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Abstract. With the aim of modelling key stylized features of observational se-
ries from finance and turbulence a number of stochastic processes with normal
inverse Gaussian marginals and various types of dependence structures are dis-
cussed. Ornstein-Uhlenbeck type processes, superpositions of such processes and
stochastic volatility models in one and more dimensions are considered in particu-
lar, and some discussion is given of the feasibility of making likelihood inference
for these models.
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1 Introduction

In the field of finance, distributions of logarithmic asset returns can often be
fitted extremely well by normal inverse Gaussian distributions (Barndorff-Nielsen
1995, 1996a; Rydberg 1996a,b; see also Rydberg 1997). It is therefore of some
interest, using normal inverse Gaussian laws as building blocks, to construct
stochastic process models for stock prices and asset returns that capture as many
as possible of the key stylised features of financial time series.

Normal inverse Gaussian distributions have also considerable potential with
respect to modelling in quite different contexts. This is true, in particular, in
turbulence where data on velocities and velocity differences from high Reynolds
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number wind fields show features that are remarkably similar to stylised facts in
finance; cf. Barndorff-Nielsen (1996b) and Subsect. 2.0 below.

With these areas of application in mind, particularly those of finance, we study
in the present paper several kinds of processes with normal inverse Gaussian
marginals, in particular processes of Ornstein — Uhlenbeck type, superpositions
of such processes and stochastic volatility models in one and several dimensions.
An important aim is to find models with analytically and statistically tractable
correlation structure. The feasibility of carrying out likelihood inference under
the derived models is discussed to some extent. Models of diffusion type will
not be considered here due to the difficulty of handling temporal dependence
structures under such models.

Section 2 begins with some considerations of goals for the modelling; further,
the section contains various preliminary, mostly well known, results concern-
ing: normal inverse Gaussian distributions; infinite divisibility and exponential
families; selfdecomposability; Ornstein - Uhlenbeck type processes and their
background driving Ĺevy processes (BDLP); long range dependence and self-
similarity; and, finally, processes of type G. In Sect. 3 we then define the normal
inverse Gaussian Ornstein - Uhlenbeck process and we characterize the associ-
ated BDLP as a sum of three homogeneous Lévy processes, one being the normal
inverse Gaussian Ĺevy process and the second a compound Poisson process (the
third process is present only in case the one-dimensional marginal distributions
are asymmetric). An inverse Gaussian Ornstein-Uhlenbeck process is also con-
sidered. Normal inverse Gaussian processes with (quasi) long range dependence
are constructed in Sect. 4, and Sect. 5 contains a brief discussion of a selfsim-
ilar inverse Gaussian process with independent increments. Section 6 discusses
modelling by superposition of Ornstein - Uhlenbeck type processes, partly as a
preparation for the final Sect. 7 which concerns stochastic volatility models, in
one and more dimensions. As already indicated, questions of likelihood based
analysis are discussed for several of the models.

2 Background

This section reviews a number of – mostly well known – results, on normal
inverse Gaussian distributions, infinite divisibility and exponential families, self-
decomposability, Ornstein-Uhlenbeck type processes, long range dependence and
selfsimilarity, and processes of type G. These results are needed for the construc-
tion and study of the normal inverse Gaussian processes to be discussed in Sects. 3
to 7. First, however, some issues of statistical modelling, relating in particular to
the analysis of financial data, are discussed.

2.0 Modelling considerations

A number of characteristic features of observational series from finance and from
turbulence are summarised in Table 1. The features are widely recognized as be-
ing esssential for understanding and modelling within these two, quite different,
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subject areas. In finance the observational series concerned consist of values of
assets such as stocks or (logarithmic) stock returns or exchange rates, while in
turbulence the series typically give the velocities or velocity derivatives (or dif-
ferences), in the mean wind direction of a large Reynolds number wind field.
For some typical examples of empirical probability densities of velocity differ-
ences in large Reynolds number wind fields see, for instance, Barndorff-Nielsen
(1996b).

Table 1. Stylised features

Finance Turbulence
semiheavy tails + +

asymmetry (+) +
varying activity volatility intermittency

aggregational Gaussianity + +
quasi long range dependence + (+)

scaling/selfsimilarity + +

The term ‘semiheavy tails’, in Table 1, is intended to indicate that the data
suggest modelling by probability distributions whose densities behave, forx →
±∞, as

const. |x|ρ± exp(−σ± |x|)
for someρ+, ρ− ∈ R andσ+, σ− > 0.

Distributions of financial asset returns are generally rather close to being
symmetric around 0, but there is a definite tendency towards asymmetry stem-
ming from the fact that the market is prone to react differently to positive as
opposed to negative returns, cf. for instance Shephard (1996; Subsect. 1.3.4).
Velocity differences in turbulence show an inherent asymmetry consistent with
Kolmogorov’s modified theory of homogeneous high Reynolds number turbu-
lence (cf. Barndorff-Nielsen 1986).

A very characteristic trait of time series from turbulence as well as finance
is that there seems to be a kind of switching regime between periods of rel-
atively small random fluctuations and periods of high ‘activity’. In turbulence
this phenomenon is known as intermittency, see e.g. Frisch (1995; chapter 8) for
a thorough discussion, whereas in finance one speaks of stochastic volatility or
conditional heteroscedasticity.

By aggregational Gaussianity is meant the fact that long term aggregation of
financial asset returns, in the sense of summing the returns over longer periods,
will lead to approximately normally distributed variates, and similarly in the
turbulence context; i.e. a normal central limit effect rules. For illustrations of
this, see for instance Eberlein and Keller (1995) and Barndorff-Nielsen (1996b).

Finally in Table 1 we refer, by ‘quasi long range dependence’, to the patterns
of autocorrelations so typically observed in time series from both of the two
fields of investigation and which indicate dependence structures close to what
is defined mathematically as ‘long range dependence’. Methods for modelling
dependence behaviour of this kind are discussed in the Sects. 4, 6 and 7.
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2.1 NIG distributions

The normal inverse Gaussian distribution with parametersα, β, µ andδ is denoted
NIG(α, β, µ, δ) and it may be defined as follows. Consider a bivariate Brownian
motion (ut , vt ) starting at the point (µ, 0) and having constant drift vector (β, γ)
with γ > 0, and letz denote the time at which the second componentvt hits the
line v = δ > 0 for the first time. (The coordinate processesut andvt are assumed
to be independent.) Then, lettingα =

√
(β2+γ2), the law ofuz is NIG(α, β, µ, δ).

Equivalently,NIG(α, β, µ, δ) may be described as the distribution at timet = 1
of xt where

xt = uzt + µt ,(2.1)

with zt , assumed independent of the processut , being the inverse Gaussian Lévy
process. The latter process is defined as the homogeneous Lévy process for

which z1
d
= z, where

d
= means ‘distributed as’ and where the distribution ofz is

the inverse Gaussian law whose probability density function is given by

(2π)−1/2δeδγz−3/2 exp{−(δ2z−1 + γ2z)/2} .

This distribution is denotedIG(δ, γ). The processxt is also a homogeneous Lévy
process, termed the normal inverse Gaussian Lévy process.

The density function of theNIG(α, β, µ, δ) distribution is

g(x;α, β, µ, δ) = a(α, β, µ, δ)q(
x − µ

δ
)−1K1{δαq(

x − µ

δ
)}eβx(2.2)

whereq(x) =
√

(1 + x2) and

a(α, β, µ, δ) = π−1αeδ
√

(α2−β2)−βµ(2.3)

and whereK1 is the modified Bessel function of third order and index 1.
It follows immediately from (2.2) and (2.3) that the moment generating func-

tion of the normal inverse Gaussian distribution is

M (u;α, β, µ, δ) = exp[δ{√(α2 − β2)−√(α2 − (β + u)2)} + µu] .(2.4)

Thus, in particular, ifx1, ..., xm are independent normal inverse Gaussian ran-
dom variables with common parametersα andβ but having individual location-
scale parametersµi andδi (i = 1, ...,m) thenx+ = x1 + ...+ xm is again distributed
according to a normal inverse Gaussian law, with parameters (α, β, µ+, δ+).

It is often of interest to consider alternative parametrisations of the normal
inverse Gaussian laws. In particular, letting ¯α = δα and β̄ = δβ, we have that
ᾱ and β̄ are invariant under location—scale changes, and when ¯α, β̄, µ, δ con-
stitute the parametrisation of interest we shall writeNIG[ᾱ, β̄, µ, δ] instead of
NIG(α, β, µ, δ). In terms of this alternative parametrisation the mean and variance
of NIG[ᾱ, β̄, µ, δ] are

κ1 = µ + δρ/(1− ρ2)1/2
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and
κ2 = δ2/{ᾱ(1− ρ2)3/2}

whereρ = β/α, which is invariant sinceβ/α = β̄/ᾱ.
We note finally that the NIG distribution (2.2) has semiheavy tails; specifi-

cally,
g(x;α, β, µ, δ) ∼ const. |x|−3/2 e−α|x|+βx as x → ±∞ ,

as follows from the well known asymptotic relation for the Bessel functions
Kν(x):

Kν(x) ∼ √
(π/2)x−1/2e−x as x →∞ .

For further results relating to the normal inverse Gaussian distributions see
Barndorff-Nielsen (1995, 1996a,b) and Rydberg (1996a,b, 1997).

2.2 Infinite divisibility and exponential models

We start by recalling a few wellknown facts about infinitely divisible distribu-
tions.

A Lévy measureU is a positive Radon measure onR \ {0} such that∫
R\{0}

min(1, x2)U (dx) <∞ .

Let U denote the set of all Ĺevy measures and let

U0 = {U ∈ U : U is bounded}

U1 = {U ∈ U \U0:
∫

R\{0}
min(1, |x|)U (dx) <∞} .

A centering function is a continuous bounded functionτ : R→R such that
x → {τ (x)− x}/x2 is also bounded.

If P is an infinitely divisible probability measure onR then, given a centering
function τ , there exists a triplet (U , σ2, χ), whereU is a Lévy measure,σ2 ≥ 0
andχ ∈ R, such that, lettingφ(ζ;χ, σ2) = exp(− 1

2σ
2ζ2 + iχζ), we have

∫ ∞

−∞
ei ζxP(dx) =


φ(ζ;χ, σ2) exp

∫
R\{0}{ei ζx − 1}U (dx)

if U ∈ U0 ∪U1

φ(ζ;χ, σ2) exp
∫

R\{0}{ei ζx − 1− i ζτ (x)}U (dx)
if U ∈ U \{U0 ∪U1}

(2.5)

Conversely, if (U , σ2, χ) is a triplet as above then formula (2.5) determines
an infinitely divisible probability measureP. The collection (U , σ2, χ) is termed
the characteristic tripletof P.

Supposeυ is a nondegenerate Radon measure onR, define

D(υ) = {θ ∈ R :
∫

eθxυ(dx) <∞}
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and letΘ(υ) = intD(υ), the interior ofD(υ). We denote byM the set of all
nondegenerate Radon measuresυ such thatΘ(υ) is not empty.

If υ ∈ M , we define thefull natural exponential familyF̄ (υ) generated by
υ and the identity mapping onR as the class of probability measuresPθ, θ ∈
D(υ), such thatPθ << υ and

p(x; θ) = exp{θx − kυ(θ)}
wherep(·; θ) = dPθ/dυ and wherekυ(θ), thecumulant functionof the exponential
family, is given bykυ(θ) = log

∫
eθxυ(dx). As is well known, the cumulant

function is infinitely often differentiable onΘ(υ). The subfamilyF (υ) of F̄ (υ)
consisting of thosePθ for which θ ∈ Θ(υ) is called thenatural exponential
family generated byυ.

From Bar-Lev et al. (1992) (cf., also, Letac 1992; Sects. 1.5-6) we have

Theorem 2.1. Let υ ∈ M and let kυ be the cumulant function of̄F (υ). Then the
following three statements are equivalent:

(i) There exists an element P of̄F (υ) such that P is infinitely divisible.
(ii) All elements ofF̄ (υ) are infinitely divisible.
(iii) There exists a V in M such thatΘ(V ) = Θ(υ) and

k′′υ (θ) =
∫

R
eθxV (dx) .

Furthermore, forθ in D(υ) the Ĺevy measure Uθ corresponding to p(x; θ) is
given by

Uθ(x) = x−2 exp(θx)[V (dx)− V ({0})δ0(dx)](2.6)

whereδ0 denotes the degenerate probability measure giving mass 1 to the origin
of R.

In particular, if θ = 0 and V({0}) = 0 we have for x/= 0

U (dx) = x−2V (dx) .(2.7)

�

As an illustration of the usefulness of the theorem, we now present a simple
derivation of the Ĺevy measure of theNIG(α, β, µ, δ) distribution. (The infinite
divisibility of NIG(α, β, µ, δ) is an immediate consequence of formula (2.4).)
Suppose first thatµ = β = 0 in which case the cumulant transform of the
distribution is

k(θ) = k(θ;α, δ) = δα− δ(α2 − θ2)1/2 .

It follows that
k′(θ) = δθ(α2 − θ2)−1/2

k′′(θ) = δα2(α2 − θ2)−3/2 .
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On the other hand, since

ek(θ) =
∫

eθxg(x;α, 0, 0, δ)dx

we find, on differentiating twice,

{k
′′

(θ) + k′(θ)2}ek(θ) =
∫

eθxx2g(x;α, 0, 0, δ)dx .

Dividing through byδ and then lettingδ tend to 0 shows, in view of (2.2), that

k′′(θ;α, 1) = α2(α2 − θ2)−3/2 = π−1α

∫
|x|K1(α|x|)eθxdx .(2.8)

Hence, by Theorem 2.1, the Lévy measure ofNIG(α, 0, 0, 1) has density

π−1α|x|−1K1(α|x|) .

A further direct application of Theorem 2.1 then shows that, for generalµ, β and
δ, the distributionNIG(α, β, µ, δ) has characteristic triplet (F , 0, χ) whereF is
absolutely continuous with density

f (x;α, β, δ) = π−1δα |x|−1 K1(α |x|)eβx(2.9)

while

χ = µ + 2π−1δα

∫ 1

0
sinh(βx)K1(αx)dx .

(A much less direct determination off (x;α, β, δ) andχ was given in Barndorff-
Nielsen (1996a).)

As simple consequences of Theorem 2.1 we have

Corollary 2.1. Suppose that U(dx) is a Lévy measure whose Laplace transform
exists in a neighbourhood of 0, and define the function k onΘ(U ) by

k(θ) =
∫

eθxU (dx) .

Then k(θ) is the cumulant function of a natural exponential family onR, and
the member of this family corresponding toθ = 0 is infinitely divisible with Ĺevy
measure U . �

Corollary 2.2. Let U(dx) be a Ĺevy measure, let V(dx) = x2U (dx) for x /= 0
and V({0}) = 0, and suppose that the Laplace transform of V(dx) exists in a
neighbourhood of 0. Furthermore, let k be a function onΘ(V ) such that

k′′(θ) =
∫

eθxV (dx) .

Then k(θ) is the cumulant function of a natural exponential family onR, and
the member of this family corresponding toθ = 0 is infinitely divisible with Ĺevy
measure U . �

We shall use these corollaries in Sect. 3.
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2.3 Selfdecomposability

A one-dimensional probability measureµ is said to beselfdecomposableor to
belong to Ĺevy’s classL, if for eachλ > 0 there exists a probability measureνλ
such that

φ(ζ) = φ(e−λζ)φλ(ζ)

whereφ andφλ denote the characteristic function ofµ andνλ, respectively.
Selfdecomposable distributions are infinitely divisible. On the other hand, we

have the following characterization of the classL as a subclass of the set of all
infinitely divisible laws (Lukacs 1970).

Lemma 2.1. Let U(dx) denote the Ĺevy measure of an infinitely divisible proba-
bility measure P onR. Then P is selfdecomposable if and only if U is of the form
U (dx) = u(x)dx with

u(x) = |x|−1 c(x)

where c(x) is increasing on(−∞, 0) and decreasing on (0,∞).
If u is differentiable then the above necessary and sufficient condition may be

reexpressed as

u(x) + xu′(x) ≤ 0 .(2.10)

�

The following theorem is due to Jurek and Vervaat (1983) (cf. also Jurek and
Mason 1993).

Theorem 2.2. A random variable x has lawµ ∈ L if and only if x has a repre-
sentation of the form

x =
∫ ∞

0
e−t dz(t)

where z(t) is a homogeneous Lévy process.
In this case the Ĺevy measures U and W of x and z(1) are related by

U (dx) =
∫ ∞

0
W(et dx)dt .(2.11)

�

From (2.11) we find that forx > 0

U ([x,∞)) =
∫ ∞

0
W(et [x,∞))dt

=
∫ ∞

1
s−1W([sx,∞))ds .

ProvidedW([x,∞)) is continuous inx on (0,∞) this equation may be rewritten
as
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U ([x,∞)) =
∫ ∞

x
s−1W([s,∞))ds .

A similar conclusion holds, of course, forU ((−∞,−x]).
Now suppose thatU and W are absolutely continuous with respect to

Lebesgue measure, with densitiesu andw. Then, forx > 0,

u(x) = x−1W([x,∞))

and it follows thatu is differentiable forx > 0 and that

w(x) = −u(x)− xu′(x) ;(2.12)

a similar argument forx < 0 shows that (2.12) holds for allx /= 0. (Compare
with inequality (2.10) in Lemma 2.1.)

2.4 Ornstein-Uhlenbeck processes

A stochastic processx(t) is said to be of Ornstein-Uhlenbeck type if it satisfies
a stochastic differential equation of the form

dx(t) = −λx(t)dt + dz(t) .(2.13)

wherez(t) is a homogeneous Lévy process, which we refer to as thebackground
driving Lévy process, abbreviated (BDLP). For concreteness we takez(t) to be
cadlag. Assumingλ > 0 we have that (2.13) is solved by

x(t) = e−λt x(0) +
∫ t

0
e−λ(t−s)dz(s) .(2.14)

Let

u(t) =
∫ t

0
e−λ(t−s)dz(s)

so that (2.14) takes the form

x(t) = e−λt x(0) + u(t).(2.15)

Suppose we are given a one-dimensional distributionD , for instance one of
the NIG distributions, and suppose we wish, for eachλ > 0, to construct an
Ornstein-Uhlenbeck type processx(t) that is stationary and such that the law of
x(t) is D . Note that when this is possible,D must – in view of (2.15) – be
selfdecomposable. Furthermore, eachλ has associated with it a BDLP which we
denotez(λ)(t).

The following theorem, which combines results from Sect. 3 of Barndorff-
Nielsen et al. (1995), gives a sufficient condition for the construction. Before
stating the theorem we note that if the solution (2.14) is stationary and square
integrable and if E{x(0)} = E{z(1)} = 0 then the correlation function ofx(t) is
of the formρ(u) = exp(−λu).
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Theorem 2.3. Let c(ζ) be a differentiable and selfdecomposable characteristic
function and letκ(ζ) = logc(ζ). Suppose thatζκ′(ζ) is continuous at 0 and
let φ(λ)(ζ) = λζκ′(ζ) for a λ > 0. Thenexp{φ(λ)(ζ)} is an infinitely divisible
characteristic function.

Furthermore, letting z(λ)(t) be the homogeneous Lévy process for which
z(λ)(1) has characteristic functionexp{φ(λ)(ζ)} and defining the process x(t) by
dx(t) = −λx(t)dt+dz(λ)(t) we have that a stationary version of x(t) exists, with
one-dimensional marginal distribution given by the characteristic function c(ζ).
�

In the setting of Theorem 2.2, sincez(λ)(t) is a homogeneous Lévy process
andφ(λ)(ζ) = λφ(1)(ζ) we have in fact that the processz(λ)(t) is identical in law
to the processz(1)(λt). Thus, abbreviatingz(1)(t) to z(t) we have

{z(λ)(t)}t≥0
d
= {z(λt)}t≥0 .(2.16)

This implies that

x(t)
d
= e−λt x(0) + e−λt

∫ λt

0
esdz(s)

with corresponding stochastic differential equation

dx(t) = −λx(t)dt + dz(λt) .

In view of the relation (2.16) we will henceforth, with a slight abuse of termi-
nology, refer toz(t) (rather thanz(λ)(t)) as thebackground driving Ĺevy process
(BDLP) for the Ornstein - Uhlenbeck processx(t), whatever the value of the
regression parameterλ.

An application of Fubini’s theorem for stochastic integrals (cf. for instance
Protter 1992; p. 159) shows that the cumulative process

s(t) =
∫ t

0
x(s)ds

may be represented as

s(t) = λ−1{z(λ)(t)− x(t) + x(0)} .(2.17)

Specifically,

s(t) =
∫ t

0
x(s)ds

=x(0)
∫ t

0
e−λudu +

∫ t

0
e−λudu

∫ u

0
eλsdz(λ)(s)

=λ−1(1− e−λt )x(0) +
∫ t

0
eλsdz(λ)(s)

∫ t

u
e−λudu

=λ−1

{
(1− e−λt )x(0) + z(λ)(t)−

∫ t

0
e−λ(t−s)dz(λ)(s)

}
=λ−1{z(λ)(t)− x(t) + x(0)} .
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Furthermore, in view of (2.16) we have

{s(t)}t≥0
d
= {λ−1(z(λt)− x(t) + x(0))}t≥0 .(2.18)

The stationary process{x(t)}t≥0 can be extended to a stationary process on
the whole real line. To do this we introduce an independent copy of the process
z(λ)(t) but modify it to be caglad, thus obtaining a process ¯z(λ)(t). Now, for t < 0
definez(λ)(t) andx(t) by z(λ)(t) = z̄(λ)(−t) and

x(t) = e−λ|t|x(0) + e−λ|t|
∫ 0

t
eλ|s|dz(λ)(s) .

Then {z(λ)(t)}t∈R is a homogeneous, cadlag Lévy process and{x(t)}t∈R is a
strictly stationary process of Ornstein-Uhlenbeck type.

2.5 Long range dependence, selfsimilarity and selfdecomposability

A stationary processx(t) is said to belong range dependentif its correlation
function r is asymptotically, asτ →∞, of the form

r (τ ) ∼ L(τ )τ−2(1−H )(2.19)

for some constantH with 1
2 < H < 1 and some slowly varying functionL.

Closely related to long range dependence is the concept(s) of selfsimilarity.
To indicate the relation, suppose for a moment thatx is a discrete time process
with correlation function satisfying (2.19). Then for everym = 1, 2, ... the derived
sum process

xm(t) = x(t + 1) + ... + x(t + m)

has, exactly or approximately for largeτ , the same correlation function asx itself,
and in this sense the processesx(m) are exactly or approximately selfsimilar. The
correlation functions are exactly equal if

r (τ ) =
1
2

{
(τ + 1)2H − 2τ2H + (τ − 1)2H

}
.(2.20)

The heuristic idea is that the cumulative sum processs(t) = x(1) + ... + x(t) will
exhibit the same correlation structure whether looked at ‘close up’ or ‘from a
larger distance’.

If (2.20) holds then, writingσ2 for the variance ofx(t), we have that the
variance ofs(t) satisfies

var{s(t)} = σ2t2H(2.21)

exactly, for anyH ∈ (0, 1). In general, (2.21) is valid asymptotically.
Any continuous time processs(t) is said to beexactly selfsimilarwith expo-

nentH if for any positivec the processsc(t) = s(ct) follows the same probabilis-
tic law as the processcH s(t). Of most interest, both theoretically and practically,
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among such processes are those for which the increments are stationary, and
examples of these are generally difficult to come by, see for instance Samorod-
nitsky and Taqqu (1994) and references given there. Dropping the requirement
of stationary increments opens a plethora of possibilities. In particular, to any
homogeneous Ĺevy processz(t) with z(t) selfdecomposable for allt and to any
H > 0 there is associated a, uniquely determined, exactly selfsimilar process
zH (t) which is cadlag with independent increments and such thatz(t) andzH (t)
have the same distribution at timet = 1 (Sato 1991). Furthermore, for every
t ∈ R+ the law of zH (t) is selfdecomposable. In fact, another result of Sato
(1991) says that ify(t), t ≥ 0, is a stochastically continuous selfsimilar process
with independent increments andy(0) = 0 a.s. then the distribution ofy(t) is
selfdecomposable for everyt .

2.6 Processes of type G

Processes{y(η) : η ∈ H } of type G were defined and studied in Rosinski
(1991). HereH is an arbitrary index set. The most basic of these processes are
of the form

y(η) =
∫ 1

0
f (η, s)dz(s)(2.22)

wherez(s) is a homogeneous Lévy process having the property thatz(1) may be
represented asz(1) = σε whereσ > 0 andε are independent random variables
with σ2 infinitely divisible andε being standard normal. Random variables having
such a representationσε are said to be oftype G. The mixture representation
of the NIG distributions mentioned in Subsect. 2.1 means, in particular, that
NIG(α, 0, 0, δ) is of type G for any values ofα andδ. For simplicity we assume
henceforth that sup{x : P(σ ≥ x) = 1} = 0. Further, we define{σ2(s) : s ∈
[0, 1]} as the homogeneous Lévy process for whichσ2(1)

d
= σ2.

By Marcus (1987; Lemma 2.2) and Rosinski (1991), for any such type G
relation (2.22) the processesσ2(s), z(s) andy(η) are representable in law as

{σ2(s) : s ∈ [0, 1]} d
= {

∞∑
i =1

R2(Ti )1[0,s] (ri ) : s ∈ [0, 1]} ,(2.23)

{z(s) : s ∈ [0, 1]} d
= {

∞∑
i =1

wi R(Ti )1[0,s] (ri ) : s ∈ [0, 1]}(2.24)

and

{y(η) : η ∈ H } d
= {

∞∑
i =1

wi R(Ti )f (η, ri ) : η ∈ H } .(2.25)

In these expressions,{wi }, {Ti } and{ri } are three independent sequences of in-
dependent random variables with thewi standard normal, theri uniform on [0, 1]
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and T1 < T2 < ... < Ti < ... the sequence of arrival times of a (independent)
Poisson process of unit rate. Furthermore, the functionR is defined in terms of
the Lévy measure,H say, ofσ2 by R(t) > 0 and

R2(t) = inf{x > 0 : H ((x,∞)) ≤ t}(2.26)

for all t > 0. All three series, in (2.23), (2.24) and (2.25), converge a.s.

3 Ornstein-Uhlenbeck processes of NIG and IG type

The NIG(α, β, µ, δ) distribution is selfdecomposable. This was shown by Hal-
green (1979) and may also be seen from the expression (2.9) for the Lévy density
of NIG(α, β, µ, δ) using Lemma 2.1 and the standard formulae for the Bessel
functionsKν

Kν(x) = K−ν(x)

K ′
ν(x) = −Kν−1(x)− νx−1Kν(x)(3.1)

Kν+1(x) = 2νx−1Kν(x) + Kν−1(x).

It follows then from the results in Subsect. 2.4, in particular Theorem 2.3, that
there exists a stationary Ornstein-Uhlenbeck process{x(t)}t∈R such thatx(t) ∼
NIG(α, β, µ, δ) for every t ∈ R, whatever the value of the regression parameter
λ. We shall refer to this process as the NIG Ornstein-Uhlenbeck process. To
study the character of the process we assume, for simplicity thatµ = 0 and, since
x(t) ∼ NIG(α, β, 0, δ) implies −x(t) ∼ NIG(α,−β, 0, δ), we further restrict
attention to the caseβ ≥ 0.

Similarly, we shall consider the character of the stationary inverse Gaus-
sian Ornstein-Uhlenbeck process, the existence of which is also guaranteed by
Theorem 2.3.

3.1 BDLP of the NIG O-U and IG O-U processes

We proceed to derive the Lévy measure of the BDLP{zt}t∈R corresponding to the
NIG Ornstein-Uhlenbeck process, using the relation (2.12). From the formulae
(2.9) and (3.1) we find

w(x) =− u(x)
(3.2)

+ π−1δα
{|x|−1K1(α|x|)− αsign(x)K ′

1(α|x|)− βsign(x)K1(α|x|)} eβx

=π−1δα
[{| x |−1 −βsign(x)

}
K1(α|x|) + αK0(α|x|)] eβx

=(1− βx)u(x) + π−1δα2K0(α|x|)eβx .

It is illuminating to rewrite this as
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w(x) =π−1δα2[(1− ρ){α |x|−1 K1
(
α |x|)(3.3)

+ K0
(
α |x|)} + ρD(α |x|)]eραx

=(1− ρ){ū(αx) + ū0(αx)} + ρū1(αx)

whereρ = β/α ≥ 0 and

ū(x) = π−1δα2 |x|−1 K1(|x|)eρx

ū0(x) = π−1δα2K0(|x|)eρx(3.4)

ū1(x) = π−1δα2D(x)eρx

the functionD(x) being defined by

D(x) = {|x|−1 − sign(x)}K1(|x|) + K0(|x|) .(3.5)

Using the relations (3.1) one finds thatD(x) is increasing on (−∞, 0) and de-
creasing on (0,∞) and sinceD(x) → 0 for x → ±∞ we haveD(x) > 0. Note
also that ¯u(αx) = u(x).

It follows that the BDLP of the NIG Ornstein–Uhlenbeck process is a sum
of three independent homogeneous Lévy processes, i.e.

z(t) = y(t) + p(t) + q(t)(3.6)

where the Ĺevy densities corresponding toy(t), p(t) and q(t) at the timet = 1
are, respectively, (1− ρ)ū(αx), (1− ρ)ū0(αx), andρū1(αx). The last process is
of course degenerate in caseβ = 0.

From the above formulas we have immediately thaty(t) is the NIG Ĺevy
process such thaty(1)∼ NIG(α, β, 0, (1− ρ)δ).

In contrast toy(t), neitherp(t) nor q(t) is selfdecomposable, as may be seen
from Lemma 2.1 and the formulae (3.1).

To determine the character of the processp(t) precisely we shall invoke
Corollary 2.1. From Gradshteyn and Ryzhik (1965; formula 6.611.9) we have
for 0≤ |s| < γ∫ ∞

0
e−sxK0(γx)dx = (γ2 − s2)−1/2 arg cos(s/γ) .(3.7)

Thus, by Corollary 2.1, the cumulant generating function ofp(1) is given by
k0(θ)− k0(0) where

k0(θ) =(1− ρ)π−1δα2
∫

R\{0}
eθxK0(α|x|)eβxdx(3.8)

=(1− ρ)δα2{α2 − (θ + β)2}−1/2

for 0≤̀ |θ + β| < α.
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Now, consider the Laplace transform ofp(1), i.e.L0(θ) = exp{k0(θ)− k0(0)}
and let

ξ = {(1− ρ)/(1 +ρ)}1/2δα .

By Taylor expansion we find

L0(θ) = e−ξ
∞∑
ν=0

ξν

ν!
[{1− (θ + β)/α}/(1− ρ)1/2]−ν/2

×[{1 + (θ + β)/α}/(1 +ρ)1/2]−ν/2(3.9)

which shows thatp(1) is of the form

p(1) =
1
2
α−1(1− ρ2)−1/2

N∑
i =1

(u2
i − u′2i )(3.10)

with N denoting a Poisson variate with meanξ and theui andu′i being indepen-
dent standard normally distributed and independent ofN .

An equally explicit representation is not available for the processq(t). To
study q(t) we invoke Corollary 2.2 according to whichq(1) has a cumulant
generating function of the formg(θ)− g(0) whereg(θ) satisfies

g′′(θ) = ρπ−1δα2
∫

R\{0}
eθxx2D(αx)eβxdx .

In view of (3.5), together with (3.4) and (3.8), we have thatg(θ) is the sum of
three terms

g(θ) = h(θ) + h0(θ) + h1(θ)

where
h(θ) = ρδ{α2 − (θ + β)2}1/2

h1(θ) = ρδα2{α2 − (θ + β)2}−1/2

and

h′′0 (θ) =ρπ−1δα2

{∫ 0

−∞
eθxx2K1(α |x|)eβxdx −

∫ ∞

0
eθxx2K1(αx)eβxdx

}

=− 2ρπ−1δα2
∫ ∞

0
sinh{(θ + β)x}x2K1(αx)dx .

Now, sincexK1(x) is integrable near 0 (K1(x) ∼ x−1 asx ↓ 0), we must have

h′0(θ) = −2ρπ−1δα2
∫ ∞

0
cosh{(θ + β)x}xK1(αx)dx .(3.11)

By (3.1) we haveK1(x) = −K
′
0(x) and hence, by partial integration, we find
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0
esxxK1(αx)dx =α−1

∫ ∞

0
(sx + 1)K0(αx)esxdx

=α−1 ∂

∂s

{
s
∫ ∞

0
K0(αx)esxdx

}
and from this it follows, by (3.7) and (3.11), that

h0(θ) = −ρδα(θ + β){α2 − (θ + β)2}−1/2 .

Collecting terms we obtain

g(θ) =ρδ{α2 − (θ + β)2}−1/2[−{α2 − (θ + β)2} − α(θ + β) + α2]

=− ρδ{α2 − (θ + β)2}−1/2(θ + β){α− (θ + β)}
=− ρδ(θ + β){(α− θ − β)/(α + θ + β)}1/2 .

It does not seem possible from this to give an elementary description of the
distribution of q(1). In particular, the procedure used to derive (3.10) does not
work in the present case.

All in all we have shown

Theorem 3.1. The BDLP z(t) for the normal inverse Gaussian Ornstein-
Uhlenbeck process with parameters(α, β, 0, δ) is, for β ≥ 0, representable as the
sum of three independent homogeneous Lévy processes: z(t) = y(t) + p(t) + q(t).
The first process y(t) is a normal inverse Gaussian Lévy process, with parameters
(α, β, 0, (1− ρ)δ), and the second has the form

p(t) =
1
2
α−1(1− ρ2)−1/2

Nt∑
i =1

(u2
i − u′2i )(3.12)

where Nt denotes a Poisson process with rate[{(1 − ρ)/(1 + ρ)}1/2δα]−1 and
the ui and u′i (i = 0, 1, 2, ...) are independent standard normally distributed and
independent of the process Nt . Finally, the Laplace transform Eexp(θq(t)) of q(t)
is

exp
(

tρδ
[
β{(α− β)/(α + β)}1/2

−(θ + β){(α− θ − β)/(α + θ + β)}1/2
])

.(3.13)

�

The same kind of analysis as that given above for the normal inverse Gaussian
Ornstein-Uhlenbeck process can be applied to theIG(δ, γ) distribution. The Ĺevy
densityIG(δ, γ) is

u(x) = (2π)−1/2δx−3/2e−γ
2x/2 ,

and it follows thatw(x), as given by (2.12), takes the form
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w(x) = (2π)−1/2 δ

2

{
x−1 + γ2

}
x−1/2e−γ

2x/2.(3.14)

This implies that the processz(t) driving the inverse Gaussian Ornstein-Uhlen-
beck process (i.e. the stationary Ornstein-Uhlenbeck type process havingIG(δ, γ)-
distributed one-dimensional marginals) is a sum of two independent processes,
z(t) = y(t)+p(t), wherey(t) is an inverse Gaussian Lévy process with parameters
δ/2 andγ for y(1), while p(t) is of the form

p(t) = γ−2
Nt∑
i =1

u2
i(3.15)

with Nt a Poisson process of rate{δγ/2}−1 and theui being independent standard
normal and independent of the processNt .

3.2 Likelihood analysis

We now consider some questions concerning likelihood analysis for discretely
observed stationary NIG and IG processes of Ornstein-Uhlenbeck type. Suppose
x(t) is such a process and that it has been observed at the timest = 1, ..., n.

First, let x(t) be the NIG Ornstein-Uhlenbeck process. In a financial context
it will often be reasonable, at least initially, to assume that the parametersµ
andβ are both 0 and we do this here. An explicit expression for the likelihood
function of the parametersα, δ and λ, where λ is the regression parameter,
cf. formula (2.13), is not available. However, the likelihood function can be
accurately calculated, as will now be discussed.

Sincex(t) satisfiesx(t + 1) = e−λt x(t) + z̄(t), where

z̄(t) = e−λ−λt
∫ t+1

t
eλsdz(λs)

and the BDLPz(t) is described in Theorem 3.1, the problem lies in determining
the probability density function of ¯z(t) at least up to a constant not depend-
ing on (α, δ, λ), and sincez(t) has stationary increments we need just consider
calculation of the probability density function of ¯z(0) or, equivalently, ofeλz̄(0).

Now, let z∗(t), t ∈ [0, 1], be the process

z∗(t) =
∫ t

0
eλsdz(λs) .

Thenz∗(1) = eλz̄(0) andz∗(t) is Markovian, in fact a process with independent
increments. The density function ofz∗(1) at an arbitrary pointx can therefore
be calculated as

p(x;α, δ, λ) = E{p(x;α, δ, λ | z∗(τ ))}(3.16)
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the expectation being over the values of the processz∗(·) at an, arbitrarily chosen,
time τ . If τ is taken close to 1 we have approximately, lettingε = 1− τ ,

p(x;α, δ, λ | z∗(τ ))

.
=
∫ ∞

−∞
ν(x − z∗(τ )− y; eλα, z∗(τ ), e−λλεδ)Ξε(dy;α, δ, λ).(3.17)

Here ν(·;α, µ, δ) denotes the density function of theNIG(α, 0, µ, δ) law and
Ξε(·;α, δ, λ) is the distribution function of a random variable of the form

eλα−1
N∑

i =1

(u2
i − u′2i )/2

whereN is a Poisson variate of meanλεδα and theui and u′i are independent
standard normal and independent ofN (cf. Theorem 3.1). Numerical determina-
tion of the integral in formula (3.17) is quite feasible, especially for small values
of ε. In this connection the following two distributional results are helpful:

(u2
1 − u′21 )/2∼ π−1K0(|x|)(3.18)

(u2
1 + u2

2 − u′21 − u′22 )/2∼ 1
2

e−|x|(3.19)

where the right hand sides are the probability densities of the random variables on
the left. Formula (3.18) follows from formula 3.364.3 in Gradshteyn and Ryzhik
(1965). Furthermore, forn → ∞ the distribution ofΣn

1 (u2
i − u′2i )/2 rapidly

approaches normality.
The remaining problem is then the calculation of the expectation in (3.16)

which can be carried out approximately by approximate simulation ofz∗(τ ) as
follows.

Let n be a large integer and let the processesy(t) andp(t) be as in Theorem
3.1 (with µ = β = 0). The value of the processz∗(·) at timeτ is approximately
given by

z∗(τ )
.
=

n∑
i =1

eλi/n(gi + hi )(3.20)

wheregi = y(λτ i /n) − y(λτ (i − 1)/n) andhi = p(λτ i /n)− p(λτ (i − 1)/n). By
the characterization ofyt andpt given in Theorem 3.1, the random variablesgi

are i.i.d. normal inverse Gaussian and thehi are i.i.d. and compound Poisson of
the form

1
2
α−1

Nλτ/n∑
i =1

(u2
i − u′2i ) .(3.21)



Processes of normal inverse Gaussian type 59

To simulate an NIG random variableg one may use the representationg = σε
whereσ and ε are independent withσ2 IG-distributed andε standard normal.
A simple procedure for simulating IG variates has been given by Michael et al.
(1976); this is based on simulation of standard normal variates. Simulation of
(3.21) can also be carried out simply from independent standard normal variables.

An alternative, and in some ways preferable, approach to approximate sim-
ulation of z∗(τ ) is to use the series representation of processes of type G. By
Theorem 3.1 we have, sinceβ has been assumed to be 0, that

z∗(τ ) =
∫ τ

0
eλsdy(s) +

1
2
α

Nλτ∑
i =1

exp(T ′i )(u2
i − u′2i )(3.22)

whereT ′1 < T ′2 < ... < T ′i < ... are the arrival times of the Poisson processNt

whose rate isδα. Furthermore,y(t) is theNIG(α, 0, 0, λδ) Lévy process and, as
noted in Subsect. 2.6,y(t) is of type G. Hence, using (2.25), we find that the
integral in (3.22) satisfies∫ τ

0
eλsdy(λs) ∼

∞∑
i =1

wi R(Ti ) exp(λri )I[0,τ ] (ri )(3.23)

with {wi }, {Ti } and{ri } as in formula (2.25) and the functionR determined by
(2.26) with H being the Ĺevy measure of the inverse Gaussian lawIG(λδ, α).
The series on the right hand side of (3.23) converges very rapidly.

To determine the likelihood function the approximate simulation ofz∗(τ )
based on (3.20) or on (3.22-3) has to be carried out for a range of values of
(α, δ, λ). However, as follows from the above, one and the same set ofN (0, 1)
pseudo-variates can be used in all cases, and this reduces the computation time
considerably. Furthermore, in selecting a suitable range of values of (α, δ, λ) it is
requisite to have a good initial estimate of (α, δ, λ); for most purposes it should
suffice to estimateα and δ by treating the data as if they constituted an i.i.d.
sample from aNIG(α, 0, 0, δ) distribution and estimatingλ from the empirical
correlation coefficient.

The technique outlined here applies equally to the stationary IG Ornstein-
Uhlenbeck process, using results for that process given above.

It should be noted that the technique for likelihood calculation discussed
here is partly similar to a method introduced by Pedersen (1995a) for maximum
likelihood estimation under discretely observed stochastic processes determined
by stochastic differential equations; see also Pedersen (1995b).

4 (Quasi) long range dependent NIG processes

As indicated in the Introduction, series of logarithmic asset returns generally
exhibit correlation patterns in the character of moderate to long range dependence,
a feature that we shall refer to as(quasi) long range dependenceor QLRD, for
short. As a possible approach to modelling this feature as well as the typical



60 O.E. Barndorff-Nielsen

distributional behaviour, in this section we construct classes of stationary QLRD
processes whose one-dimensional marginal distributions are either normal inverse
Gaussian or inverse Gaussian. The NIG and IG Ornstein-Uhlenbeck processes
discussed in Sect. 3 may be used as building blocks for such QLRD processes.

Let x(k)(·), k = 1, 2, ... , be a sequence of independent and stationary processes
such that for allk andt ∈ R the distribution ofx(k)(t) is normal inverse Gaussian
with parameters (α, β, 0, δk). For instance,x(k)(·) could be of Ornstein-Uhlenbeck
type.

Theorem 4.1. Suppose thatδk satisfies

δk ∼ const. · k−1−2(1−H )(4.1)

for k →∞ and some H∈ (0, 1), and letδ = Σ∞
k=1δk.

The process

x(t) =
∞∑
k=1

x(k)(k−1t)(4.2)

is stationary and welldefined as an L2 limit, and the marginal distribution of x(t)
is NIG(α, β, 0, δ).

Furthermore, if the processes x(k)(·) all have the same correlation function r(·)
and if r(·) is continuous and r(τ ) → 0 for τ → ∞ then the correlation function
r̄ of x(·) satisfies

r̄ (τ ) ∼ L(τ )τ−2(1−H )(4.3)

for some slowly varying function L. Thus, if1
2 < H < 1 the process exhibits long

range dependence with exponent H. �

Proof. Since the variance ofx(k)(k−1t) is of the form

var{x(k)(k−1t)} = {α(1− ρ2)3/2}−1δk

we have thatx(·) is welldefined in the sense ofL2 convergence. Thatx(t) is
NIG(α, β, 0, δ) then follows from the convolution property of the normal inverse
Gaussian distribution.

The correlation function ofx(t) is of the form

r̄ (τ ) = δ−1
∞∑
k=1

δkr (k−1τ )

from which the asymptotic behaviour (4.3) may be derived by a simple calcula-
tion. �
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The same conclusions as reached above for NIG processes will hold for an IG
process of the form (4.2) with thex(k)(t) as independent and stationary processes
such thatx(k)(t) ∼ IG(δk , α), in which case we havex(t) ∼ IG(δ, α).

Ordinary likelihood analysis of these QLRD processes does not seem feasible,
but the Whittle procedure, which is based on the smoothed periodogram, is
likely to open the way for a quasi-likelihood approach. See Heyde (1997) for a
discussion of the Whittle procedure in the context of estimating functions.

A comprehensive empirical study, Guillaume et al. (1994) (see also Müller
et al. 1990, 1993; Schnidrig and Ẅurtz 1994), indicates that for free floating
currencies on the foreign exchange market the logarithmic price changes closely
follow a scaling law with exponentH = 0.58. More specifically, thinking for
instance of the USDDEM exchange rate as this has developed over a period
[0,T], let qi (∆t) (where∆t > 0) denote the change in logarithmic price over
the time interval [(i − 1)∆t , i ∆t ], i = 1, 2, .... Then, lettingn = T/∆t (which,
for simplicity, we assume to be an integer), the investigations referred to above
show that, over several orders of magnitude in time, the cumulative sums of the
absolute values

Qn(∆t) =| q1(∆t) | + | q2(∆t) | +...+ | qn(∆t) |(4.4)

very nearly satisfy a linear relationship of the form

logE{Qn(∆t)} = H log∆t + const. .(4.5)

Assuming that this reflects a full scaling law, in the sense that{q1(t)}t∈R+ is a
selfsimilar process with exponentH , it seems of some interest to consider mod-
elling of observed sequences of the formq1(∆t), q2(∆t), ..., qn(∆t) by theoretical
sequencess(∆t), s(2∆t)− s(∆t), ..., s(n∆t)− s((n − 1)∆t) where

s(t) =
∫ t

0
x(s)ds

and wherex(t) is a stationary process of the form discussed in Theorem 4.1 with
H = 0.58 (cf. formula (2.21)). A discussion of this will be given elsewhere.

5 A selfsimilar NIG process with independent increments

In connection with the results on selfsimilarity and selfdecomposability men-
tioned in Subsect. 2.5, it seems worth noting that the exactly selfsimilar process
zH (t) associated, in the sense of Sato (1991), to the NIG Lévy processz(t) with
parameters (α, β, µ, δ) also has the property that its marginal distributions are
normal inverse Gaussian. More specifically, while

z(t) ∼ NIG(α, β, tµ, tδ)

it can be shown that, in terms of the invariant parameters ¯α and β̄, the process
zH (·) satisfies
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zH (t) ∼ NIG[ᾱ, β̄, tHµ, tH δ] .

In fact, by Proposition 4.1 in Sato (1991) the Lévy measureυH
t of zH (t) is related

to the Ĺevy measureυt of z(t) by the formula

υH
t (B) =

∫
1B(tH x)υ1(dx)(5.1)

holding for all Borel setsB. If υt has a density,ut say, with respect to Lebesgue
measure then so hasυH

t and then (5.1) may be recast as

uH
t (x) = t−H u1(t−H x)

with uH
t denoting the density ofυH

t . Specializing to the case wherez(t) is the NIG
Lévy process with parameters (α, β, µ, δ) we haveu1(x) = π−1δα |x|−1 K1(α |x|)
×eβx (cf. formula (2.9)) and hence

uH
t (x) = π−1δα |x|−1 K1(α

∣∣t−H x
∣∣) exp(βt−H x) .

This is the Ĺevy density ofNIG(t−Hα, t−Hβ, tHµ, tH δ) = NIG[ᾱ, β̄, tHµ, tH δ].
It is an open question whether there exist nontrivial selfsimilar processes with

stationary normal inverse Gaussian increments.

6 Direct superposition of Ornstein-Uhlenbeck NIG and IG processes

Superposition of Ornstein-Uhlenbeck or autoregressive processes offers one ap-
proach to parsimonious modelling of marginal laws and long-range-like depen-
dence. In the context of turbulence this was discussed in Barndorff-Nielsen et
al. (1990, 1993), see also Barndorff-Nielsen et al. (1995). Here we shall briefly
consider such superpositions in relation to the normal inverse Gaussian and the
inverse Gaussian laws, partly as a preparation for the following section. In Sect. 4
we also considered superpositions of stationary NIG processes, in particular pro-
cesses of the Ornstein-Uhlenbeck type, but the character of those superpositions
is different from that discussed below.

Let x(i ), i = 1, ...,m, be independent and stationary NIG Ornstein-Uhlenbeck
processes with regression parametersλi , i = 1, ...,m, and let x = x(1) + ... +
x(m). Assuming that the parameters of the normal inverse Gaussian distribu-
tion of x(i )(t) are (α, β, µi , δi ) we have thatx is stationary and thatx(t) ∼
NIG(α, β, µ, δ) whereµ = µ1 + ... + µm andδ = δ1 + ... + δm.

In the context of financial time series it will often be reasonable to take
µ1 = ... = µm = 0 andβ1 = ... = βm = 0 and we assume henceforth that this is the
situation. Further, for simplicity, we restrict attention to the casem = 2. Thus
x = x(1) + x(2) ∼ NIG(α, 0, 0, δ) and the correlation ofx(s) andx(t), for s ≤ t is

e−(t−s)λ1 δ̄1 + e−(t−s)λ2 δ̄2(6.1)

whereδ̄i = δi /δ.
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Similarly, if x(1) and x(2) are independent and stationary IG Ornstein-
Uhlenbeck processes with parameters (δ1, γ, λ1) and (δ2, γ, λ2), respectively, and
if x = x(1) + x(2) and δ = δ1 + δ2 then x is a stationary process havingIG(δ, γ)-
distributed one-dimensional marginals and correlation function (6.1).

The likelihood function for a model of this kind is not explicitly available.
However, by viewing the model in a state space framework the likelihood be-
comes accessible by Markov Chain Monte Carlo procedures of the type discussed
by Geyer (1997) and Shephard and Pitt (1997). A more detailed discussion will
be given elsewhere.

It may, incidentally, be noted that questions of moduli of continuity and large
increments of infinite sums of Gaussian Ornstein-Uhlenbeck processes have been
studied recently in papers by Csáki et al. (1991) and Lin (1995). See also Walsh
(1981).

7 Stochastic volatility models of NIG type

We shall discuss models in one or more dimensions, first for discrete time and
then in continuous time in a subordination setting.

7.1 Discrete time

Consider discrete time stationary processes of the form

xt = σtεt(7.1)

whereσt is positive, ε1, ε2, ..., εn, ... are independent standard normal and the
processesσt andεt are independent.

A review of work on processes of this and closely related types is given in
Shephard (1996). The key approach discussed by Shephard consists in forming

logx2
t = logσ2

t + logε2
t

and then writing logσ2
t as a linear combination of some of the previous values

of logσ2
t plus a normal error term. Shephard refers to this as thelog-normal

stochastic volatility model.
The processes to be discussed below are of a different character, both in

terms of the marginal laws and the dependence structure.
The autocorrelation function of the process (7.1) (σt andεt being independent)

is identically 0. However, unless theσt are mutually independent, both of the
processesσ2

t and x2
t have nonvanishing autocorrelations. Their autocovariance

functions are in fact identical and, denoting the autocorrelation function ofσ2
t by

r , we have
r (u) = corr{σ2

t σ
2
t+u} = q · corr{x2

t x2
t+u}

whereq is the ratio of the variances ofx2
t andσ2

t which may be written as
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Fig. 1. Cumulative autocorrelations of squared daily log returns of Deutsche Bank stock prices from
the period 2 Oct 1989–29 Dec 1995: empirical (•) and fitted theoretical (×). (Theoretical function
of the form (7.2))

q = 3 + 2E(σ2
t )2/var{σ2

t } .

Now, let σ2
t be a stationary IG process, for instance one of the IG processes

considered in Sects. 4 and 6. Then the distribution ofxt is normal inverse Gaus-
sian and quasi long range dependence may be included in the model. The full law
of the processxt is however different from that of the stationary NIG processes
in Sects. 3, 4 and 6.

Suppose, in particular, thatσ2
t is a superposition,σ2

t = τ0t + τ1t , of two
IG Ornstein-Uhlenbeck processes, as in Sect. 6, and consider the cumulative
autocorrelation function

r ∗(m) = r (1) + ... + r (m)

which is then (cf. formula (6.1)) of the form

r ∗(m) = wρ0(1− ρm
0 )/(1− ρ0) + (1− w)ρ1(1− ρm

1 )/(1− ρ1)(7.2)

for a w ∈ [0, 1] andρ0, ρ1 ∈ (0, 1). An illustration is provided by Fig. 1 which
shows the empirical cumulative autocorrelation function for the squares of the
daily log returns of Deutsche Bank stock prices, calculated from the data corre-
sponding to the period 2 October 1989–29 December 1995, the total number of
log returns being 1562. The figure also shows the theoretical cumulative autocor-
relation functionq−1r ∗(m) fitted to the data by a nonlinear regression procedure,
the fitted parameter values beingq = 4.75,w = 0.921,ρ0 = 0.544 andρ1 = 0.995.
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A possible interpretation is thatτ0t expresses an overall volatily of the market
whereasτ1t is specific to the particular asset considered (Deutsche Bank, in the
present case). Incidentally, the present type of model is reminiscent of an exten-
sion of the log-normal stochastic volatility model indicated briefly in Subsect.
1.3.4 of Shephard (1996).

As a multivariate generalisation, letet = (e1t , . . . , emt) be anm-dimensional
time series which may be thought of roughly as representing the joint price
development ofm stocks that would have prevailed if there were no stochastic
volatility effects. More specifically, we assume thatet is m-dimensional normal
with mean 0 and a constant correlation matrixC and that theet are independent
over time. The variances of the coordinates ofet are however allowed to depend
on t , and we denote the variance ofeit by σ2

it . Next we allow theσ2
it to be

random variables. To reflect the changed character of the price process we shall
write xt instead ofet . We suppose thatσ2

t = (σ2
1t , . . . , σ

2
mt) is a stationary process

whose one-dimensional marginals are IG-distributed. In particular, we may take
σ2

it , i = 1, ...,m, to be of the form

σ2
it = τ0t + τit

whereτ0t , τ1t , . . . , τmt are independent and stationary IG processes of Ornstein-
Uhlenbeck type with regression parametersλ0, λ1, . . . , λm and such that

τit ∼ NIG(δi , α)

i = 0, 1 . . . ,m, and then

σ2
it ∼ IG(δ0 + δi , α) .

As above, one may think ofτ0t as expressing the volatily of the market in an
overall sense whereasτit is specific to the i-th asset. The processxt is repre-
sentable in stochastic volatility form as

xt = (x1t , ..., xmt) = (σ1tε1t , ..., σmtεmt)

where theεt = (ε1t , ..., εmt) are i.i.d. normal with mean 0, variance matrixC and
such that the processεt is independent of the processσ2

t .

Fitting and analysis by likelihood of the multivariate model proposed here
appears feasible via state space considerations and Markov Chain Monte Carlo
techniques.

An alternative type of discrete time stochastic volatility NIG models, which
can be viewed as being of the form (7.1) but where the processesσ and ε are
not independent, have been discussed in Barndorff-Nielsen (1996a). In contrast
to the above models, those in the paper cited allow an explicit expression of the
likelihood function; furthermore, they have some similarity to ARCH models.
On the other hand, the one-dimensional marginal distributions are not normal
inverse Gaussian.
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7.2 Continuous time and subordination

In continuous time, modelling of stochastic volatility by subordination has consid-
erable appeal. As an indication of the potentialities relating to NIG laws, suppose
thatwt is m-dimensional Brownian motion and letεt = wt A whereA is a deter-
ministic nonsingularm× m matrix such thatC = A>A is a correlation matrix,
i.e. the diagonal elements ofC are all equal to 1. Further, letσ2

t = (σ2
1t , ..., σ

2
mt)

be a stationarym-dimensional process such thatσ2
it ∼ IG(δi , αi ), i = 1, ...,m

and t ∈ [0,∞). For instance, theσ2
it may be sumsτ0t + τit of independent IG

Ornstein-Uhlenbeck processes, as in one of the discrete time models considered
above. Now defineζt = (ζ1t , ..., ζmt) by

ζit =
∫ t

0
σ2

isds .

The subordinated process

xt = (x1t , ..., xmt) = (εζ1t , ..., εζmt) ,

which in the present context we think of as representing the processes of stock
prices, has uncorrelated increments. The increments ofxit are not NIG distributed
but the law ofxi ,t+∆t−xit will, under relatively weak conditions, be approximately
NIG to a practically useful degree of accuracy.

As to the higher order correlation structure of the increments ofxt , suppose
for simplicity thatm = 1 and, for 0< s < t < u < v, let

R̄(t − s, v − u; u − t) = cov{(xt − xs)2, (xv − xu)2} ,

the covariance of (xt − xs)2 and (xv− xu)2. Then, writingσ2
t for σ2

1t , δ for δ1 and
α for α1 (recall thatm = 1) and denoting the correlation function ofσ2

t by r (·)
we have

R̄(t − s, v − u; u − t) =E{(ζt − ζs)(ζv − ζu)} − E{ζt − ζs}E{ζv − ζu}

=
∫ t

s

∫ v

u
E{σ2

ξσ
2
η}dηdξ −

∫ t

s
E{σ2

ξ}dξ
∫ v

u
E{σ2

η}dη

=
∫ t

s

∫ v

u
V{σ2

ξ, σ
2
η}dηdξ

=(δ/α3)
∫ t

s

∫ v

u
r (η − ξ)dξdη .

In particular, ifσ2
t is the IG Ornstein-Uhlenbeck process we obtain

R̄(t − s, v − u; u − t) = (δ/α3)λ−2(1− e−λ(t−s))e−λ(u−t)(1− e−λ(v−u)) .
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8 Conclusion

Taking the normal inverse Gaussian law as a building element, the present pa-
per has explored possibilities for the construction of analytically and statistically
tractable stochastic processes that have potential for capturing key stylised fea-
tures of observational series from finance (and turbulence, cf. Subsect. 2.0). It is
intended in future work to compare the models proposed here with a variety of
data sets.

I am indebted to Zbigniew J. Jurek for drawing my attention to the result stated in Theorem 2.1,
and to Wenjiang Jiang for assistance in preparing Fig. 1. Helpful comments from the referees of the
paper are also acknowledged with thanks.
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