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Abstract. With the aim of modelling key stylized features of observational se-

ries from finance and turbulence a number of stochastic processes with normal
inverse Gaussian marginals and various types of dependence structures are dis-
cussed. Ornstein-Uhlenbeck type processes, superpositions of such processes and
stochastic volatility models in one and more dimensions are considered in particu-
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1 Introduction

In the field of finance, distributions of logarithmic asset returns can often be
fitted extremely well by normal inverse Gaussian distributions (Barndorff-Nielsen
1995, 1996a; Rydberg 1996a,b; see also Rydberg 1997). It is therefore of some
interest, using normal inverse Gaussian laws as building blocks, to construct
stochastic process models for stock prices and asset returns that capture as many
as possible of the key stylised features of financial time series.

Normal inverse Gaussian distributions have also considerable potential with
respect to modelling in quite different contexts. This is true, in particular, in
turbulence where data on velocities and velocity differences from high Reynolds

Manuscript received: September 1996; final version received: May 1997



42 O.E. Barndorff-Nielsen

number wind fields show features that are remarkably similar to stylised facts in
finance; cf. Barndorff-Nielsen (1996b) and Subsect. 2.0 below.

With these areas of application in mind, particularly those of finance, we study
in the present paper several kinds of processes with normal inverse Gaussian
marginals, in particular processes of Ornstein — Uhlenbeck type, superpositions
of such processes and stochastic volatility models in one and several dimensions.
An important aim is to find models with analytically and statistically tractable
correlation structure. The feasibility of carrying out likelihood inference under
the derived models is discussed to some extent. Models of diffusion type will
not be considered here due to the difficulty of handling temporal dependence
structures under such models.

Section 2 begins with some considerations of goals for the modelling; further,
the section contains various preliminary, mostly well known, results concern-
ing: normal inverse Gaussian distributions; infinite divisibility and exponential
families; selfdecomposability; Ornstein - Uhlenbeck type processes and their
background driving Bvy processes (BDLP); long range dependence and self-
similarity; and, finally, processes of type G. In Sect. 3 we then define the normal
inverse Gaussian Ornstein - Uhlenbeck process and we characterize the associ-
ated BDLP as a sum of three homogeneo&syprocesses, one being the normal
inverse Gaussiandvy process and the second a compound Poisson process (the
third process is present only in case the one-dimensional marginal distributions
are asymmetric). An inverse Gaussian Ornstein-Uhlenbeck process is also con-
sidered. Normal inverse Gaussian processes with (quasi) long range dependence
are constructed in Sect.4, and Sect.5 contains a brief discussion of a selfsim-
ilar inverse Gaussian process with independent increments. Section 6 discusses
modelling by superposition of Ornstein - Uhlenbeck type processes, partly as a
preparation for the final Sect.7 which concerns stochastic volatility models, in
one and more dimensions. As already indicated, questions of likelihood based
analysis are discussed for several of the models.

2 Background

This section reviews a number of — mostly well known — results, on normal
inverse Gaussian distributions, infinite divisibility and exponential families, self-
decomposability, Ornstein-Uhlenbeck type processes, long range dependence and
selfsimilarity, and processes of type G. These results are needed for the construc-
tion and study of the normal inverse Gaussian processes to be discussed in Sects. 3
to 7. First, however, some issues of statistical modelling, relating in particular to
the analysis of financial data, are discussed.

2.0 Modelling considerations

A number of characteristic features of observational series from finance and from
turbulence are summarised in Table 1. The features are widely recognized as be-
ing esssential for understanding and modelling within these two, quite different,
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subject areas. In finance the observational series concerned consist of values of
assets such as stocks or (logarithmic) stock returns or exchange rates, while in
turbulence the series typically give the velocities or velocity derivatives (or dif-
ferences), in the mean wind direction of a large Reynolds number wind field.
For some typical examples of empirical probability densities of velocity differ-
ences in large Reynolds number wind fields see, for instance, Barndorff-Nielsen
(1996b).

Table 1. Stylised features

Finance Turbulence

semiheavy tails + +
asymmetry ) +

varying activity volatility  intermittency
aggregational Gaussianity + +
quasi long range dependence  + (+)
scaling/selfsimilarity + +

The term ‘semiheavy tails’, in Table 1, is intended to indicate that the data
suggest modelling by probability distributions whose densities behave, for
+o00, as

const |x|** exp(—o |X])

for somep,,p_ € R andoy,o_ > 0.

Distributions of financial asset returns are generally rather close to being
symmetric around O, but there is a definite tendency towards asymmetry stem-
ming from the fact that the market is prone to react differently to positive as
opposed to negative returns, cf. for instance Shephard (1996; Subsect. 1.3.4).
Velocity differences in turbulence show an inherent asymmetry consistent with
Kolmogorov's modified theory of homogeneous high Reynolds number turbu-
lence (cf. Barndorff-Nielsen 1986).

A very characteristic trait of time series from turbulence as well as finance
is that there seems to be a kind of switching regime between periods of rel-
atively small random fluctuations and periods of high ‘activity’. In turbulence
this phenomenon is known as intermittency, see e.g. Frisch (1995; chapter 8) for
a thorough discussion, whereas in finance one speaks of stochastic volatility or
conditional heteroscedasticity.

By aggregational Gaussianity is meant the fact that long term aggregation of
financial asset returns, in the sense of summing the returns over longer periods,
will lead to approximately normally distributed variates, and similarly in the
turbulence context; i.e. a normal central limit effect rules. For illustrations of
this, see for instance Eberlein and Keller (1995) and Barndorff-Nielsen (1996b).

Finally in Table 1 we refer, by ‘quasi long range dependence’, to the patterns
of autocorrelations so typically observed in time series from both of the two
fields of investigation and which indicate dependence structures close to what
is defined mathematically as ‘long range dependence’. Methods for modelling
dependence behaviour of this kind are discussed in the Sects. 4, 6 and 7.
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2.1 NIG distributions

The normal inverse Gaussian distribution with parameters 1 andé is denoted
NIG(«, 8, 11, 6) and it may be defined as follows. Consider a bivariate Brownian
motion (U, v) starting at the pointy(, 0) and having constant drift vectof (v)
with v > 0, and letz denote the time at which the second componeiritits the
line v = 6 > 0O for the first time. (The coordinate processesindwv; are assumed

to be independent.) Then, letting= /(3?+~?), the law ofu, is NIG(«, 3, i, 6).
Equivalently,NIG(«, 3, i, 6) may be described as the distribution at tiine 1

of X where

(21) X = Uy +luta

with z, assumed independent of the procesdeing the inverse Gaussiaieby
process. The latter process is defined as the homogenegans frocess for

which z; d zZ, where2 means ‘distributed as’ and where the distributiorzds
the inverse Gaussian law whose probability density function is given by

(2m)~Y25e"1 2732 exp{— (8721 ++°2)/2} .

This distribution is denotetil5 (6, v). The process; is also a homogeneousiy
process, termed the normal inverse Gaussiawylprocess.
The density function of th&IG(«, 3, i, 6) distribution is

@2 goca,Bm8)=al s naC ") Kafbaa(" [ e
whereq(x) = /(1 +x?) and
(23) a(er, B, 1, 6) = n~taet Ve =5

and whereK; is the modified Bessel function of third order and index 1.
It follows immediately from (2.2) and (2.3) that the moment generating func-
tion of the normal inverse Gaussian distribution is

(2.4) M(U;a, B, p1,8) = expb{y/(0? — B2 — v/(0? — (3 +U))} + puu] .

Thus, in particular, i, ..., Xy are independent normal inverse Gaussian ran-
dom variables with common parametersand  but having individual location-
scale parameteng andé;(i = 1,...,m) thenx, = x; +... + Xy is again distributed
according to a normal inverse Gaussian law, with parameters, (i, 6.).

It is often of interest to consider alternative parametrisations of the normal
inverse Gaussian laws. In particular, letting= da and 5 = 63, we have that
a and § are invariant under location—scale changes, and wheh x, 6 con-
stitute the parametrisation of interest we shall wiES[«, 5, 1, 6] instead of
NIG(«, 3, 11, 6). In terms of this alternative parametrisation the mean and variance
of NIG[«, 8, 11, 6] are

k1= p+bp/(L— pH)t?
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and
k2 = 6%/{ad - A2}
wherep = 3/«, which is invariant sinced/a = 6_/&.
We note finally that the NIG distribution (2.2) has semiheavy tails; specifi-
cally,

-3/2 e—olx|+6x

g(X; o, B, i, 6) ~ const |X| as X — +oo,

as follows from the well known asymptotic relation for the Bessel functions
Ky (X):
K, (X) ~ /(r/2x 2™ as x — oo .
For further results relating to the normal inverse Gaussian distributions see
Barndorff-Nielsen (1995, 1996a,b) and Rydberg (1996a,b, 1997).

2.2 Infinite divisibility and exponential models

We start by recalling a few wellknown facts about infinitely divisible distribu-
tions.
A Lévy measurdJ is a positive Radon measure &\ {0} such that

/ min(L, x?)U (dx) < oo .
R\{0}

Let 24 denote the set of all &vy measures and let

Y4y ={U € %4: U is bounded
Y4, ={U € Y\ %0:/ min(1, |x|)U (dx) < oo} .
R\{0}

A centering function is a continuous bounded function R—R such that
x — {7(X) — x}/x? is also bounded.

If P is an infinitely divisible probability measure ¢hthen, given a centering
function 7, there exists a tripletd, o2, x), whereU is a Levy measureg? > 0
andy € R, such that, letting)((; x, o) = exp(;0%(* +ix(), we have

¢(C: X 02) expr\{o}{el x— 1}U (dX)
if U e 26U %4,

B X, 72) €XP f 10 €% — 1= 1 €0 ()
if Ue? \{?AoU J/Al}

(2.5) /jo e P(dx) =

Conversely, if U, o2, x) is a triplet as above then formula (2.5) determines
an infinitely divisible probability measure. The collection U, o2, ) is termed
the characteristic tripletof P.

Supposev is a nondegenerate Radon measurdRomlefine

Dw)={feR: / e™v(dx) < oo}
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and let®(v) = intD(v), the interior of D(v). We denote byM the set of all
nondegenerate Radon measuesuch thato(v) is not empty.

If v € M, we define thefull natural exponential familyF (v) generated by
v and the identity mapping oR as the class of probability measureg, 6 €
D(v), such thatPy << v and

p(x; 0) = exp{fx — k,(0)}

wherep(-; ) = dPy /dv and wherek,, (6), thecumulant functiorof the exponential
family, is given byk,(¢) = log [ e u(dx). As is well known, the cumulant
function is infinitely often differentiable o®(v). The subfamilyF (v) of F(v)
consisting of thosd?y for which § € ©(v) is called thenatural exponential
family generated by.

From Bar-Lev et al. (1992) (cf., also, Letac 1992; Sects. 1.5-6) we have

Theorem 2.1. Letv € M and let k, be the cumulant function (ﬁ(v). Then the
following three statements are equivalent:

(i) There exists an element P 5_(1)) such that P is infinitely divisible.
(i) All elements ofF (v) are infinitely divisible.
(i) There exists aV in M such tha(V) = ©(v) and

K’(6) = /R eV (dx) .

Furthermore, ford in D(v) the Levy measure kJcorresponding to fx; 6) is
given by
(2.6) Up(x) = x~2exp@x)[V (dx) — V ({0})do(dx)]

wheredy denotes the degenerate probability measure giving mass 1 to the origin
of R.
In particular, if & = 0 and V({0}) = 0 we have for x# 0

2.7) U (dx) = X2V (dx) .
O

As an illustration of the usefulness of the theorem, we now present a simple
derivation of the levy measure of th&lIG(«a, 3, i1, 6) distribution. (The infinite
divisibility of NIG(«, 5, 1, 6) is an immediate consequence of formula (2.4).)
Suppose first thaj, = § = 0 in which case the cumulant transform of the
distribution is

k(@) =k(0; a, ) = ba — 5(&2 _ 92)1/2 _
It follows that
K'(0) = 60(c® — 6%)~Y/2

K"(60) = 8a*(a® — 67) %2 .
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On the other hand, since
ek = / e g(x; , 0,0, §)dx
we find, on differentiating twice,
{K"(0) +K'(8)?}e® = / e”x2g(x; a, 0,0, §)dx .

Dividing through byé and then lettingd tend to 0 shows, in view of (2.2), that

(2.8) K"(0; o, 1) = aP(a?® — 07732 = 71'_104/ X |K1(c|x|)edx .

Hence, by Theorem 2.1, thetlzy measure oNIG(«, 0,0, 1) has density
7 ralx| 7Ky (alx]) .

A further direct application of Theorem 2.1 then shows that, for generaland
6, the distributionNIG(«, 3, i, ) has characteristic triplet=( O, x) whereF is
absolutely continuous with density

(2.9) f(x; 0, 8,6) = 76 x|~ Ka(a [x[)™
while

1

xX=p+ 27r*16a/ sinh(Bx)Ky(ax)dx .
0

(A much less direct determination bfx; «, 3, 6) andx was given in Barndorff-

Nielsen (1996a).)

As simple consequences of Theorem 2.1 we have

Corollary 2.1. Suppose that (tx) is a Levy measure whose Laplace transform
exists in a neighbourhood of 0, and define the function l©@d) by

k(6) = / €U (dx) .

Then K0) is the cumulant function of a natural exponential family®pnand
the member of this family correspondingée= 0 is infinitely divisible with [evy
measure U. OJ

Corollary 2.2. Let U(dx) be a Levy measure, let {ix) = x2U (dx) for x # 0
and V({0}) = 0, and suppose that the Laplace transform ofd¥) exists in a
neighbourhood of 0. Furthermore, let k be a function@g/) such that

LOE / eV (dx) .

Then K#) is the cumulant function of a natural exponential family®nand
the member of this family corresponding@a 0 is infinitely divisible with levy
measure U. O

We shall use these corollaries in Sect. 3.
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2.3 Selfdecomposability

A one-dimensional probability measureis said to beselfdecomposabler to
belong to lévy’s clasd., if for each\ > 0 there exists a probability measurg
such that

ORI/ CRION(

where¢ and ¢, denote the characteristic function pfandv,, respectively.

Selfdecomposable distributions are infinitely divisible. On the other hand, we
have the following characterization of the cldsss a subclass of the set of all
infinitely divisible laws (Lukacs 1970).

Lemma 2.1. Let U(dx) denote the vy measure of an infinitely divisible proba-
bility measure P oiR. Then P is selfdecomposable if and only if U is of the form
U (dx) = u(x)dx with

u(x) = |x| " o(x)

where €x) is increasing on—oo, 0) and decreasing on (65).
If u is differentiable then the above necessary and sufficient condition may be
reexpressed as

(2.10) u(x) +xu’(x) < 0.
O

The following theorem is due to Jurek and Vervaat (1983) (cf. also Jurek and
Mason 1993).

Theorem 2.2. A random variable x has law € L if and only if x has a repre-

sentation of the form
o0
X = / e 'dz(t)
0

where 4t) is a homogeneousévy process.
In this case the évy measures U and W of x anflLz are related by

(2.11) U (dx) = / ~ Wieldwdt .
0

O

From (2.11) we find that for > 0

U ([x, o)) =/an W (e'[x, oo))dt

:/OO sTIW([sx, o0))ds .
1

ProvidedW ([x, o0)) is continuous inx on (0, o) this equation may be rewritten
as
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U ([, 00)) = /Oo sIW([s, 0))ds .

A similar conclusion holds, of course, faf((—oo, —X]).
Now suppose that) and W are absolutely continuous with respect to
Lebesgue measure, with densitieandw. Then, forx > 0,

u(x) = x"*W([x, 0))

and it follows thatu is differentiable forx > 0 and that

(2.12) w(X) = —u(x) — xu'(x) ;

a similar argument fox < O shows that (2.12) holds for a # 0. (Compare
with inequality (2.10) in Lemma 2.1.)

2.4 Ornstein-Uhlenbeck processes

A stochastic process(t) is said to be of Ornstein-Uhlenbeck type if it satisfies
a stochastic differential equation of the form

(2.13) dx(t) = —Ax(t)dt + dz(t) .

wherez(t) is a homogeneousévy process, which we refer to as thackground
driving Lévy processabbreviated (BDLP). For concreteness we talig to be
cadlag. Assuming\ > 0 we have that (2.13) is solved by

(2.14) x(t) = e~ Mx(0) + / t e Mt=9dz(s) .
0

Let .
u(t) = / e Mt=9)dz(s)
0
so that (2.14) takes the form
(2.15) x(t) = e Mx(0) +u(t).

Suppose we are given a one-dimensional distribudorior instance one of
the NIG distributions, and suppose we wish, for eakth> 0, to construct an
Ornstein-Uhlenbeck type procesg) that is stationary and such that the law of
x(t) is D . Note that when this is possibl® must — in view of (2.15) — be
selfdecomposable. Furthermore, eachas associated with it a BDLP which we
denotezM(t).

The following theorem, which combines results from Sect. 3 of Barndorff-
Nielsen et al. (1995), gives a sufficient condition for the construction. Before
stating the theorem we note that if the solution (2.14) is stationary and square
integrable and if Ex(0)} = E{z(1)} = 0 then the correlation function of(t) is
of the form p(u) = exp(=Au).
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Theorem 2.3. Let (¢) be a differentiable and selfdecomposable characteristic
function and letx(¢) = logc(¢). Suppose thatx’(¢) is continuous at 0 and
let pV(C) = ACK/(¢) for a A > 0. Thenexp{¢W(¢)} is an infinitely divisible
characteristic function.

Furthermore, letting £)(t) be the homogeneouséty process for which
z™(1) has characteristic functioexp{¢™(¢)} and defining the procesgty by
dx(t) = = x(t)dt+dzM(t) we have that a stationary version oftx exists, with
one-dimensional marginal distribution given by the characteristic functi@p. c
[l

In the setting of Theorem 2.2, sin@éV(t) is a homogeneousévy process
and oM () = A\pM(¢) we have in fact that the proces8)(t) is identical in law
to the procesg®(\t). Thus, abbreviating®(t) to z(t) we have

(2.16) {ZVM}z0 £ {200 }ez0 -
This implies that
At
x(t) £ e Mx(0) +e M / eSdz(s)
0
with corresponding stochastic differential equation

dx(t) = —Ax(t)dt + dz(At) .

In view of the relation (2.16) we will henceforth, with a slight abuse of termi-
nology, refer toz(t) (rather thare™(t)) as thebackground driving Evy process
(BDLP) for the Ornstein - Uhlenbeck proces§t), whatever the value of the
regression parametex.

An application of Fubini’s theorem for stochastic integrals (cf. for instance
Protter 1992; p. 159) shows that the cumulative process

s(t) = /Ot x(s)ds

may be represented as

(2.17) s(t) = A7H{zW(t) — x(t) + x(0)} .
Specifically,

t
s(t)=/ x(s)ds
0
t t u
:x(O)/ e”\”du+/ e’A“du/ e’sdzM(s)
0 0 0
t t
=211 — e M)x(0) + / e’sdzM(s) / e Mdu
0 u

=x1 {(1 — e Ox(0) +2(t) - / | e—*“—s>dz“>(s)}
0
=A"HzZW (1) — x(t) +x(0)} .
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Furthermore, in view of (2.16) we have

(2.18) {S(t)}rz0 £ {A"HZ(A) — X (1) + X(0)}e>0 -

The stationary procesix(t)}i>0 can be extended to a stationary process on
the whole real line. To do this we introduce an independent copy of the process
zM(t) but modify it to be caglad, thus obtaining a proce®s(t). Now, fort < 0
definezM(t) andx(t) by zM(t) = zZW(~t) and

0
X(t) :e‘”t|x(0)+e‘w/ eMslgzM(s) .
t

Then {zM(t)}1cr is @ homogeneous, cadlag\ty process andx(t)}icr is a
strictly stationary process of Ornstein-Uhlenbeck type.

2.5 Long range dependence, selfsimilarity and selfdecomposability

A stationary procesg(t) is said to belong range dependerit its correlation
functionr is asymptotically, asg — oo, of the form

(2.19) r(r) ~ L(r)r 20

for some constant with ; < H < 1 and some slowly varying functiol.
Closely related to long range dependence is the concept(s) of selfsimilarity.
To indicate the relation, suppose for a moment that a discrete time process
with correlation function satisfying (2.19). Then for eveny= 1, 2, ... the derived
sum process
Xm(t) =x(t +1) +... +x(t + m)

has, exactly or approximately for largethe same correlation function astself,
and in this sense the process&® are exactly or approximately selfsimilar. The
correlation functions are exactly equal if

(2.20) r(r) = ; {r+1" =27 + (7 — 1)} .

The heuristic idea is that the cumulative sum procgss= x(1) +... + x(t) will
exhibit the same correlation structure whether looked at ‘close up’ or ‘from a
larger distance’.

If (2.20) holds then, writings? for the variance ofk(t), we have that the
variance ofs(t) satisfies

(2.21) var{s(t)} = ot

exactly, for anyH € (0,1). In general, (2.21) is valid asymptotically.

Any continuous time processt) is said to beexactly selfsimilamwith expo-
nentH if for any positivec the processc(t) = s(ct) follows the same probabilis-
tic law as the processs(t). Of most interest, both theoretically and practically,



52 O.E. Barndorff-Nielsen

among such processes are those for which the increments are stationary, and
examples of these are generally difficult to come by, see for instance Samorod-
nitsky and Taqqu (1994) and references given there. Dropping the requirement
of stationary increments opens a plethora of possibilities. In particular, to any
homogeneous &vy procesg(t) with z(t) selfdecomposable for afland to any

H > 0 there is associated a, uniquely determined, exactly selfsimilar process
zH (t) which is cadlag with independent increments and suchzftjtandz" (t)

have the same distribution at tinte= 1 (Sato 1991). Furthermore, for every

t € R. the law of z"(t) is selfdecomposable. In fact, another result of Sato
(1991) says that if/(t), t > 0, is a stochastically continuous selfsimilar process
with independent increments ayg0) = 0 a.s. then the distribution of(t) is
selfdecomposable for evety

2.6 Processes of type G

Processeqy(n) : n € .F#} of type G were defined and studied in Rosinski
(1991). Here77 is an arbitrary index set. The most basic of these processes are
of the form

1
(2.22) y(n) = /O f (1, 9)dz(s)

wherez(s) is a homogeneousévy process having the property tlzgl) may be
represented as(1l) = cc wheres > 0 ande are independent random variables
with o2 infinitely divisible ande being standard normal. Random variables having
such a representatione are said to be ofype G. The mixture representation

of the NIG distributions mentioned in Subsect. 2.1 means, in particular, that
NIG(«, 0,0, 6) is of type G for any values af andé. For simplicity we assume
henceforth that sux : P(¢ > x) = 1} = 0. Further, we defindo?(s) : s €

[0,1]} as the homogeneousizy process for whickr?(1) 4,2,
By Marcus (1987; Lemma 2.2) and Rosinski (1991), for any such type G
relation (2.22) the processes(s), z(s) andy(r) are representable in law as

223)  {o%9):se 0,11} £ {D R(T)Log(r) s € 0,11},
i=1

224)  {z(9):s€ 0,10} £ {> " wiR(T)Log(r) : s € [0,1]}
i=1

and

(2.25) ym) :ne .7} 2> wRT @.5i) 1y € T} .

i=1

In these expression§w; }, {Ti } and{r;} are three independent sequences of in-
dependent random variables with thestandard normal, the uniform on [Q 1]
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andT; < T, < ... < T; < ... the sequence of arrival times of a (independent)
Poisson process of unit rate. Furthermore, the fund®da defined in terms of
the Levy measureH say, ofo? by R(t) > 0 and

(2.26) R2(t) = inf{x > 0 : H((x,o0)) < t}

for all t > 0. All three series, in (2.23), (2.24) and (2.25), converge a.s.

3 Ornstein-Uhlenbeck processes of NIG and IG type

The NIG(«, 8, u, 6) distribution is selfdecomposable. This was shown by Hal-
green (1979) and may also be seen from the expression (2.9) foéthyedensity
of NIG(«, 3, 4, 6) using Lemma 2.1 and the standard formulae for the Bessel
functionsK,,

Ky (x) = K_,(x)

3.1) Ky (X) = =Ky-1(x) = vx K, (X)

Ku+1(X) = 20X 1K, (X) + K, —1(X).

It follows then from the results in Subsect. 2.4, in particular Theorem 2.3, that
there exists a stationary Ornstein-Uhlenbeck prodes$s }icr such thatx(t) ~
NIG(«, 8, 11, 6) for everyt € R, whatever the value of the regression parameter
A. We shall refer to this process as the NIG Ornstein-Uhlenbeck process. To
study the character of the process we assume, for simplicity:tkad and, since
x(t) ~ NIG(«a, 3,0,06) implies —x(t) ~ NIG(a, —0,0,06), we further restrict
attention to the casg > 0.

Similarly, we shall consider the character of the stationary inverse Gaus-
sian Ornstein-Uhlenbeck process, the existence of which is also guaranteed by
Theorem 2.3.

3.1 BDLP of the NIG O-U and IG O-U processes

We proceed to derive thedvy measure of the BDLPz }+cr corresponding to the
NIG Ornstein-Uhlenbeck process, using the relation (2.12). From the formulae
(2.9) and (3.1) we find

(3.2)
w(X) == u(x)
+ 7o { x| THKa(alx|) — asign@)K{ (alx|) — Asignf)Ki(alx|)} e™
= 1sa [{| x |71 —Bsignk) } Ki(a|x|) + aKo(a|x])] &
=(1 — Ax)u(x) + w16 Ko(arlx|)e’* .

It is illuminating to rewrite this as
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(3.3) w(x) =~ 6a?[(1 — p){a x| 7Ky (a[x])
+Ko (a[x[)} + pD (o [x])]e”
=(1— p){T(ax) + Uo(ax)} + pliy(aX)

wherep = 3/a > 0 and

a(x) = 72602 x| "L Ky (|x|)e

(3.4) Uo(x) = 780 ®Ko(|x|)e™

i (x) = 7 16a?D (x)e™

the functionD (x) being defined by
(3.5) D(x) = {|x| ™" — signf) }Ka(|x]) + Ko(|x]) -

Using the relations (3.1) one finds tha{x) is increasing on{oo,0) and de-
creasing on (o) and sinceD (x) — 0 for x — +oo we haveD(x) > 0. Note
also thatu{ax) = u(x).

It follows that the BDLP of the NIG Ornstein—Uhlenbeck process is a sum
of three independent homogeneousviz processes, i.e.

(3.6) z(t) =y(t) +p(t) +q(t)

where the levy densities corresponding ¥dt), p(t) andq(t) at the timet = 1
are, respectively, (% p)u(ax), (1 — p)ug(ax), andpus(ax). The last process is
of course degenerate in cage= 0.

From the above formulas we have immediately thé) is the NIG Levy
process such that(1) ~ NIG(«, 3,0, (1 — p)d).

In contrast toy(t), neitherp(t) nor q(t) is selfdecomposable, as may be seen
from Lemma 2.1 and the formulae (3.1).

To determine the character of the procext) precisely we shall invoke
Corollary 2.1. From Gradshteyn and Ryzhik (1965; formula 6.611.9) we have
for0<|s| <~y

(3.7) / " e Ko(yx)dx = (17 — %) Y2 arg cos/) |

Thus, by Corollary 2.1, the cumulant generating functiop() is given by
ko(#) — ko(0) where

(3.8) ko(0) =(1 — p)r 1602 / e™Ko(a|x|)e*dx
R\{0}

=(1 - p)oa*{a® — (0 + B’} /2

for 0< |0+ 3] < o
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Now, consider the Laplace transform pfl), i.e.Lo(0) = exp{ko(6) — ko(0)}
and let

£={L-p)/(L+p)}"%a .
By Taylor expansion we find

L) = e €S [{L-@+0)/a/a— )"
v=0 '

(3.9) x[{1+@+p)/a}/(L+p)? /2

which shows thap(1) is of the form

N
(3.10) p(1) = 0 L~ ) 2D (W - u?)
i=1

with N denoting a Poisson variate with megand theu; andu/ being indepen-
dent standard normally distributed and independerit of

An equally explicit representation is not available for the proag3} To
study q(t) we invoke Corollary 2.2 according to whiotp(1) has a cumulant
generating function of the form(#) — ¢(0) whereg(f) satisfies

q" () = pr~ 1602 / e”x?D (ax)e dx .
R\{0}

In view of (3.5), together with (3.4) and (3.8), we have thét) is the sum of
three terms

9(6) =h(0) + ho(6) + hy(6)

where
h() = ps{a® — (0 + B)*}/2

hi(6) = psa®{a? — (0 + ﬂ)z}—uz

and
0 [e's)
hg (8) =pr 1602 { / e x?Ky(ar |x|)e™dx — / eGszKl(ax)ef’de}
—o00 0
=— 2p7r*16a2/ sinh{ (6 + 3)x }x2K1(ax)dx .
0
Now, sincexKi(x) is integrable near OKi(x) ~ x~1 asx | 0), we must have
(3.11) h(0) = —2pr 1602 / cosH (0 + B)x }xKy(ax)dx .
0

By (3.1) we haveK;(x) = —K(',(x) and hence, by partial integration, we find
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/ e¥xKy(ax)dx =a~ ! / (sx + 1)Ko(ax)eS*dx
0 0

0 >
—.—1 SX
=0T g {S/O Ko(ax)e dX}

and from this it follows, by (3.7) and (3.11), that
ho(6) = —psal(0 + B){a® — (0 + B’} /2 .

Collecting terms we obtain

9(0) =ps{a® — (0 + B}~V —{a? — (0+ B)*} — a0+ ) + 7]
=—po{a® — 0+ 9% Y20 + B){a — (0 +0))
== pb(@+B){(a — 0 = B)/(a+0+ B}/ .
It does not seem possible from this to give an elementary description of the
distribution ofq(1). In particular, the procedure used to derive (3.10) does not

work in the present case.
All'in all we have shown

Theorem 3.1. The BDLP £%t) for the normal inverse Gaussian Ornstein-
Uhlenbeck process with parametérs 3, 0, ) is, for 3 > 0, representable as the
sum of three independent homogeneo@sgylprocesses:(k) = y(t) + p(t) + q(t).
The first process(¥) is a normal inverse Gaussiarelzy process, with parameters
(a, 8,0, (1 — p)d), and the second has the form

Nt
(3.12) p(0) = Ja (1~ A2 Y (W2~ u?)
i=1

where N denotes a Poisson process with rdtgl — p)/(1 + p)}¥/?6a]~* and
they and y (i =0,1,2,...) are independent standard normally distributed and
independent of the process.Rinally, the Laplace transform Exp@q(t)) of q(t)

is

exp(tp6 [B{(a — )/ (o + A)}2
(3.13) ~O+ B~ 0-A)/(@+0+)}2]) .
(]

The same kind of analysis as that given above for the normal inverse Gaussian
Ornstein-Uhlenbeck process can be applied td@@, +) distribution. The vy
densitylG (8, ) is

u(x) = (1)~ Y25x~3/2e=7x/2 |

and it follows thatw(x), as given by (2.12), takes the form
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(3.14) w(X) = (277)*1/2‘; {Xfl + 72} x—1/2e=7*x/2.

This implies that the procesgt) driving the inverse Gaussian Ornstein-Uhlen-
beck process (i.e. the stationary Ornstein-Uhlenbeck type process ha@ying)-
distributed one-dimensional marginals) is a sum of two independent processes,
z(t) = y(t)+p(t), wherey(t) is an inverse Gaussiarely process with parameters

6/2 and~ for y(1), while p(t) is of the form

N
(3.15) p)=v"2> u?
i=1

with N; a Poisson process of ra§éy/2} ~! and theu; being independent standard
normal and independent of the procégs

3.2 Likelihood analysis

We now consider some questions concerning likelihood analysis for discretely
observed stationary NIG and IG processes of Ornstein-Uhlenbeck type. Suppose
X(t) is such a process and that it has been observed at the timés..., n.

First, letx(t) be the NIG Ornstein-Uhlenbeck process. In a financial context
it will often be reasonable, at least initially, to assume that the paramgters
and g3 are both 0 and we do this here. An explicit expression for the likelihood
function of the parametera,$ and A, where \ is the regression parameter,
cf. formula (2.13), is not available. However, the likelihood function can be
accurately calculated, as will now be discussed.

Sincex(t) satisfiesx(t + 1) = e~ x(t) + z(t), where

t+1
z_(t)=e‘A‘“/ e’sdz(\s)
t

and the BDLPz(t) is described in Theorem 3.1, the problem lies in determining

the probability density function ok(t) at least up to a constant not depend-

ing on (v, 8, A), and sincez(t) has stationary increments we need just consider

calculation of the probability density function B{0) or, equivalently, o*z(0).
Now, letz*(t), t € [0, 1], be the process

z*(t) = /0t e’dz()s) .

Thenz*(1) = e*z(0) andz*(t) is Markovian, in fact a process with independent
increments. The density function af(1) at an arbitrary poink can therefore
be calculated as

(3.16) p(x;a, 6,A) = E{p(x;a, 6, A | 2*(7))}
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the expectation being over the values of the proe&3 at an, arbitrarily chosen,
time 7. If 7 is taken close to 1 we have approximately, letting 1 — 7,

p(X; v, 6, A | Z°(7))
(3.17) = /OO v(x —z*(1) — y; €, z* (1), e M Aeb) EL(dy; v, 6, N).

Here v(:; o, u, 6) denotes the density function of thelG(«, O, , ) law and
Z.(-; a, 6, \) is the distribution function of a random variable of the form

N
e*at Z:(Ui2 —u/?)/2
i=1

whereN is a Poisson variate of meawéa and theu; andu/ are independent
standard normal and independentNbf(cf. Theorem 3.1). Numerical determina-
tion of the integral in formula (3.17) is quite feasible, especially for small values
of €. In this connection the following two distributional results are helpful:

(3.18) (uf — u)/2 ~ 7 "Ko(|x|)

1
(3.19) (U2 +u?—u?—u?)/2~ Ze*IXI

where the right hand sides are the probability densities of the random variables on
the left. Formula (3.18) follows from formula 3.364.3 in Gradshteyn and Ryzhik
(1965). Furthermore, fon — oo the distribution of 7'(u? — u/2)/2 rapidly
approaches normality.

The remaining problem is then the calculation of the expectation in (3.16)
which can be carried out approximately by approximate simulation*6f) as
follows.

Letn be a large integer and let the procesgé3 andp(t) be as in Theorem
3.1 (with 4 = 8 = 0). The value of the process () at time 7 is approximately
given by

n
(3.20) z'(n) =) N (g +h)

i=1
whereg; = y(A7i/n) —y(Ar(i —1)/n) andh; = p(Ari/n) — p(Ar(i — 1)/n). By
the characterization of; andp; given in Theorem 3.1, the random variablgs
are i.i.d. normal inverse Gaussian and there i.i.d. and compound Poisson of
the form

N/\r/n

(3.21) ;a_l > W -u?).
i=1
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To simulate an NIG random variable one may use the representatigre oe
whereo and e are independent witla? 1G-distributed ande standard normal.
A simple procedure for simulating IG variates has been given by Michael et al.
(1976); this is based on simulation of standard normal variates. Simulation of
(3.21) can also be carried out simply from independent standard normal variables.
An alternative, and in some ways preferable, approach to approximate sim-
ulation of z*(7) is to use the series representation of processes of type G. By
Theorem 3.1 we have, singehas been assumed to be 0, that

N+

(3.22) 2°(r) = /0 ey (s) + Ja>expT) — u?)
i=1

whereT; < T; < ... < T/ < ... are the arrival times of the Poisson procéks
whose rate i$«. Furthermorey(t) is theNIG(«a, 0,0, A8) Lévy process and, as
noted in Subsect. 2.6(t) is of type G. Hence, using (2.25), we find that the
integral in (3.22) satisfies

(3.23) | @a09) ~ Y- wiRT) explar i ()

i=1
with {w; }, {Ti} and{r; } as in formula (2.25) and the functidd determined by
(2.26) withH being the levy measure of the inverse Gaussian l@{\é, o).
The series on the right hand side of (3.23) converges very rapidly.

To determine the likelihood function the approximate simulatiorztfr)
based on (3.20) or on (3.22-3) has to be carried out for a range of values of
(a, 6, \). However, as follows from the above, one and the same shit(0f1)
pseudo-variates can be used in all cases, and this reduces the computation time
considerably. Furthermore, in selecting a suitable range of values 6fX) it is
requisite to have a good initial estimate of, 6, \); for most purposes it should
suffice to estimater and § by treating the data as if they constituted an i.i.d.
sample from aNIG(«, 0,0, 6) distribution and estimating from the empirical
correlation coefficient.

The technique outlined here applies equally to the stationary IG Ornstein-
Uhlenbeck process, using results for that process given above.

It should be noted that the technique for likelihood calculation discussed
here is partly similar to a method introduced by Pedersen (1995a) for maximum
likelihood estimation under discretely observed stochastic processes determined
by stochastic differential equations; see also Pedersen (1995b).

4 (Quasi) long range dependent NIG processes

As indicated in the Introduction, series of logarithmic asset returns generally
exhibit correlation patterns in the character of moderate to long range dependence,
a feature that we shall refer to &guasi) long range dependenoe QLRD, for

short As a possible approach to modelling this feature as well as the typical
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distributional behaviour, in this section we construct classes of stationary QLRD

processes whose one-dimensional marginal distributions are either normal inverse

Gaussian or inverse Gaussian. The NIG and IG Ornstein-Uhlenbeck processes

discussed in Sect. 3 may be used as building blocks for such QLRD processes.
Letx®(.),k = 1,2, ..., be a sequence of independent and stationary processes

such that for alk andt € R the distribution ox®)(t) is normal inverse Gaussian

with parametersd, 3, 0, 6x). For instancex®(.) could be of Ornstein-Uhlenbeck

type.
Theorem 4.1. Suppose thafy satisfies
(4.1) 8k ~ const - k~172—H)
for k — oo and some He (0, 1), and letd = X2, 6k.

The process
(4.2) x(t) = x® (k1)

k=1

is stationary and welldefined as af limit, and the marginal distribution of {t)
is NIG(«, 3, 0, 6).

Furthermore, if the processe$%-) all have the same correlation functiogy

and if r(-) is continuous and (r) — 0 for 7 — oo then the correlation function
r of x(-) satisfies

(4.3) r(r) ~ L(r)r 24

for some slowly varying function L. Thuséif< H < 1the process exhibits long
range dependence with exponent H1

Proof. Since the variance of®(k—1t) is of the form

var {x®OKk)} = {a(l - p?)¥?} 16
we have thatx(:) is welldefined in the sense &f convergence. Thax(t) is
NIG(«, 3, 0, 6) then follows from the convolution property of the normal inverse

Gaussian distribution.
The correlation function oxk(t) is of the form

r(r)=61 i ok (k~17)
k=1

from which the asymptotic behaviour (4.3) may be derived by a simple calcula-
tion. O



Processes of normal inverse Gaussian type 61

The same conclusions as reached above for NIG processes will hold for an IG
process of the form (4.2) with the¥)(t) as independent and stationary processes
such thatx®(t) ~ 1G (6, ), in which case we have(t) ~ IG (6, a).

Ordinary likelihood analysis of these QLRD processes does not seem feasible,
but the Whittle procedure, which is based on the smoothed periodogram, is
likely to open the way for a quasi-likelihood approach. See Heyde (1997) for a
discussion of the Whittle procedure in the context of estimating functions.

A comprehensive empirical study, Guillaume et al. (1994) (see alslteM
et al. 1990, 1993; Schnidrig and iz 1994), indicates that for free floating
currencies on the foreign exchange market the logarithmic price changes closely
follow a scaling law with exponent = 0.58. More specifically, thinking for
instance of the USDDEM exchange rate as this has developed over a period
[0,T], let g (At) (where At > 0) denote the change in logarithmic price over
the time interval [ — 1)At,i At], i =1,2,.... Then, lettingn = T /At (which,
for simplicity, we assume to be an integer), the investigations referred to above
show that, over several orders of magnitude in time, the cumulative sums of the
absolute values

(4.4) Qn(At) =| u(At) | + | d2(At) | +...4 | A (At) |
very nearly satisfy a linear relationship of the form
(4.5) log E{Qn(At)} = H log At + const .

Assuming that this reflects a full scaling law, in the sense f{laaft) }icr, is a
selfsimilar process with exponeht, it seems of some interest to consider mod-
elling of observed sequences of the fayAt), gz(At), ..., d.(At) by theoretical
sequences(At), s(2At) — s(At), ..., s(nAt)— s((n — 1)At) where

s(t) = /Ot x(s)ds

and wherex(t) is a stationary process of the form discussed in Theorem 4.1 with
H = 0.58 (cf. formula (2.21)). A discussion of this will be given elsewhere.

5 A selfsimilar NIG process with independent increments

In connection with the results on selfsimilarity and selfdecomposability men-
tioned in Subsect. 2.5, it seems worth noting that the exactly selfsimilar process
zM (t) associated, in the sense of Sato (1991), to the Né@ylLproces(t) with
parametersd, 3, i1, 6) also has the property that its marginal distributions are
normal inverse Gaussian. More specifically, while

z(t) ~ NIG(a, 5, tp, t6)

it can be shown that, in terms of the invariant paramabeand’ﬁ, the process
zM () satisfies
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z™(t) ~ NIG[a, B, t7 1, tH 6] .

In fact, by Proposition 4.1 in Sato (1991) thé\dy measure}! of zH (t) is related
to the Levy measurey; of z(t) by the formula

(5.1) o1(@) = [ 1at" X0

holding for all Borel set8. If v; has a density); say, with respect to Lebesgue
measure then so hag' and then (5.1) may be recast as

uf (x) =t uyt"x)

with uf' denoting the density aff' . Specializing to the case whezf) is the NIG
Lévy process with parameters, (3, 1, 6) we haveu;(x) = 7~ 15a |x\_l Ka(a |x])
xe™ (cf. formula (2.9)) and hence

uf! (x) = 760 x| Ky [tHx|) exp@t—x) .

This is the Levy density ofNIG(t " o, t=H 3,t 1, t76) = NIG[a, 3, tH i, tH §].
It is an open question whether there exist nontrivial selfsimilar processes with
stationary normal inverse Gaussian increments.

6 Direct superposition of Ornstein-Uhlenbeck NIG and IG processes

Superposition of Ornstein-Uhlenbeck or autoregressive processes offers one ap-
proach to parsimonious modelling of marginal laws and long-range-like depen-
dence. In the context of turbulence this was discussed in Barndorff-Nielsen et
al. (1990, 1993), see also Barndorff-Nielsen et al. (1995). Here we shall briefly
consider such superpositions in relation to the normal inverse Gaussian and the
inverse Gaussian laws, partly as a preparation for the following section. In Sect. 4
we also considered superpositions of stationary NIG processes, in particular pro-
cesses of the Ornstein-Uhlenbeck type, but the character of those superpositions
is different from that discussed below.

Letx®. i =1,...,m, be independent and stationary NIG Ornstein-Uhlenbeck
processes with regression parametgrsi = 1,...,m, and letx = x® + .. +
xM. Assuming that the parameters of the normal inverse Gaussian distribu-
tion of x®(t) are ¢, 3, ui,8) we have thatx is stationary and thak(t) ~
NIG(a, 8, 11, 6) wherep = pg + ... + pum andé = 61 + ... + o

In the context of financial time series it will often be reasonable to take
U1 =...= um=0andg; =... = B = 0 and we assume henceforth that this is the
situation. Further, for simplicity, we restrict attention to the case 2. Thus
x =x®+x@ ~ NIG(a, 0,0, 6) and the correlation ok(s) andx(t), for s <t is

(6.1) e (=g 4 o (=2,

whereé_i =6 /6.
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Similarly, if x® and x©@ are independent and stationary |G Ornstein-
Uhlenbeck processes with parameteé¥s{, A1) and ¢z, v, A2), respectively, and
if x =x®+x@ andé =6, + 6, thenx is a stationary process havinG (6, 7)-
distributed one-dimensional marginals and correlation function (6.1).

The likelihood function for a model of this kind is not explicitly available.
However, by viewing the model in a state space framework the likelihood be-
comes accessible by Markov Chain Monte Carlo procedures of the type discussed
by Geyer (1997) and Shephard and Pitt (1997). A more detailed discussion will
be given elsewhere.

It may, incidentally, be noted that questions of moduli of continuity and large
increments of infinite sums of Gaussian Ornstein-Uhlenbeck processes have been
studied recently in papers by &s et al. (1991) and Lin (1995). See also Walsh
(1981).

7 Stochastic volatility models of NIG type

We shall discuss models in one or more dimensions, first for discrete time and
then in continuous time in a subordination setting.

7.1 Discrete time

Consider discrete time stationary processes of the form
(71) Xt = Ot€t

where o; is positive, ey, €o, ..., €n, ... are independent standard normal and the
processes; ande; are independent.

A review of work on processes of this and closely related types is given in
Shephard (1996). The key approach discussed by Shephard consists in forming

logx? = logo? + log e

and then writing logr? as a linear combination of some of the previous values
of logo? plus a normal error term. Shephard refers to this asldgenormal
stochastic volatility model

The processes to be discussed below are of a different character, both in
terms of the marginal laws and the dependence structure.

The autocorrelation function of the process (7d)dnde; being independent)
is identically 0. However, unless thg are mutually independent, both of the
processes? and x? have nonvanishing autocorrelations. Their autocovariance
functions are in fact identical and, denoting the autocorrelation functierf of
r, we have

r(u) = corr{cZc?,} = q - corr {x*xZ,}

whereq is the ratio of the variances of ando? which may be written as
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Fig. 1. Cumulative autocorrelations of squared daily log returns of Deutsche Bank stock prices from
the period 2 Oct 1989-29 Dec 1995: empirice) &nd fitted theoretical X). (Theoretical function
of the form (7.2))

q =3+ 2E(o7)’/var{ot} .

Now, leto? be a stationary IG process, for instance one of the IG processes
considered in Sects. 4 and 6. Then the distributior; a6 normal inverse Gaus-
sian and quasi long range dependence may be included in the model. The full law
of the process; is however different from that of the stationary NIG processes
in Sects. 3, 4 and 6.

Suppose, in particular, that? is a superpositiong? = 7o + 71, of two
IG Ornstein-Uhlenbeck processes, as in Sect.6, and consider the cumulative
autocorrelation function

r*(my=r(l)+... +r(m)
which is then (cf. formula (6.1)) of the form

(7.2)  rr(m)=wpo(l - pg)/(d — po) + (L — w)p1(1 — pT")/(1 — p1)

for aw € [0, 1] and po, p1 € (0,1). An illustration is provided by Fig. 1 which
shows the empirical cumulative autocorrelation function for the squares of the
daily log returns of Deutsche Bank stock prices, calculated from the data corre-
sponding to the period 2 October 1989-29 December 1995, the total number of
log returns being 1562. The figure also shows the theoretical cumulative autocor-
relation functiong—1r *(m) fitted to the data by a nonlinear regression procedure,
the fitted parameter values beigg- 4.75,w = 0.921, pg = 0.544 andp; = 0.995.
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A possible interpretation is that, expresses an overall volatily of the market
whereasr;, is specific to the particular asset considered (Deutsche Bank, in the
present case). Incidentally, the present type of model is reminiscent of an exten-
sion of the log-normal stochastic volatility model indicated briefly in Subsect.
1.3.4 of Shephard (1996).

As a multivariate generalisation, let = (ey, ... ,ent) be anm-dimensional
time series which may be thought of roughly as representing the joint price
development ofn stocks that would have prevailed if there were no stochastic
volatility effects. More specifically, we assume tlegtis m-dimensional normal
with mean 0 and a constant correlation mattixand that thes, are independent
over time. The variances of the coordinatesofre however allowed to depend
ont, and we denote the variance af by o2. Next we allow thes? to be
random variables. To reflect the changed character of the price process we shall
write X instead ofe. We suppose that? = (02, ... ,02,) is a stationary process
whose one-dimensional marginals are 1G-distributed. In particular, we may take
02,i =1,..,m, to be of the form

2 _
Oit = Tor + Tit

wherery, 7y, .- . , T re independent and stationary |G processes of Ornstein-
Uhlenbeck type with regression paramet&gsi, ... , Am and such that
Tit ™~ NIG((SI ) Oé)

i =0,1...,m, and then
02 ~1G (8 + 6, ) .

As above, one may think of, as expressing the volatily of the market in an
overall sense whereag is specific to the i-th asset. The procesgsis repre-
sentable in stochastic volatility form as

Xt = (Xat, ..o, Xmt) = (01t€1t, .., Omi€mt)

where thee; = (ey, ..., eme) are i.i.d. normal with mean 0, variance mat@xand
such that the process is independent of the procesg.

Fitting and analysis by likelihood of the multivariate model proposed here
appears feasible via state space considerations and Markov Chain Monte Carlo
techniques.

An alternative type of discrete time stochastic volatility NIG models, which
can be viewed as being of the form (7.1) but where the processew ¢ are
not independent, have been discussed in Barndorff-Nielsen (1996a). In contrast
to the above models, those in the paper cited allow an explicit expression of the
likelihood function; furthermore, they have some similarity to ARCH models.
On the other hand, the one-dimensional marginal distributions are not normal
inverse Gaussian.
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7.2 Continuous time and subordination

In continuous time, modelling of stochastic volatility by subordination has consid-
erable appeal. As an indication of the potentialities relating to NIG laws, suppose
that w; is m-dimensional Brownian motion and let = wA whereA is a deter-
ministic nonsingulam x m matrix such thatC = ATA is a correlation matrix,

i.e. the diagonal elements @f are all equal to 1. Further, lef = (02, ..., 03,

be a stationarym-dimensional process such thaf ~ IG(&, i), i = 1,...,.m

andt € [0,00). For instance, the? may be sumsyg + 7, of independent IG
Ornstein-Uhlenbeck processes, as in one of the discrete time models considered
above. Now defing; = (Cx, ..., {mt) by

t
Cit :/ O’izst.
0

The subordinated process

Xt = (X]_t, ...,th) = (ecn, ey Ele) s
which in the present context we think of as representing the processes of stock
prices, has uncorrelated increments. The incrementg afe not NIG distributed
but the law ofx; 1+t —Xi Will, under relatively weak conditions, be approximately
NIG to a practically useful degree of accuracy.

As to the higher order correlation structure of the increments ,cfuppose
for simplicity thatm =1 and, for 0< s <t <u < v, let

R(t — 5,0~ uu —1) = covf(x — %5)?, (% — xu)?} .
the covariance of{ — xs)? and &, — x,)?. Then, writingo? for o2, é for 6; and

a for a; (recall thatm = 1) and denoting the correlation function f by r(-)
we have

R(t —s,v— u;u —t) =E{(Gt — (:)(Go — )} — E{G = GYE{Go — Gu}
t v t v
:/ / E{U?J%}dnd{ - / E{ag}df/ E{U,Zl}dn

t v
:/ / V{U?,U%}dndg

=0/0") | t / Tty — ©)dedy

In particular, ifo? is the IG Ornstein-Uhlenbeck process we obtain

Rt —s,v —U;u—t) = (§/a®)A 21 — e M=9)e A=D1 — g~ AWy
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8 Conclusion

Taking the normal inverse Gaussian law as a building element, the present pa-
per has explored possibilities for the construction of analytically and statistically
tractable stochastic processes that have potential for capturing key stylised fea-
tures of observational series from finance (and turbulence, cf. Subsect. 2.0). It is
intended in future work to compare the models proposed here with a variety of
data sets.

| am indebted to Zbigniew J. Jurek for drawing my attention to the result stated in Theorem 2.1,
and to Wenjiang Jiang for assistance in preparing Fig. 1. Helpful comments from the referees of the
paper are also acknowledged with thanks.
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