1.	Consider the following model: $y_t = 1 + 0.5 z_t + 0.25 z_{t-1} + z_{t-3} + u_t$, with					
	$E(u_t z_t, z_{t-1}, y_{t-1}, z_{t-2}, y_{t-2}, z_{t-3}, y_{t-3}, z_{t-4}, \dots) = 0$. For each of the following statements indicated					
	whether it is true (T) or false (F).					
	The Long Run effect is 2.75.					
	The model is not dynamically complete.					
	Given a temporary increase in z_i , the Long Run multiplier becomes zero after 4 periods.					
	A temporary increase of 2 units in z_t implies an increase of 2 units in y_t after 3 periods.					
	The error, u_{t} , of this model is not serially correlated.					
2.	Consider the following models $y_t = \alpha + \varepsilon_t$ and $x_t = x_{t-1} + \varepsilon_t$, where $\varepsilon_t \stackrel{iid}{\sim} N(0, \sigma_{\varepsilon}^2)$ and α is an					
	unknown coefficient. For each of the following statements indicate if it is true (T) or false (F).					
	$\{y_t\}$ is a stationary and weakly dependent process.					
	$\{y_t\}$ is a random walk with a drift.					
	$\{x_i\}$ is a stationary and weakly dependent process.					
	$\{x_t\}$ is a stable autoregressive process.					
	$\{x_t\}$ is a highly persistent process.					
3.	Consider the model $y_t = \beta_0 + \beta_1 x_t + \beta_2 x_{t-1} + u_t$, with $E(y_t x_t, x_{t-1}, x_{t-2},) = E(y_t x_t, x_{t-1})$					
	Indicate all that apply:					
	The model is dynamically complete.					
	The explanatory variables are contemporaneously exogenous.					
	The explanatory variables are strictly exogenous.					
4.	The explanatory variables are sequentially exogenous.					
	Consider the following process: $y_t = 0.6y_{t-1} + e_t$, where $e_t \stackrel{iid}{\sim} N(0, \sigma^2)$, e_t and y_{t-1} are					
	independent of each other. Then,					
	$Cov(y_t, y_{t+h}) = 0$, for any $h \ge 2$.					
	$Cov(y_t, y_{t+h}) = 0$, for any $h \ge 1$.					
	$Var(y_t) = 1.5625 \sigma^2$, for any t .					
	$Var(y_t) = 0.36 \sigma^2$, for any t .					

5. To explain the investment (in millions of euros), *INV*, as a function of the interest rate (in percentage), *INT*, the following equations were estimated with quarterly data:

Equation 1

Dependent Variable: INV Method: Least Squares Sample: 1986Q4 2015Q1 Included observations: 114

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C @TREND @SEAS(2) @SEAS(3) @SEAS(4) INT INT(-1) INT(-2)	47.66711 1.036554 -6.096146 3.106675 -3.500009 -21.22080 -8.769745 -4.207248	3.896775 0.035529 1.997002 1.860181 1.878140 1.701372 2.885908 1.682268	12.23245 29.17523 -3.052650 1.670093 -1.863551 -12.47276 -3.038816 -2.500938	0.0000 0.0000 0.0029 0.0979 0.0652 0.0000 0.0030
S.E. of regression Sum squared resid	6.890089 5032.172	Akaike info criterion		6.765637 6.957650

Equation 2

Dependent Variable: INV Method: Least Squares

Sample (adjusted): 1986Q4 2015Q1

Included observations: 114 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	50.32081	5.840491	8.615853	0.0000
@TREND	1.122111	0.107803	10.40890	0.0000
@SEAS(2)	-5.695074	2.053223	-2.773724	0.0066
@SEAS(3)	2.700896	1.933131	1.397162	0.1653
@SEAS(4)	-2.979889	1.985991	-1.500455	0.1365
INV(-1)	-0.077034	0.097010	-0.794085	0.4290
INT	-21.08577	1.731592	-12.17710	0.0000
INT(-1)	-10.09364	3.603086	-2.801388	0.0061
INT(-2)	-6.078215	3.078789	-1.974223	0.0510
INT(-3)	0.502209	1.755739	0.286038	0.7754
S.E. of regression	6.926932	Akaike info criterion		6.792342
Sum squared resid	4990.168	Schwarz criterion		7.032359

Choose True (T) or False (F) regarding the following statement: "the model of Equation 1 is dynamically complete because..."

$$E(INV_t|INV_{t-1},INV_{t-2},...,INT_t,INT_{t-1},INT_{t-2},INT_{t-3},...)=0$$
.

The coefficient of INT_{t-2} , in equation 1, is statistically significant.

 INV_{t-1} and INT_{t-3} are jointly statistically insignificant therefore one may expect that further lags of INV and INT are jointly statistically insignificant too.

 $E(u_t|u_{t-1},u_{t-2},...,INT_t,INT_{t-1},INT_{t-2},INT_{t-3},...)=0$, where u_t is the error term of equation 1.

6.	Consider the following equation $y_t = \alpha - 0.1e_{t-1} + 0.2e_{t-2}$, where $e_t \stackrel{iid}{\sim} N(0, \sigma^2)$. Which one o
	the following statements is FALSE?
	$E(y_t) = 0$, only when $\alpha = 0$.
	$Corr(y_t, y_{t+1}) = -2/5$.
	$Var(y_t) = 0.05 \sigma^2.$
	$Corr(y_t, y_{t+2}) = 0$, only when $\alpha = 0$.
7.	Based on quarterly data, the following model was estimated $y_t = \alpha_0 + \alpha_1 y_{t-1} + u_t$, with
	$t = 0, 1,, n$ and y_t is a stationary process without a trend. Then, the OLS estimator for α_1
	is biased because the errors u_t are most likely autocorrelated.
	is biased because the trend was omitted as an explanatory variable.
	is unbiased because the process y_t is $I(0)$.
	is biased because $E(u_t y_0, y_1,, y_{n-1}) \neq 0$.
8.	Let y_t be a $I(1)$ process and x_t be a $I(0)$ process with a trend. For the following models, which
	of their coefficients cannot be consistently estimated by OLS (select all that apply):
	$y_t = \beta_0 + \beta_1 x_t + \beta_2 t + u_t$
	$\Delta y_t = \beta_0 + \beta_1 x_t + \beta_2 t + u_t$
	$\Delta y_t = \beta_0 + \beta_1 \Delta x_t + u_t$
	$\Delta y_t = \beta_0 + \beta_1 x_t + u_t$
9.	Considering the following equation $y_t = \beta_0 + \beta_1 x_t + u_t$, which one of the following statements is
	FALSE?
	If $u_t = \rho u_{t-1} + e_t$, with $e_t \stackrel{iid}{\sim} N(0, \sigma^2)$ and $ \rho < 1$, then the model is not dynamically
	complete.
	If the model is dynamically complete then, for $u_t = \rho u_{t-1} + e_t$, with $e_t \stackrel{iid}{\sim} N(0, \sigma^2)$, one
	must have $\rho = 0$.
	If the model is dynamically complete then, in $y_t = \beta_0 + \alpha y_{t-1} + \beta_1 x_t + u_t$, one must have
	$\alpha = 0$.
	If the model is dynamically complete then $E(u_t x_t, y_{t-1}, x_{t-1},) = 0$ and x_t is strictly
	exogenous.

10.	Consi	ider the models $y_t = \alpha + y_{t-1} + e_t$, $z_t = e_t + e_{t-1}$, where $e_t \stackrel{iid}{\sim} N(0, \sigma^2)$. Then,
		The processes y_t and z_t are both $I(0)$.
		Only the processes y_t is $I(0)$.

Only the processes
$$y_t$$
 is $I(0)$.

Only the processes z_t is $I(0)$.

The processes y_t and z_t are both $I(1)$.

11. Assume that the model $y_t = \beta_0 + \beta_1 y_{t-1} + \beta_2 x_t + u_t$ is dynamically complete. For each statement indicate whether it is true (T) or false (F).

12. Consider the following model estimated with annual data:

$$\log(cons_t) = 1.05 + 0.53\log(inc_t) + 0.31\log(inc_{t-1}) + 0.004t + \hat{u}_t, \ t = 2,3,...,n$$

where *cons* and *inc* are, respectively, the consumption and the disposable income. Determine and interpret the short run and long run elasticities.

13. Consider the process $y_t = \alpha_0 + \alpha_1 t + u_t$, where $\alpha_1 \neq 0$ and $u_t = u_{t-1} + e_t$, with $e_t \stackrel{iid}{\sim} N(0, \sigma^2)$. Show that y_t is a random walk with a drift.

14. Are the following equations dynamically complete? Justify your answer.

Equation 1

Dependent Variable: INVPC Method: Least Squares Included observations: 39

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C PRICE	0.052928 2.993697	0.193637 0.716779	0.273334 4.176597	0.7862 0.0002
PRICE(-1)	-2.484303	0.716641 -3.466595		0.0014
R-squared	0.365613	Mean dependent var		0.529510
Adjusted R-squared	0.330370	S.D. dependent var		0.090877
S.E. of regression	0.074365	Akaike info criterion		-2.285847
Sum squared resid	0.199088	Schwarz criterion		-2.157880
Log likelihood	47.57401	Hannan-Quinn criter.		-2.239933
F-statistic	10.37387	Durbin-Watson stat		0.672227
Prob(F-statistic)	0.000277			

Equation 2

Dependent Variable: INVPC Method: Least Squares Included observations: 39

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	-0.036344	0.139449	-0.260626	0.7960
INVPC(-1)	0.774038	0.132263	5.852243	0.0000
PRICE	2.076251	0.580082	3.579236	0.0011
PRICE(-1)	-4.727543	0.841768	-5.616208	0.0000
PRICE(-2)	2.828948	0.590034	4.794549	0.0000
R-squared	0.708447	Mean dependent var		0.529510
Adjusted R-squared	0.674146	S.D. dependent var		0.090877
S.E. of regression	0.051876	Akaike info criterion		-2.960718
Sum squared resid	0.091498	Schwarz criterion		-2.747441
Log likelihood	62.73400	Hannan-Quinn criter.		-2.884196
F-statistic	20.65418	Durbin-Watson stat		1.884452
Prob(F-statistic)	0.000000			

Equation 3

Dependent Variable: INVPC Method: Least Squares

Included observations: 39 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	-0.053870	0.138763	-0.388217	0.7004
INVPC(-1)	0.867276	0.191710	4.523898	0.0001
INVPC(-2)	-0.211042	0.186129	-1.133850	0.2653
PRICE	1.913214	0.625230	3.060014	0.0045
PRICE(-1)	-4.250237	0.878768	-4.836588	0.0000
PRICE(-2)	2.457012	0.988758	2.484948	0.0184
PRICE(-3)	0.143262	0.655496	0.218554	0.8284
R-squared	0.733813	Mean dependent var		0.529510
Adjusted R-squared	0.683903	S.D. dependent var		0.090877
S.E. of regression	0.051093	Akaike info criterion		-2.949179
Sum squared resid	0.083537	Schwarz criterion		-2.650591
Log likelihood	64.50900	Hannan-Quinn criter.		-2.842048
F-statistic	14.70273	Durbin-Watson stat		2.128942
Prob(F-statistic)	0.000000			