
Special random variables

Issues covered:
4 Discrete Random Variables

4.1 The discrete uniform random variable
4.2 The Bernoulli random variable
4.3 The binomial random variable
4.4 The Poisson random variable

5 Continuous random variables
5.1 The continuous uniform random variable
5.2 The exponential random variable
5.3 The normal random variable
5.4 The gamma and the chi-squared random variables

6 The Central Limit Theorem
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4 Discrete Random Variables
4.1 The discrete uniform random variable

A random variable X has a discrete uniform distribution and it is
referred to as a discrete uniform random variable if and only if , its
probability function is given by

fX(xj) =
1
k

, j = 1, 2, 3, ..., k

where xj 6= xi for i 6= j, DX = fx1, x2, ..., xkg
Properties:

1 µX = E(X) = ∑k
i=1 xi/k

2 Var(X) = ∑k
i=1 x2

i /k�
�

∑k
i=1 xi/k

�2

3 MX(t) = ∑k
i=1 etxi /k

Example: The throwing a fair dice and X is the the number of dots
showing on its upper surface. The possible values of X are 1, 2, 3, 4, 5,
6 with P(X = i) = 1/6, i = 1, 2, 3, 4, 5, 6.
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4 Discrete Random Variables
4.2 The Bernoulli random variable

The Bernoulli random variable [named after the Swiss mathematician
Jacob Bernoulli (1654-1705)] takes the value 1 with probability p and
the value 0 with probability 1� p, where p 2 (0, 1) , that is

X =
�

1 where P(X = 1) = p
0 where P(X = 0) = 1� p

the probability function is given by

fX(x) = P(X = x) = px(1� p)1�x, x = 0, 1.

Properties:
1 E(X) = p
2 Var(X) = p(1� p)
3 MX(t) = (1� p) + pet.
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4 Discrete Random Variables
4.2 The Bernoulli random variable

Examples:

Bernoulli Experiment Possible Outcomes Probability of
“Success”

Flip a coinFlip a coin 1 = heads
0 = tails

p = .50

Bernoulli Experiment Possible Outcomes Probability of
“Success”

Flip a coinFlip a coin 1 = heads
0 = tails

p = .50

Inspect a jet turbineInspect a jet turbine
bladeblade

1 = crack found
0 = no crack found

p = .001Inspect a jet turbineInspect a jet turbine
bladeblade

1 = crack found
0 = no crack found

p = .001

Purchase a tank of gasPurchase a tank of gas 1 = pay by credit card
0 = do not pay by credit

card

p = .78Purchase a tank of gasPurchase a tank of gas 1 = pay by credit card
0 = do not pay by credit

card

p = .78
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4 Discrete Random Variables
4.3 The Binomial random variable

The Binomial random variable is defined as the number of successes in
n trials, each of which has the probability of success p.
Remark: If n = 1 the Binomial random variable corresponds to the
Bernoulli random variable.
Example 1: Suppose n = 2, for instance X = number of boys in a
family of 2 children.
Let us calculate the probability of 0, 1, 2 boys in 2 births and define
P(boy) = p
We can have 4 possible cases:

(boy, boy) ; (boy, girl) ; (girl, boy) ; (girl, girl)

Hence:

P(X = 0) = P (girl, girl) = (1� p)2

P(X = 1) = P((boy, girl) or
(girl, boy)) = P (boy, girl) + P (girl, boy) = 2p(1� p)
P(X = 2) = P (boy, boy) = p2.
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4.3 The Binomial random variable

Example 2:Suppose n = 3, for instance X = number of boys in a
family of 3 children.
Let us calculate the probability of 0, 1, 2, 3 boys in 3 births.
We can have 8 possible cases:

(boy, boy, boy) ; (boy, girl, boy) ; (girl, boy, boy) ; (girl, girl, boy) ;
(boy, boy, girl) ; (boy, girl, girl) ; (girl, boy, girl) ; (girl, girl, girl) .

Hence:

P(X = 0) = P (girl, girl, girl) = (1� p)3.
P(X = 1) = P((girl, girl, boy) or (boy, girl, girl) or
(girl, boy, girl)) = 3(1� p)2p.
P(X = 2) = P((boy, girl, boy) or (girl, boy, boy) or
(boy, boy, girl)) = 3(1� p)p2.
P(X = 3) = P (boy, boy, boy) = p3.
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4 Discrete Random Variables
4.3 The Binomial random variable

The Binomial random variable: X = number of successes in n trials.
One can show that the probability function is given by

fX(x) =
�

n
x

�
� px(1� p)n�x

where �
n
x

�
=

n!
x!(n� x)!

is the number of x combinations from a set with n elements and
k! = k� (k� 1)� ...� 2� 1

Exercise: What is the probability of the number of boys is equal to 3
in a family of 6 children when P(boy) = p = 0.5? What is the the
probability of the number of boys is less or equal to 3?
Remark:

The parameters of the random variable are n and p.
If X is a Binomial random variable with parameters n and p we
write X � B(n, p).
In the case of the Bernoulli random variable X � B(1, p).
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4 Discrete Random Variables
4.3 The Binomial random variable

Properties:
1 E(X) = np
2 Var(X) = np(1� p)
3 MX(t) =

�
(1� p) + pet�n

4 If Xi � B(1, p) and the Xi are independent random variables
∑n

i=1 Xi � B(n, p), that is the sum of n independent Bernoulli
random variables with parameter p is a Binomial random
variable with parameters n and p.

5 If X1 � B(n1, p) and X2 � B(n2, p) and X1 and X2 are
independent, then X1 +X2 � B(n1 + n2, p)
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4 Discrete Random Variables
4.4 The Poisson random variable

The Poisson random variable, named after the French
mathematician Simeon-Denis Poisson (1781-1840), is applicable
in many situations where rare events occur.
The Poisson random variable describes the number of
occurrences within a randomly chosen unit of time or space. For
example, within a minute, hour, day, kilometer.

Examples:

in the inspection and quality control of manufactured goods, the
number of defective articles in a large lot can be expected to be
small.
number of customers arriving at a cash point in a given minute.
number of file server virus infections at a data center during a
24-hour period.

Famous example: Bortkiewiz in 1898 used this distribution to study
the number of soldiers killed by horse-kicks each year in each corps
in the Prussian cavalry.
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4 Discrete Random Variables
4.4 The Poisson random variable

The Poisson distribution’s only parameter is λ: λ represents the
mean number of events per unit of time or space.
The Poisson probability function is a discrete function defined
for non-negative integers. The Poisson distribution with
parameter λ > 0, it is defined by

fX(x) = P (X = x) =
λxe�λ

x!
, x = 0, 1, 2, ...

Remark: If X is a Poisson random variable with parameter λ, we
write X � Poisson(λ).
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4 Discrete Random Variables
4.4 The Poisson random variable

Properties:
1 E(X) = λ.
2 Var(X) = λ.

3 MX(X) = eλ(et�1).
4 If Xi � Poisson(λi) and the Xi are independent random variables,

then ∑n
i=1 Xi � Poisson (∑n

i=1 λi) , that is, the sum of n
independent Poisson random variables with parameter λi is a
Poisson random variable with parameter ∑n

i=1 λi.
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4 Discrete Random Variables
4.4 The Poisson random variable

Exercise: On Thursday morning between 9 A.M. and 10 A.M.
customers arrive and enter the queue at a bank branch with mean
rate of 1.7 customers per minute. Assuming the the number of
customers is a Poisson random variable:
What is the probability that two or fewer customers will arrive in a
given minute?
What is the probability of at least three customers (the
complimentary event)?
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4 Discrete Random Variables
4.4 The Poisson random variable

Theorem
(The law of rare events). If Y is a Binomial random variable with parameters
n and p = λ/n then,

lim
n!∞

fY(y) = lim
n!∞

�
n
y

�
� py(1� p)n�y

=
λye�λ

y!
,

That is the limit of the probability function of the binomial random variable
with parameters n and p = λ/n is the Poisson random variable with
parameter λ.

Remark: Hence the Poisson distribution can be used to approximate
the Binomial distribution when the number of trials n is large and the
probability of success p is small (note that since n is large p = λ/n is
small).
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4 Discrete Random Variables
4.4 The Poisson random variable

Exercise: A corporation has 250 personal computers. The probability
that any one of them will require repair in a given week is 0.01. Find
the probability that fewer than 4 of the personal computers will
require repair in a given week.
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5 Continuous random variables
5.1 The continuous uniform random variable

The probability density function of the uniform random variable on
an interval (a, b) , where a < b, is the function

fX(x) =

8<:
0 if x � a
1

b�a if a < x < b
0 if x � b

The cumulative distribution function is the function

FX (x) =

8<:
0 if x � a

x�a
b�a if a < x < b
1 if x � b

Remark: If X is a uniform random variable in the interval (a, b) we
write X � U(a, b).
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5 Continuous random variables
5.1 The continuous uniform random variable

Properties:

The moment generating function

MX (t) =

(
etb�eta

t(b�a) if t 6= 0
1 if t = 0.

(The moment-generating function is not differentiable at zero,
but the moments can be calculated by differentiating and then
taking limt!0)

Moments about the origin

E(Xk) =
bk+1 � ak+1

(b� a)(k+ 1)
, k = 1, 2, 3, ...

E(X) = (a+ b) /2.
Var(X) = (b� a)2/12.
Skewness = γ1 = 0.
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5 Continuous random variables
5.1 The continuous uniform random variable

Theorem: (Probability Integral Transformation ) Let X be a random
variable with a strictly increasing cumulative distribution function
FX(x), then Y = FX(X) � U(0, 1). Conversely, if Y � U(0, 1), then
X = F�1

X (Y) is a continuous random variable with cumulative
distribution function FX(x).
Remark: This theorem is very useful in simulation problems.
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5 Continuous random variables
5.2 Exponential Random variable

The probability density function of an exponential random variable
with parameter λ is

fX(x) =
�

0 if x < 0
λe�λx if x � 0

The cumulative distribution function is given by

FX(x) =
�

0 if x < 0
1� e�λx if x � 0

The exponential probability distribution may be used for
random variables such as the time between arrivals at a car
wash, the time required to load a truck, the distance between
major defects in a highway, and so on.

Remark: If X is an exponential random variable with parameter λ we
write X � Exp(λ).
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5 Continuous random variables
5.2 Exponential Random variable

Properties:

1 Moment Generating Function MX(t) = (1� t/λ)�1 t < λ.
2 E(X) = 1/λ.
3 Var(X) = 1/λ2.
4 Lack of memory: P(X > x+ sjX > x) = P(X > s) for any x � 0

and s � 0.
5 Let Xi � Exp(λi), i = 1, 2, ..., k, be independent random variables,

then Y = min fX1, X2, ..., Xkg � Exp(∑k
i=1 λi).
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5 Continuous random variables
5.2 Exponential Random variable

Exercise: Exponential random variables (sometimes) give good
models for the time to failure of mechanical devices. For example, we
might measure the number of kilometers traveled by a given car
before its transmission ceases to function. Suppose that this
distribution is governed by the exponential distribution with mean
100000. What is the probability that a car’s transmission will fail
during its first 50000 kilometers of operation?
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5 Continuous random variables
5.3 The Normal random variable

The most famous continuous distribution is the normal
distribution (introduced by Abraham de Moivre, 1667-1754). The
normal probability density function is given by

fX (x) =
1p
2π

e�
(x�µ)2

2σ2 .

The cumulative distribution function does not have a close form
solution:

FX(x) =
Z x

�∞

1p
2π

e�
(t�µ)2

2σ2 dt

When a random variable X has the is normal with parameters µ
and σ2 we write X � N

�
µ, σ2� .
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5 Continuous random variables
5.3 The Normal random variable

Properties:

1 Moment generating function MX(t) = e(µt+0.5σ2t2)

2 E (X) = µ

3 Var (x) = σ2

4 skewness = γ1 = 0
5 kurtosis = γ2 = 3

Remark: The excess kurtosis of any random variable is defined as
γ�2 = γ2 � 3. Hence for the normal random variable γ�2 = 0.
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5 Continuous random variables
5.3 The Normal random variable

Remarks:

When µ = 0 and σ2 = 1, the distribution is denoted as standard
normal. Its shape is the following:

The cumulative distribution function of Z is tabulated.
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5 Continuous random variables
5.3 The Normal random variable

The probability density function of the standard normal distribution
is denoted φ (z) and it is given by

φ (z) =
1p
2π

e�
z2
2 .

The standard normal cumulative distribution function is denoted as

Φ (z) = P (Z � z) =
Z z

�∞
φ (t) dt
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5 Continuous random variables
5.3 The Normal random variable

Properties of the standard normal cumulative distribution function:

P (Z > z) = 1�Φ (z) .
P (Z < �z) = P (Z > z) .
P (jZj > c) = 2 [1�Φ (c)] , for c > 0.
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5 Continuous random variables
5.3 The Normal random variable

Theorem
(Linear combinations of Normal random variables): Let X and Y be two
independent random variables such that X � N(µX, σ2

X) and
Y � N(µY, σ2

Y). Let V = aX+ bY+ c, then

V � N(µV, σ2
V)

where
µV = aµX + bµY + c, σ2

V = a2σ2
X + b2σ2

Y.

Remarks:

A special case is obtained when b = 0, if V = aX+ c, then
V � N(µV, σ2

V) where µV = aµX + c, σ2
V = a2σ2

X.

if X � N
�
µ, σ2� , Z = X�µ

σ � N (0, 1) .

Exercise: Compute P (4 < X < 7) , where X � N (5, 2) .
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5 Continuous random variables
5.3 The Normal random variable

Theorem
If the random variable Xi, i = 1, ..., n have a normal distribution,
Xi � N(µi, σ2

i ), and are independent, then

∑n
i=1 Xi � N(∑n

i=1 µi, ∑
n
i=1 σ2

i ).

Exercise: At an establishment that sells building materials, it is
known that daily sales of sand (in kgs) have a random behavior,
translated by a Normal distribution with mean 20 and standard
deviation 20. Assuming independence of the daily sales in a month,
what is the probability that in any given month (20 days) sales exceed
half ton of sand?
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5 Continuous random variables
5.4 The Gamma and the chi-squared random variables

The gamma cumulative distribution function is defined for x > 0, a > 0,
b > 0, by the integral

FX (x) =
1

baΓ (a)

Z x

0
xa�1e�

u
b du

where Γ (t) =
R ∞

0 e�uut�1du is the Gamma function. The parameters
a and b are called the shape parameter and scale parameter,
respectively.
The probability density function for the gamma distribution is

fX(x) =
1

baΓ (a)
xa�1e�

x
b
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5 Continuous random variables
5.4 The Gamma and the chi-squared random variables

Remarks:
1 If X is a gamma random variable with parameters a and b we

write X � Gamma(a, b)
2 The gamma function satisfies

Γ(1) = 1 and Γ(t+ 1) = tΓ(t)

and for positive integers k, it is the familiar factorial function

Γ(k) = (k� 1)!

3 if a = 1 and 1
b = λ, X � Exp(λ), that is Exp(λ) = Gamma(1, 1

λ ).
4 Important case: When a = v/2 and b = 2 we have the chi-squared

distribution which has the notation χ2 (v) , that is
χ2 (v) = Gamma(v/2, 2). v is known as degrees of freedom (df ).
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5 Continuous random variables
5.4 The Gamma and the chi-squared random variables

Properties
1 The Moment generating function of the Gamma distribution is

given by: MX(t) = (1� bt)�a for t < 1/b

2 E(Xk) = bkΓ(a+k)
Γ(a) , k = 1, 2, 3, ...

3 E(X) = ab.
4 Var(X) = ab2.
5 Let X1, X2, be independent random variables with Gamma

distribution X1 � Gamma(a1, b) and X2 � Gamma(a2, b), then
X1 +X2 � Gamma(a1 + a2, b).

6 Let X1, X2,..., Xn be independent random variables with Gamma
distribution Xi � Gamma(ai, b), i = 1, ..., n, then
∑n

i=1 Xi � Gamma(∑n
i=1 ai, b).

7 If X � Gamma(a, b), then 2X/b � χ2 (2a) .
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5 Continuous random variables
5.4 The Gamma and the chi-squared random variables

Remarks:
1 Property 6 is important because while there are no tables of the

gamma distribution, there are tables of the chi-squared
distribution.

2 In the tables we find the value cα such that P(X > cα) = α, where
X � χ2 (v) .

3 If v is very large (v > 100) we should use the result:

X � χ2 (v)) X� vp
2v

a� N(0, 1) as v ! ∞

where a� means that it is asymptotic distribution (v large).
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5 Continuous random variables
5.4 The Gamma distribution and the chi-squared random variables

Exercise: Let X be the compensation paid by an insurer for certain
risk. Assume that X � Gamma(2, 125). Compute P(X > 485).
In the case of the chi-squared random variables we have:

1 E(X) = v.
2 Var(X) = 2v.
3 Let X1, X2, be independent random variables with Chi-squared

distribution X1 � χ2 (v1) and X2 � χ2 (v2) , then
X1 +X2 � χ2 (v1 + v2) .

4 Let X1, X2,...,Xk be independent random variables with
Chi-squared distribution X1 � χ2 (v1) and
X2 � χ2 (v2) , ..., Xk � χ2 (vk) , then ∑k

i=1 Xi � χ2
�

∑k
i=1 vi

�
.

5 If X � N(0, 1), then X2 � χ2 (1) .
6 Combining properties 4 and 5: Let Zi, i = 1, ..., q be independent

random variables each distributed as standard normal. Define
X = ∑

q
i=1 Z2

i . Then X � χ2 (q) .
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5 Continuous random variables
5.4 The Gamma distribution and the chi-squared random variables

Probability Density function of the Chi-Square Distribution with 4
df
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6 The Central Limit Theorem

If the random variables Xi, i = 1, ..., n have a normal
distribution,Xi � N(µi, σ2

i ), and are independent, then

∑n
i=1 Xi � N(∑n

i=1 µi, ∑
n
i=1 σ2

i ).

Assuming that µi = µX and σ2
i = σ2

X, for i = 1, ..., n we have

∑n
i=1 Xi � N(nµX, nσ2

X).

Thus
X̄ =

1
n ∑n

i=1 Xi � N(µX, σ2
X/n).

If we standardize we have

Z =
X� µX
σX/

p
n
� N(0, 1)

However, what happens if the X0is are not normally distributed?
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6 The Central Limit Theorem

The answer is given by the Central Limit Theorem:

Theorem
(The Central Limit Theorem - Lindberg-Levy) If the Xi, i = 1, ..., n are
independent, and E(Xi) = µX and variance Var(Xi) = σX < +∞, then the
distribution of

Z =
p

n
�
X� µX

�
σX

converges to a standard normal distribution as n tends to infinity. We write
Z a� N (0, 1) where the symbol a� reads “distributed asymptotically” (it
means that if the sample size is large the distribution of Z is close to the
standard normal).
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6 The Central Limit Theorem
Example: Sample Distribution of Z when Xi � χ2(1), i = 1, ..., n.
Sample size n = 3.

4 2 0 2 4 6 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Density function of Z
Density function of the standard normal
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6 The Central Limit Theorem
Example: Sample Distribution of Z when Xi � χ2(1), i = 1, ..., n.
Sample size n = 10.

4 3 2 1 0 1 2 3 4 5 6
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45
Density function of Z
Density function of the standard normal
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6 The Central Limit Theorem
Example: Sample Distribution of Z when Xi � χ2(1), i = 1, ..., n.
Sample size n = 25.

4 3 2 1 0 1 2 3 4 5 6
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45
Density function of Z
Density function of the standard normal
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6 The Central Limit Theorem
Example: Sample Distribution of Z when Xi � χ2(1), i = 1, ..., n..
Sample size n = 500.

4 3 2 1 0 1 2 3 4 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
Density function of Z
Density function of the standard normal
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6 The Central Limit Theorem

Remarks:
1 The Central Limit Theorem is valid for discrete or continuous

random variables
2 When is n large enough? Depends on the distribution of X.

1 For unimodal symmetric distributions convergence is faster and
the approximation better.

2 It is advised to use the CLT only for n � 30.

Exercise: A large freight elevator can transport a maximum of 4400
kilos. Suppose a load of cargo containing 49 boxes must be
transported via the elevator. Experience has shown that the weight of
boxes of this type of cargo follows a distribution with mean 93 kilos
and standard deviation 6.8 kilos. Based on this information, what is
the probability that all 49 boxes can be safely loaded onto the freight
elevator and transported?

40 / 43



6 The Central Limit Theorem

A special case of the Central Limit Theorem of Lindberg-Levy is the
Central Limit Theorem of De Moivre-Laplace, which corresponds to
the case that each Xi is Bernoulli with parameter p = P(Xi = 1).

Theorem
(The Central Limit Theorem - De Moivre-Laplace) If the Xi, i = 1, ..., n are
independent Bernoulli random variables with p = P(Xi = 1) 2 (0, 1) then

Z =
p

n
�
X� p

�p
p(1� p)

converges to a standard normal distribution as n tends to infinity. We write
Z a� N (0, 1).
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6 The Central Limit Theorem

Remarks:

X̄ in this case is a proportion, that is X̄ = s/n, where s is the
number of successes.
Note that now µX = p and σX =

p
p(1� p)

Note that

Z =

p
n
�
X� p

�p
p(1� p)

=
∑n

i=1 Xi � npp
np(1� p)

and ∑n
i=1 Xi � B(n, p).

Exercise: Suppose a fair coin is tossed 200 times and let Y be the
number of “heads” in these 200 tosses. Compute P(95 � Y � 105).
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6 The Central Limit Theorem
Remarks:

1 If we want to compute P (a � ∑n
i=1 Xi � b) we have

P

 
a �

n

∑
i=1

Xi � b

!
= P

�
a� nµXp

nσX
� ∑n

i=1 Xi � nµXp
nσX

� b� nµXp
nσX

�
' Φ

�
b� nµXp

nσX

�
�Φ

�
a� nµXp

nσX

�
using the central limit theorem.

2 Note that if the Xi are discrete random variables is follows that
∑n

i=1 Xi is also discrete, and the above approximation is poor. In
this case it is advisable to use the continuity correction

P

 
a �

n

∑
i=1

Xi � b

!
' Φ

�
b+ 0.5� nµXp

nσX

�
�Φ

�
a� 0.5� nµXp

nσX

�
.

Exercise: Suppose a fair coin is tossed 200 times and let Y be the
number of “heads” in these 200 tosses. Compute P(95 � Y � 105).
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