
ISEG - Lisbon School of Economics and Management
Statistics I

(Date of this version: 6/11/2017)
Handout 3 (Part 1) �Expected values and parameters

Issues covered:
3.1 Expected values of a random variables
3.2 Expected values of functions of random variables
3.3 Properties of expected values
3.4 Moments of a random variable (or of its distribution)
3.5 Central moments of a random variable (or of its distribution)
3.6 The variance of a random variable
3.7 Skewness
3.8 Kurtosis
3.9 Quantiles
3.10 The mode
3.11 The moment generating function

3.1 Expected values of a random variables

In order to obtain a measure of the centre of a probability distribution, we introduce the notion of
the expected value (or mean or expectation) of a random variable.
Example: Consider the following example: A review of textbooks in a segment of the business area
found that 81% of all pages of texts were error free, 17% of all pages contained one error, and the
remaining 2% contained two errors. We use the random variable X to denote the number of errors
on a page chosen at random from one of these books, with possible values of 0, 1, and 2, and the
probability distribution function fX (0) = 0:81; fX (1) = 0:17; fX (2) = 0:02: We could consider
using the simple average of the values as the central location of a random variable. In this example
the possible numbers of errors on a page are 0, 1, and 2. Their average is, then, (0 + 1 + 2) =3 = 1
error. However, a moment of re�ection reveals that that this is an absurd measure of central
location. In calculating this average, we paid no attention to the fact that 81% of all pages contain
no errors, 17% contain one error, while only 2% contain two errors. In order to obtain a sensible
measure of central location, we should weight the various possible outcomes by the probabilities of
their occurrence which yields

0� 0:81 + 1� 0:17 + 2� 0:02 = 0:21:

Expected values (or mean or expectation) of a discrete random variables
Let X be a a discrete random variable and let DX be the set of discontinuity points of the

cumulative distribution function X: For generality let us assume that the number of elements of
DX is countably in�nite, that this DX = fx1; x2; :::g : The probability function of X is given by

fX (x) =

�
P (X = x) ; x 2 DX

0 ; x =2 DX

Expected Value of a discrete random variable: The expected value of a random variable, denoted
as E (X) or �X , also known as its population mean, is the weighted average of its possible values,
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the weights being the probabilities attached to the values

�X = E (X) =
X
x2DX

x� fX (x) =
1X
i=1

xi � fX (xi) :

provided that
P
x2DX jxj � fX (x) =

X1

i=1
jxij � fX (xi) < +1:

Remarks:

1. If the number of elements of Dx is �nite that this DX = fx1; x2; :::; xkg where k is a �nite in-
teger, then

P
x2DX jxj�fX (x) =

Xk

i=1
jxij�fX (xi) and the condition

Xk

i=1
jxij�fX (xi) <

+1 is always satis�ed.

2. Note that �X can take values that are not in DX :

Exercise: Let X be Bernoulli random variable with P (X = 1) = p; where p 2 (0; 1). Compute
E (X) :

Exercise: Let X be a discrete random variable with probability function given by fX (x) = 1=3;
x = �1; 0; 1: Compute E(X):
Exercise: Suppose that X is a random variable that takes values x = 1; 2; 3; :::: and that its
probability function is given by

fX (x) =
6

�2x2
; x = 1; 2; :::

where � = 3:14159:::: Show that fX (x) is a probability function, but E (X) does not exist
(Hints:.

P1
x=1 x

�2 = �2=6;
P1
x=1 x

�1 = +1:)

Expected values (or mean or expectation) of a continuous random variable: If X is a continuous
random variable and fX(x) is its probability density function at x; the expected value of X is

�X = E(X) =

Z +1

�1
xfX(x)dx

provided that
R +1
�1 jxj fX(x)dx <1:

Remark: Thus, the mean can be thought of as the centre of the distribution and, as such, it
describes its location. Consequently, the mean is considered as a measure of location.

Exercise: Suppose X � U(a; b); that is, X is an uniform random variable in the set (a; b) ; where
a < b: Compute E (X) :
Exercise: Suppose that the random variable X has probability density function given by

fX (x) =

�
3x�4 ; for x > 1
0 ; otherwise

:

Compute the expected value of X:
Exercise: Suppose that the random variable X has probability density function given by

fX (x) =

8<:
x ; for x 2 (0; 1)
1=2 ; for x 2 (1; 2)
0 ; otherwise

:

Compute the expected value of X:
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3.2 Expected values of functions of random variables

Expected value of a function of a discrete random variable: If X is a discrete random variable and
fX(x) is the value of its probability function at x; the expected value of g (X) is

E [g (X)] =
X
x2DX

g (x)� fX (x) =
1X
i=1

g (xi)� fX (xi) :

provided that
P
x2DX jg (x)j � fX (x) =

X1

i=1
jg (xi)j � fX (xi) < +1:

Expected value of a function of a continuous random variable: If X is a continuous random
variable and fX(x) is its probability density function at x; the expected value of g (X) is

E (g (X)) =

Z +1

�1
g(x)f(x)dx:

provided that
R +1
�1 jg (x)j fX(x)dx <1:

Remarks:

� The existence of E (X) does not imply the existence of E (g (X)) and the inverse is also true.

� E (g (X)) can be calculated using the above de�nition or �nding the distribution of Y = g (X)
and computing directly E (Y ) :

Example: Let X be a discrete random variable with probability function given by fX (x) = 1=3;
x = �1; 0; 1 and Y = g(X) = X2: We can compute E(X2) if the following two ways:

1. E
�
X2
�
= (�1)2 fX (�1) + (0)2 fX (0) + (1)2 fX (1) = 1� 1=3 + 0� 1=3 + 1� 1=3 = 2=3:

2. Note that fY (0) = P (Y = 0) = P (X = 0) = 1=3: fY (1) = P (Y = 1) = P (X = �1
or X = 1) = P (X = �1) + P (X = 1) = 1=3 + 1=3 = 2=3: Thus E(X2) = E(Y ) =
0fY (0) + 1fY (1) = 0� 1=3 + 2� 1=3 = 2=3:

Example: Suppose that the random variable X has probability density function given by

fX (x) =

�
3x�4 ; for x > 1
0 ; otherwise

:

and cumulative distribution function

FX (x) =

�
1� x�3 ; for x > 1
0 ; otherwise

Compute E(X2):
Note that

E
�
X2
�
=

Z +1

1
x2fX (x) dx

=

Z +1

1
3x�2dx = 3
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Alternatively

FY (y) = P
�
X2 � y

�
= P (�py � X � py)
= FX (

p
y)� FX (�

p
y)

= FX (
p
y)

as FX
�
�py

�
= 0 Therefore

FY (y) =

�
1� y�3=2 ; for

p
y > 1

0 ; otherwise

=

�
1� y�3=2 ; for y > 1

0 ; otherwise

Hence

fY (y) =
dFY (y)

dy
=

�
3
2y
�5=2 ; for y > 1
0 ; otherwise

:

Consequently

E
�
X2
�
= E [Y ] =

Z +1

1
yfY (y) dy

=

Z +1

1

3

2
y�3=2dy

= 3

3.3 Properties of expected values

The expected values satisfy the following properties:

1. E(a+ bX) = a+ bE (X) ; where a and b are constants:

2. E(X � �X) = E (X)� �X = 0:

3. If a is a constant, E (a) = a:

4. If b is a constant, E (bg (X)) = bE (g (X)) :

5. Given n functions ui (X) i = 1; :::; n and ; E [
Pn
i=1 ui (X)] =

Pn
i=1E [ui (X)] :

3.4 Moments of a random variable (or of its distribution)

Objective: To characterize a random variable through a small number of indicators that describe
the most signi�cant aspects of its distribution.

Moments of a discrete random variable: The rth moment of a discrete random variable (or its
distribution), denoted as �0r, is the expected value of X

r

�0r = E (X
r) =

X
x2DX

xr � fX (x) =
1X
i=1

xri � fX (xi) ; for r = 1; 2; :::

provided that
P
x2DX jxj

r � fX (x) =
X1

i=1
jxijr � fX (xi) < +1:
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Moments of a continuous random variable: The rth moment of a continuous random variable
(or its distribution), denoted as �0r, is the expected value of X

r :

�0r = E(X
r) =

Z +1

�1
xrfX(x)dx

provided that
R +1
�1 jxjr fX(x)dx <1:

Most important moments:

1. The mean or expected value or expectation �X = �
0
1 = E(X)

2. The second moments �02 = E(X
2):

3.5 Central moments of a random variable (or of its distribution)

The rth central moment of the random variable (or its distribution) is also known as the rth moment
of a random variable about its mean (or its distribution).

Central moments of a discrete random variable: The rth central moment of a discrete random
variable (or its distribution), denoted as �r, is the expected value of (X � �X)r

�r = E [(X � �X)r] =
X
x2DX

(x� �X)r � fX (x) =
1X
i=1

(xi � �X)r � fX (xi) ; for r = 1; 2; :::

provided that
P
x2DX jx� �X j

r � fX (x) =
X1

i=1
jxi � �X jr � fX (xi) < +1:

Central moments of a continuous random variable: The rth central moment of a continuous
random variable (or its distribution), denoted as �r, is the expected value of (X � �X)r :

�r = E [(X � �X)r] =
Z +1

�1
(x� �X)r fX(x)dx

provided that
R +1
�1 jx� �X jr fX(x)dx <1:

Remarks:

1. �1 is of no interest because is it zero when it exists.

2. �2 is an important measure and is called variance.

3. �3 and �4 are also important.

3.6 The variance of a random variable

The second central moment about the mean of a random variable (�2), also called variance, is an
indicator of the dispersion of the values of X about the mean.

The variance of a discrete random variable (or its distribution):

V ar (X) = �2X = �2 = E
h
(X � �X)2

i
=
X
x2DX

(x� �X)2 � fX (x) =
1X
i=1

(xi � �X)2 � fX (xi) ;
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provided that V ar (X) < +1:

The variance of a continuous random variable (or its distribution):

V ar (X) = �2X = �2 = E
h
(X � �X)2

i
=

Z +1

�1
(x� �X)2 fX(x)dx;

provided that V ar (X) < +1:

Remark: We can show that if �02 = E
�
X2
�
exists, then both �X and �

2
X exist.

Properties of the Variance:

1. V ar (X) � 0:

2. �2X = V ar (X) = E
�
X2
�
� �2X :

3. If c is a constant, V ar (c) = 0:

4. If a and b are constants, V ar (a+ bX) = b2V ar (X) :

Exercise: Let X be Bernoulli random variable with P (X = 1) = p; where p 2 (0; 1). Compute
V ar (X) :
Exercise: Let X be a discrete random variable with probability function given by fX (x) = 1=3;
x = �1; 0; 1: Compute V ar(X):
Exercise: Suppose X � U(a; b); that is, X is an uniform random variable in the set (a; b) ; where
a < b: Compute V ar (X) :
Exercise: Suppose that the random variable X has probability density function given by

fX (x) =

�
3x�4 ; for x > 1
0 ; otherwise

:

Compute the V ar (X) :

The Standard deviation: The variance is not measured in the scale of the random variable as
it is computed using the square function, in order to obtain a measure of dispersion about the
mean which is measure in the same scale of the random variable we need to compute the standard
deviation. The Standard deviation is given by:

�X =
p
V ar (X):

Coe¢ cient of variation: If we are interested in a measure of dispersion which is independent of the
scale of the random variable we should use the coe¢ cient of variation. The coe¢ cient of variation
is given by

CV (X) =
�X
�X
:
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3.7 Skewness

Beyond the location and dispersion it is desirable to know the distribution behaviour about the
mean. One parameter of interest is the coe¢ cient of asymmetry also known as skewness. This
parameter is a measure of asymmetry of a probability function/density about the mean of the
random variable. It is given by

1 =
E
�
(X � �X)3

�
V ar (X)3=2

=
�3
�3X

Remarks:

� For discrete random variables a probability function is symmetric if fX (�x � �) = fX (�x + �)
for all � 2 R:

� For continuous random variables the probability density function is symmetric if fX (�x � �) =
fX (�x + �) for all � 2 R

Symmetric density function

Asymmetric density function

Remark: The symmetry of probability function/density about the mean, implies that all central
moments of odd order, which exist, are null. Hence if 1 6= 0; the probability function/density is
not symmetric about the mean.

Example: Let X be a discrete random variable with probability function given by

fX (x) =

8<:
0:25 ; for x = �1
0:5 ; for x = 0
0:25 ; for x = 1

:
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Note that �X = E(X) = (�1)� 0:25 + (0)� 0:5 + 1� 0:25 = 0 and fX (x) is symmetric about
�X = 0. Note also that. E(X3) = (�1)3 � 0:25 + (0)3 � 0:5 + 13 � 0:25: = 0; and consequently
1 = 0:

Remark: Note however that we can have 1 = 0; and the probability function/density is not
symmetric about the mean, that is 1 = 0 does not imply symmetry.

.
Example: Let X be a discrete random variable with probability function given by

fX (x) =

8<:
0:1 ; for x = �3
0:5 ; for x = �1
0:4 ; for x = 2

:

Note that �X = E(X) = (�3) � 0:1 + (�1) � 0:5 + 2 � 0:4 = 0: Since fX (�1) 6= fX (1) ; this
function is not symmetric around �X = 0. Note however that. E(X3) = (�3)3 � 0:1 + (�1)3 �
0:5 + 23 � 0:4: = 0; and consequently 1 = 0:

3.8 Kurtosis

The kurtosis measures the �thickness�of the "tails" of the probability function/density or, equiv-
alently, the ��attening�of the probability function/density in the central zone of the distribution.

2 =
E
�
(X � �X)4

�
V ar (X)2

=
�4
�4X
:

3.9 Quantiles

Other parameters of interest are the quantiles of a (cumulative) distribution or quantiles of a
random variable. Quantiles have the advantage that they exist even for random variables that do
not have moments.
De�nition: Let be X be random variable and � 2 (0; 1). The quantile of order �, q� is the
smallest value among all points x in R that satisfy the condition

FX (x) � �:

Remarks:

1. If X is a discrete random variable q� 2 DX :

2. The quantile 0:5 is called the median of a (cumulative) the distribution function. It can also
be interpreted as a centre of the distribution and therefore it is also considered a measure of
location.

3. When the probability function/ density is symmetric the median = mean.

4. The q� are called quartiles if � = 0:25, 0:5, 0:75: Therefore the �rst quartile is q0:25; the
second quartile is q0:5 and the third quartile is q0:75
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5. The q� are called deciles if � = 0:1, 0:2,...,0:9. Therefore the �rst decile is q0:1; the second
decile is q0:2, etc..

6. The q� are called percentiles if � = 0:01, 0:02,. . . ,0:99. Therefore the �rst percentile is q0:01;
the second percentile is q0:02, etc.

7. The interquartile range IQR = q0:75 � q0:25 is considered a measure of dispersion.

Example: Let X be the Bernoulli random variable with P (X = 1) = p = 0:2: It follows that

FX (x) =

8<:
0 ; for x < 0
0:8 for 0 � x < 1
1 ; for x � 1

Hence q0:5 which is the smallest value among all points x in R that satisfy the condition

FX (x) � 0:5:

is given by q0:5 = 0:
Note that if X is the Bernoulli random variable with P (X = 1) = p = 0:6; we have

FX (x) =

8<:
0 ; for x < 0
0:4 for 0 � x < 1
1 ; for x � 1

and consequently q0:5 = 1:
In general if X is the Bernoulli random variable with p � 0:5, q0:5 = 0 and if p > 0:5, q0:5 = 1:

Example: Suppose that X is a random variable that takes values x = 1; 2; 3; :::: and that its
probability function is given by

fX (x) =
6

�2x2
; x = 1; 2; :::

where � = 3:14159::::: Compute q0:5:
Solution: Note that fX (1) = P (X = 1) = 6=�2 = 0:607927: Hence FX (x) = 0 for for x < 1 and
FX (x) = 0:607927 for 1 � x < 2: Hence q0:5 which is the smallest value among all points x in R
that satisfy the condition

FX (x) � 0:5:

is given by q0:5 = 1: (Recall that E(X) does not exist in this case).

Remarks:

1. If X is a continuous random variable, the de�nition of quantile can be simpli�ed. The quantile
of order �, q� is the smallest value among all points x in R that satisfy the condition

FX (x) = �:

2. If X is a continuous random variable and FX (x) is a strictly increasing function in x; then
q� = F

�1
X (�) ; there F�1X (�) is the inverse function of FX (x) evaluated at �:
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Example: Let X be a continuous random variable with density function

fX (x) =

�
0 ; for x < 0
e�x for x � 0

Compute q�; the median and the interquartile range.
Solution: Note that

FX (x) =

�
0 ; for x < 0

1� e�x for x � 0 :

Therefore FX (q�) = � is equivalent to 1 � e�q� = �: and consequently 1 � � = e�q� ; so q� =
� log (1� �) : The Median=q0:5 = � log (0:5) = 0:69315: The interquartile range IQR = q0:75 �
q0:25 = � log (1� 0:75) + log (1� 0:25) = 1:0986:

3.10 The mode

De�nition: The mode of a random variable or distribution is the value M that satis�es the
condition fX (M) � fX (x) ; for all x 2 R, where fX (x) is the probability function in the case
of discrete random variables and it is the probability density function in the case of continuous
random variables.

Remarks:

1. The mode can also be interpreted as a centre of the distribution and therefore it is also
considered a measure of location.

2. In the case of discrete random variable the mode is the most frequent value.

3. The mode does not have to be unique.

4. If the variable probability distribution/density is symmetric and has only one mode, then the
mode equals the median and the mean.

Example: Let X be the Bernoulli random variable with P (X = 1) = p = 0:2: It follows that
P (X = 0) = 0:8, hence the mode is given by M = 0:

Note that if X is the Bernoulli random variable P (X = 1) = p = 0:6; then P (X = 0) = 0:4 and
the mode is given by M = 1: However that if P (X = 1) = p = 0:5; we have P (X = 0) = 0:5; and
therefore there are two modes M = 0 and M = 1:

In general if X is the Bernoulli random variable with P (X = 1) = p < 0:5, and M = 0. If
P (X = 1) = p > 0:5, M = 1 and if p = 0:5 there are two modes M = 0 and M = 1:

Example: Suppose that X is a random variable that takes values x = 1; 2; 3; :::: and that its
probability function is given by

fX (x) =
6

�2x2
; x = 1; 2; :::

where � = 3:14159::::: Compute the mode:
Solution: Since fX (x) is decreasing the x; the mode is given by M = 1:

Example: Let X be a continuous random variable with density function

fX (x) =

�
0 ; for x < 0
e�x for x � 0
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Compute the mode.
Solution: Since fX (x) = 0 for x < 0 and it is a decreasing function for x � 0; the mode is given
by M = 0:

3.11 The moment generating function

De�nition: The moment generating function of a discrete random variable is given by

MX (t) = E
�
etX
�
=
X
x2DX

etx � fX (x) =
1X
i=1

etxi � fX (xi) ;

provided that it is �nite.

De�nition: The moment generating function of a continuous random variable is given by

MX (t) = E
�
etX
�
=

Z +1

�1
etxfX(x)dx::

provided that it is �nite.

Remarks on the moment generating function (m.g.f.):

� The m.g.f. may not exist.

� If X is a discrete random variables and DX is �nite, then there is always a m.g.f.;

� The moment generating function is a function of t not X;

� If there is a m.g.f., then there are moments of every order. The reverse is not true.

� A distribution which has no moments �or has only the �rst k moments �does not have a
m.g.f..

� The moment generating function is used to calculate the moments.

� The m.g.f. uniquely determines the distribution function. That is, if two random variables
have the same m.g.f., then the cumulative distribution functions of the random variables
coincide, except perhaps at a �nite number of points.

� The moment generating function of a sum of independent random variables Sn =
Pn
i=1Xi

equals the product of their m.g.f.(s).

MSn (t) =MX1 (t)�MX2 (t)� :::�MXn (t)

Theorem:
drMX (t)

dtr

����
t=0

= �0r = E [X
r] ; r = 1; 2; 3; :::

Property: MbX+a (t) = E
�
e(bX+a)t

�
= eatMX (bt)

Example: Let X be the Bernoulli random variable with P (X = 1) = p = 0:2: Compute MX (t)
and E (Xr) ; r = 1; 2; :::
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Solution:
MX (t) = E

�
etX
�
= etp+ (1� p)

Hence
drMX (t)

dtr

����
t=0

= p = E (Xr) ;

r = 1; 2; 3; :::

Example: Let X be a discrete random variable with probability function

fX (x) = p (1� p)x�1 ; x = 1; 2; :::

and p 2 (0; 1) : Compute MX (t) and E (X)
Solution: Note that

MX (t) = E
�
etX
�
=

1X
x=1

etxp (1� p)x�1

=
p

1� p

1X
x=1

�
et (1� p)

�x
Recall that

P1
i=1 c

i = c
1�c provided that jcj < 1:Hence provided that e

t (1� p) < 1 we have

MX (t) =
p

1� p
et (1� p)

1� et (1� p) =
etp

1� et (1� p) :

Note that et (1� p) < 1 holds provided that t < � log (1� p) :
Hence

dMX (t)

dt
=

d
�

etp
1�et(1�p)

�
dt

=
etp
�
1� et (1� p)

�
+ et (1� p) etp

[1� et (1� p)]2

and consequently

E(X) =
dMX (t)

dt

����
t=0

=
p [1� (1� p)] + (1� p) p

[1� (1� p)]2
=
p2 + p� p2

p2
=
1

p
:

Example: Let X be a continuous random variable with density function

fX (x) =

�
0 ; for x < 0
e�x for x � 0

Compute MX (t) and E (X) :
Solution:

MX (t) = E
�
etX
�
=

Z +1

0
e(t�1)xdx

= lim
z!1

Z z

0
e(t�1)xdx = lim

z!1

"
e(t�1)x

t� 1

#x=z
x=0

= lim
z!1

"
e(t�1)z

t� 1 � 1

t� 1

#
= � 1

t� 1 ;
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provided that t < 1: Now

dMX (t)

dt
=
d
�
� 1
t�1

�
dt

=
1

(t� 1)2

and consequently

E(X) =
dMX (t)

dt

����
t=0

= 1:
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