Probability Theory and Stochastic Processes

LIST 3 Distributions

(1) Determine the distribution functions of the following probability measures on \mathbb{R} (δ_{a} is the Dirac measure at a and m_{A} is the Lebesgue measure on A):
(a) $\mu=\frac{1}{3} \delta_{2}+\frac{2}{3} \delta_{3}$
(b) $\mu=\frac{1}{3} \delta_{2}+\frac{1}{3} \delta_{3}+\frac{1}{3} m_{[0,1]}$
(2) Let $F: \mathbb{R} \rightarrow \mathbb{R}$ be a distribution function and α is the corresponding distribution. Prove that:
(a) * The set of discontinuity points D of F is countable.
(b) If F is continuous, then $\alpha(\{x\})=0$.
(3) Prove that convergence in probability (i.e. convergence in measure for a probability measure) implies convergence in distribution.
(4) Show that if X is a constant random variable, then $X_{n} \rightarrow X$ in probability is equivalent to $X_{n} \rightarrow X$ in distribution.
(5) Find the characteristic functions of the following discrete distributions $\alpha(A)=P(X \in A), A \in \mathcal{B}(\mathbb{R})$:
(a) Degenerate (or Dirac or atomic) distribution

$$
\alpha(A)= \begin{cases}1, & a \in A \\ 0, & \text { o.c. }\end{cases}
$$

where $a \in \mathbb{R}$.
(b) Binomial distribution with $n \in \mathbb{N}$:

$$
\alpha(\{k\})=C_{k}^{n} p^{k}(1-p)^{n-k}, \quad 0 \leq k \leq n .
$$

(c) Poisson distribution with $\lambda>0$:

$$
\alpha(\{k\})=\frac{\lambda^{k}}{k!e^{\lambda}}, \quad k \in \mathbb{N} \cup\{0\} .
$$

This describes the distribution of 'rare' events with rate λ.
(d) Geometric distribution with $0<p<1$:

$$
\alpha(\{k\})=(1-p)_{1}^{k} p, \quad k \in \mathbb{N} \cup\{0\}
$$

This describes the distribution of the number of unsuccessful attempts preceding a success with probability p.
(e) Negative binomial distribution

$$
\alpha(\{k\})=C_{k}^{n+k-1}(1-p)^{k} p^{n}, \quad k \in \mathbb{N} \cup\{0\} .
$$

This describes the distribution of the number of accumulated failures before n successes. Hint: Recall the Taylor series of $\frac{1}{1-x}=\sum_{i=0}^{+\infty} x^{i}$ for $|x|<1$. Differentiate this n times and use the result.
(6) Find the characteristic functions of the following absolutely continuous distributions $\alpha(A)=P(X \in A)=\int_{A} f(x) d x$, $A \in \mathcal{B}(\mathbb{R})$ where f is the density function:
(a) Uniform distribution on $[a, b]$

$$
f(x)= \begin{cases}\frac{1}{b-a}, & x \in[a, b] \\ 0, & \text { o.c. }\end{cases}
$$

(b) Exponential distribution

$$
f(x)=e^{-x}, \quad x \geq 0
$$

(c) The two-sided exponential distribution

$$
f(x)=\frac{1}{2} e^{-|x|}, \quad x \in \mathbb{R}
$$

(d) The Cauchy distribution

$$
f(x)=\frac{1}{\pi} \frac{1}{1+x^{2}}, \quad x \in \mathbb{R}
$$

Hint: Use the residue theorem of complex analysis.
(e) The normal (Gaussian) distribution with mean μ and variance $\sigma^{2}>0$

$$
f(x)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}, \quad x \in \mathbb{R}
$$

