive very little credit. A correct answer in a multiple choice question worths 4 points; an incorrect one worths -1 point. **Delivery date: 24 of October**.

(4) **1**. Suppose that assumption MLR.5 is not verified in the model. Which of the following statements is **TRUE**?

 $\sqrt{}$ The t and F statistics, obtained from the conventional OLS estimator, do not follow the usual distributions.

- The OLS standard errors are unbiased, once assumption MLR.4 still holds.
- \bigcirc The conditional variance of the error term is a constant, σ^2 .
- The OLS estimator is BLUE, once assumption MLR.4 still holds.
- (4) **2**. Assume that you had estimated the following quadratic regression model:

 $\widehat{wage} = 6.1 + 0.35 \, educ + 0.25 \, exper - 0.01 \, exper^2$

If experience increases from 5 to 6, holding education fixed, then it is estimated that wage increases, in average, approximately:

- $\bigcirc 0.25$ $\bigcirc 0.20$ $\bigcirc 0.90$ $\checkmark 0.15$
- (4) **3.** Suppose you are performing a test $H_0: \beta_j = 0$ against $H_1: \beta_j < 0$ and you obtain the observed value for the test statistic equal to t_{obs} . Then the p-value is equal to:
 - \bigcirc The probability of rejection of the null hypothesis.
 - $\sqrt{P(T \leq t_{obs})}$ with T distributed according to a *t-student* with n k 1 degrees of freedom.
 - $\bigcirc P(T \leq -t_{obs})$ with T distributed according to a t-student with n-k-1 degrees of freedom.
 - $\bigcirc 2P(T \ge |t_{obs}|)$ with T distributed according to a t-student with n k 1 degrees of freedom.

(4) **4**. Consider the regression model:

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2$$

We intend to test the hypothesis that if x_1 and x_2 increase by the same amount then the estimated effect on y is in average equal to zero. The null hypothesis will be:

 $\sqrt{H_0: \beta_1 + \beta_2} = 0$ $\bigcirc H_0: \beta_1 - \beta_2 = 0$ $\bigcirc H_0: E(\beta_1 - \beta_2) = 0$ $\bigcirc \text{ none of the above.}$

5. Use the data set <u>affairs.WF1</u> to explain the numbers of affairs a married person had last year. Estimate the following regression by OLS:

 $naffairs_i = \beta_0 + \beta_1 educ_i + \beta_2 age_i + \beta_3 yrsmarr_i + \beta_4 yrsmarr_i^2 + \beta_5 relig_i + u_i$

where:

- *naffairs* is the number of affairs within last year;
- *educ* is number of years in schooling;
- **yrsmarr** is the number of years married;
- *relig* gives the religious status of the individual where 5 = very religious, 4 = somewhat, 3 = slightly, 2 = not at all, 1 = anti religious.
- (5) (a) Write the estimated equation with the corresponding standard errors.

	Sample: 1 601					
	Included observations:	601				
	Variable	Coefficient	Std. Error	t-Statistic	Prob.	
	С	2.856264	1.059552	2.695729	0.0072	
	EDUC AGE	-0.015659 -0.036179	0.055216 0.023026	-0.283598 -1.571268	0.7768 0.1167	
	YRSMARR	0.276098	0.023020	2.492998	0.0129	
	YRSMARR^2	-0.005574	0.006560	-0.849665	0.3959	
	RELIG	-0.540427	0.114341	-4.726437	0.0000	
	R-squared	0.077350	Mean depend	lent var	1.455907	
	Adjusted R-squared	0.069597	S.D. depende		3.298758	
	S.E. of regression	3.181896	Akaike info cr		5.162765	
	Sum squared resid	6024.054			5.206677	
	Log likelihood F-statistic	-1545.411 9.976374	Hannan-Quin Durbin-Watso		5.179858 1.870104	
	Prob(F-statistic)	0.000000	Durbin-Watst	n stat	1.070104	
affairs = 2.8563	3-0.0157 educ -	- 0.0362	age + 0.	2761 yr	smarr	-0.0056yrsmar
05	5404 reliq					
	140416119					

(7) (b) Interpret the estimated coefficients $\hat{\beta}_3$ and $\hat{\beta}_5$. Discuss the signs of these estimates.

Solution:

 $\hat{\beta}_3 = 0.2761$: Since the variable *yrsmarr* appears also in *yrsmarr*² in the model, $\hat{\beta}_3$ has a slightly different interpretation: it represents, *ceteris paribus*, the estimated average increase in number of affairs that a newly-married person has in the first year of marriage. (*yrsmarr* = 0).

• This sign could perfectly be the opposite one - the fact that a person is newly-wed could affect his/her number of affairs negatively.

 $\hat{\beta}_5 = -0.5404$: Holding all other factors fixed, an alteration in the religion status of a person (by 1 value, upwards) has an estimated average effect of -0.5404 in the number of affairs in an year. Since we are not using dummy variables, we assume that this effect is constant for all changes (by 1 value) in the categories.

• This sign may make sense - a more religious person may feel less interested in starting an affair, due to moral beliefs.

(5) (c) Write the estimated marginal effect of *yrsmarr* on *naffairs* in the specified model and comment.

Solution:

 $\frac{\partial n \widehat{affairs}}{\partial yrsmarr} = 0.2761 + 2 \times (-0.0056) yrsmarr = 0.2761 - 0.0112 yrsmarr$

The marginal effect of *yrsmarr* on *naffairs* is at first positive, but it decreases with the advance of the marriage - after some years, it becomes negative.

To get the turning point, we just need to find naffairs such as the marginal effect equals 0:

 $0.2761 - 0.0112 yrsmarr = 0 \Leftrightarrow yrsmarr = 24.65$

It is in the 25th year of marriage that the advance of the marriage has a negative effect on the number of affairs.

(6) (d) Test the individual statistical significance of all variables and comment.

Solution:

For each coefficient, we perform the test:

H0:
$$\beta_i = 0$$
 vs H1: $\beta_i \neq 0, j \in \{1, 2, 3, 4, 5\}$

The statistic we use for testing is:

$$t_{\hat{\beta}_j} = \frac{\hat{\beta}_j}{se(\hat{\beta}_j)} \sim t(n-k-1), \ j \in \{1, 2, 3, 4, 5\}$$

Where n - k - 1 = 601 - 5 - 1 = 595.

We can get the p-values for all tests directly in the Eviews output.

• For β_1 , we get a p-value of 0.7768 - failing to reject the null hypothesis with a significance level of 5%;

• For β_2 , we get a p-value of 0.1167 - failing to reject the null hypothesis at the 5% level:

• For β_3 , we get a p-value of 0.0129 - rejecting the null hypothesis at the 5% level;

• For β_4 , we get a p-value of 0.3959 - failing to reject the null hypothesis at the 5% level;

• For β_5 , we get a p-value of 0.0000 - rejecting the null hypothesis at the 5% level.

The conclusion is that the variables educ, age and $yrsmarried^2$ are not statistically significant: this is specially relevant for this last variable, since it indicates that there is no significant quadratic effect for the variable yrsmarr. On the other hand, yrsmarr and *reliq* are statistically significant to explain *naffairs*.

(e) Test whether the coefficients on *educ* and *age* are jointly significantly. Show your calculations.

Solution:

H0: $\beta_1 = \beta_2 = 0$ vs H1: $\beta_1 \neq 0 \lor \beta_2 \neq 0$

We have 2 linear restrictions, meaning that we have to perform an F-test. The Fstatistic is:

$$F = \frac{(SSR_r - SSR_{ur})/q}{SSR_{ur}/(n - k - 1)} \sim F(q, n - k - 1)$$

OR
$$F = \frac{(R_{ur}^2 - R_r^2)/q}{(1 - R_{ur}^2)/(n - k - 1)} \sim F(q, n - k - 1)$$

Where q = 2 (number of linear restrictions) and n - k - 1 = 595. We need to estimate the restricted model, which is:

 $naffairs_i = \alpha_0 + \alpha_1 yrsmarr_i + \alpha_2 yrsmarr_i^2 + \alpha_3 relig_i + v_i$

(5)

Dependent Variable: N/ Method: Least Squares				
Sample: 1 601 Included observations:	601			
Variable	Coefficient	Std. Error	t-Statistic	Prob.
C YRSMARR YRSMARR^2 RELIG	1.754490 0.259308 -0.007371 -0.544763	0.470570 0.110265 0.006423 0.114169	3.728437 2.351687 -1.147676 -4.771545	0.0002 0.0190 0.2516 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.073001 0.068343 3.184039 6052.449 -1546.824 15.67132 0.000000	0.114169 -4.771545 Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat		1.455907 3.298758 5.160812 5.190087 5.172207 1.873291

The sum of square residuals of the restricted model is 6052.449. The SSR of the model without restrictions (the original model) is 6024.054. We get an F-ratio of:

$$F_{obs} = \frac{(6052.449 - 6024.054)/2}{6024.054/595} = 1.4$$

With the R-squared Form:

$$F_{obs} = \frac{(0.07735 - 0.073)/2}{(1 - 0.07735)/595} = 1.4$$

We need to get the critical value of an F(2,595). For a 5% significance level, the 95th percentile is 3.01: $F_{obs} < 3.01$, meaning that we fail to reject the null hypothesis: the variables *educ* and *age* are not jointly statistically significant at the 5% level.

Alternatively, we can perform the test directly with Eviews (Wald Test-Coefficient Restrictions).

Test Statistic	Value	df	Probability	
F-statistic	1.402273	(2, 595)	0.2468	
Chi-square	Chi-square 2.804546		0.2460	
Null Hypothesis:	C(2)=0, C(3)=0			
Null Hypothesis: Null Hypothesis (Normalized Rest	Summary:	Value	Std. Err.	
Null Hypothesis	Summary:	Value -0.015659	Std. Err. 0.055216	

Restrictions are linear in coefficients.

Here, we get automatically that $F_{obs} = 1.4$, and with a p-value of 0.2468 we reach the same conclusion for a 5% significance level.

(6) (f) Estimate now the following regression by OLS:

$$naffairs_i = \beta_0 + \beta_1 age_i + \beta_2 yrsmarr_i + \beta_3 relig_i + u_i$$

Estimate the effect on the number of affairs of an individual that is very religious and is 15 years married relatively to another that is 2 years married and anti-religious, having

both the same age. Write the hypothesis that this effect is equal to zero and test it. Show how to calculate the test statistic.

Solution:

Dependent Variable: Na Method: Least Squares				
Sample: 1 601 Included observations:	601			
Variable	Coefficient	Std. Error	t-Statistic	Prob.
с	2.929169	0.612907	4.779144	0.0000
AGE	-0.040800	0.022233	-1.835055	0.0670
YRSMARR	0.188286	0.037264	5.052705	0.0000
RELIG	-0.541489	0.113981	-4.750692	0.0000
R-squared	0.076167	Mean depend	dent var	1.455907
Adjusted R-squared	0.071525	S.D. dependent var		3.298758
S.E. of regression	3.178598	Akaike info criterion		5.157391
Sum squared resid	6031.780	Schwarz criterion		5.186666
Log likelihood	-1545.796	Hannan-Quir	n criter.	5.168786
F-statistic	16.40694	Durbin-Wats	on stat	1.868978
Prob(F-statistic)	0.000000			

For the individual 1, yrsmarr = 15 and relig = 5; for the individual number 2, yrsmarr = 2 and relig = 1.

If the effect is the same, then:

$$\begin{split} naffairs_2 &= naffairs_1 \\ \Leftrightarrow \beta_0 + \beta_1 \, age_2 + \beta_2 \times 15 + \beta_3 \times 5 + u_2 = \beta_0 + \beta_1 \, age_1 + \beta_2 \times 2 + \beta_3 \times 1 + u_1 \\ \Leftrightarrow 15 \, \beta_2 + 5 \, \beta_3 &= 2 \, \beta_2 + \beta_3 \\ \Leftrightarrow 13 \, \beta_2 + 4 \, \beta_3 &= 0 \end{split}$$

This means that the etimated effect is:

$$13\,\hat{\beta}_2 + 4\,\hat{\beta}_3 = 13 \times 0.1883 + 4 \times -0.5415 = 0.2819$$

We need to test H0: $13 \beta_2 + 4 \beta_3 = 0$ vs H1: $13 \beta_2 + 4 \beta_3 \neq 0$. Since this is one linear restriction, we can use the t statistic:

$$t = \frac{13\,\hat{\beta}_2 + 4\,\hat{\beta}_3}{se(13\,\hat{\beta}_2 + 4\,\hat{\beta}_3)} \sim t(597)$$
$$se(13\,\hat{\beta}_2 + 4\,\hat{\beta}_3) = \sqrt{13^2\,Var(\hat{\beta}_2) + 4^2\,Var(\hat{\beta}_3) + 2 \times 13 \times 4\,Cov(\hat{\beta}_2,\hat{\beta}_3)}$$
$$= \sqrt{169 \times 0.0373^2 + 16 \times 0.1140^2 + 104 \times (-0.000465)} = 0.6283$$

Which means that:

$$t = \frac{0.2819}{0.6283} = 0.4487$$

For a significance level of 5% (in a bilateral test), the critical value for a t distribution with 594 degrees of freedom is 1.96. Since |t| < 1.96, we fail to reject the null hypothesis: there is statistical evidence that this effect is equal to zero.

Another way to test this restriction is to reparametrize the model. Considering:

$$13\,\beta_2 + 4\,\beta_3 = \theta \Leftrightarrow \beta_2 = \frac{1}{13}\theta - \frac{4}{13}\beta_3$$

Plugging this into the original model, we get:

$$naffairs = \beta_0 + \beta_1 age + \left(\frac{1}{13}\theta - \frac{4}{13}\beta_3\right) yrsmarr + \beta_3 relig + u$$
$$= \beta_0 + \beta_1 age + \theta \times \frac{1}{13} yrsmarr + \beta_3 \left(relig - \frac{4}{13} yrsmarr\right) + u$$

Dependent Variable: NAFFAIRS Method: Least Squares Date: 10/19/17 Time: 23:59 Sample: 1 601 Included observations: 601

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C AGE (1/13)*YRSMARR RELIG-(4/13)*YRSMAR	2.929169 -0.040800 0.281767 -0.541489	0.612907 0.022233 0.627813 0.113981	4.779144 -1.835055 0.448806 -4.750692	0.0000 0.0670 0.6537 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.076167 0.071525 3.178598 6031.780 -1545.796 16.40694 0.000000	Mean depend S.D. depende Akaike info cr Schwarz crite Hannan-Quin Durbin-Watso	ent var iterion rion in criter.	1.455907 3.298758 5.157391 5.186666 5.168786 1.868978

Now we just have to test the hypothesis:

H0:
$$\theta = 0$$
 vs H1: $\theta \neq 0$
 $t_{\hat{\theta}} = \frac{\hat{\theta}}{se(\hat{\theta})} \sim t(597)$

Using the Eviews output, we can easily see that the p-value for this test is 0.6537, which leads us to the conclusions taken before.

Again, we can use Eviews to test the restriction directly:

Wald Test: Equation: Untitled									
Test Statistic	Value	df	Probability						
t-statistic F-statistic Chi-square	0.448806 0.201427 0.201427	597 (1, 597) 1	0.6537 0.6537 0.6536						
Null Hypothesis: 1 Null Hypothesis S		0							
Normalized Restri	ction (= 0)	Value	Std. Err.						
13*C(3) + 4*C(4)		0.281767	0.627813						

Restrictions are linear in coefficients.

The p-value is (forcefully) the same as seen before - again, we should not reject the null hypothesis.