Probability Theory and Stochastic Processes

LIST 6

Martingales

- (1) Let X_1, X_2, \ldots be a martingale with respect to the filtration $\mathcal{F}_1, \mathcal{F}_2, \ldots$ Show that:
 - (a) If $X_0 = E(X_1)$ and $\mathcal{F}_0 = \{\emptyset, \Omega\}$, then X_0, X_1, X_2, \ldots is a martingale with respect to the filtration $\mathcal{F}_0, \mathcal{F}_1, \mathcal{F}_2, \ldots$.
 - (b) X_n is a martingale with respect to $\sigma(X_1, \ldots, X_n)$.
- (2) Let Y_1, Y_2, \ldots be independent random variables such that

$$P(Y_n = a_n) = \frac{1}{2n^2}$$
$$P(Y_n = 0) = 1 - \frac{1}{n^2}$$
$$P(Y_n = -a_n) = \frac{1}{2n^2}$$

where $a_1 = 2$, $a_n = 4 \sum_{j=1}^{n-1} a_j$. Decide if X_n and $\sigma(Y_1, \ldots, Y_n)$ define a martingale when

(a)
$$X_n = \sum_{j=1}^n Y_j.$$

(b) $X_n = \sum_{j=1}^n \frac{1}{2^j} Y_j.$
(c) $X_n = \sum_{j=1}^n Y_j^2.$

(3) Let Y_1, Y_2, \ldots be a sequence of iid random variables such that $P(Y_n = 1) = p$ and $P(Y_n = -1) = 1 - p$. Decide if X_n and $\sigma(Y_1, \ldots, Y_n)$ define a martingale when

(a)
$$X_n = \sum_{j=1}^{n} Y_j$$
.
(b) $X_n = \left(\sum_{j=1}^n Y_j\right)^2 - n$.
(c) $X_n = (-1)^n \cos\left(\pi \sum_{j=1}^n Y_j\right)$.
(d) $X_n = \left(\frac{1-p}{p}\right)^{S_n}$ where $S_n = \sum_{j=1}^n Y_j$.

(4) Let Y_1, Y_2, \ldots be a sequence of iid random variables with Poisson distribution and mean value λ . Consider also the sequence

$$X_n = X_{n-1} + Y_n - 1, \quad n \in \mathbb{N},$$

and $X_0 = 0$. Find the values of λ for which X_n is a martingale, sub-martingale or super-martingale, with respect to the filtration $\sigma(Y_1, \ldots, Y_n)$.

- (5) Let X_n be a martingale with respect to the filtration \mathcal{F}_n and τ is a stopping time. Determine $E(X_{\tau \wedge n})$.
- (6) Let Y_1, Y_2, \ldots be a sequence of iid random variables with distribution $P(Y_n = 1) = p$ and $P(Y_n = -1) = 1 p$ where 0 , $and <math>X_n = \sum_{j=1}^n Y_j$. Compute $E(\tau)$ for the stopping time $\tau = \min\{n \ge 1 \colon X_n = 1\}$

when

- (a) p = 1/2. *Hint*: Use Wald's equation.
- (b) * $p \neq 1/2$. *Hint*: Use the optional stopping theorem for $Z_n = [(1-p)/p]^{X_n}$.