INSTITUTO SUPERIOR DE ECONOMIA E GESTÃO

OPERATIONAL RESEARCH

November 11th 2017

Mid Term Exam

Duration: 1h

Notes: - Justify all answers and display the calculations performed.

- All answers should be given by using methodologies studied in Operational Research.

1. (4,5) Consider the following LP problem.

$$Max Z = 2x_1 + 4x_2$$

s.t.:
$$\begin{cases} 2x_1 + x_2 \le 20\\ x_1 + 2x_2 \le 18\\ x_1 - 2x_2 \ge 0\\ x_1, x_2 \ge 0 \end{cases}$$

- a) Perform one iteration of simplex method.
- b) Write and classify the solution obtained in a).
- c) Write the dual of the given problem.

2. (1,0) Justify in what situation may the following output be obtained while solving an LP problem by Solver/Excel.

Solver Results	×				
Solver could not find a feasible solution.	Reports				
Keep Solver Solution Restore Original Values	Feasibility Feasibility-Bounds				
Return to Solver Parameters Dialog	Outline Reports				
OK <u>C</u> ancel	Save Scenario				
Solver could not find a feasible solution.					
Solver can not find a point for which all Constraints are satisfied.					

3. An investor has 1200 monetary units (m.u.) that can be invested in funds. The information gathered about the three funds available is displayed in the following table:

fund	return rate	aquisition value (in m.u.) of one <u>participation unit</u>
Α	9%	1,20
В	8%	1,80
С	6%	1,90

In order to control the portfolio risk the following rules should be observed:

rule 1 – At least 110 participation units of fund C should be acquired rule 2 – The minimum investment in fund B is 400 m.u.

a) (2,0) Formulate the investor problem by a linear programming model, assuming that any fraction of a participation unit can be acquired, and that the aim is to maximize the total return.

An LP formulation of the described problem was solved by Solver/Excel and the reports are on this page. Based on them answer to the following questions.

- **b)** (1,5) Indicate and interpret the optimal solution of the problem (decision and slack variables).
- **c)** (1,0) Indicate and interpret the optimal value of the dual variable associated with the constraint called "budget" in the Solver / Excel output.

Answer Report

Objective Cell (Max)

Cell	Name	Original Value	Final Value
\$E\$8	OF	0	97,73

Variable Cells

Cell	Name	Original Value	Final Value	Integer
\$B\$9	Fund A	0	492,5	Contin
\$C\$9	Fund B	0	222,22	Contin
\$D\$9	Fund C	0	110	Contin

Constraints

Cell	Name	Cell Value	Formula	Status	Slack
\$E\$5	rule 1	110	\$E\$5>=\$G\$5	Binding	0
\$E\$6	rule 2	400	\$E\$6>=\$G\$6	Binding	0
\$E\$7	budget	1200	\$E\$7<=\$G\$7	Binding	0

Sensitivity Report

Variable Cells

		Final	Reduced	Objective	Allowable	Allowable
Cell	Name	Value	Cost	Coefficient	Increase	Decrease
\$B\$9	Fund A	492,5	0	0,108	1E+30	0,012
\$C\$9	Fund B	222,22	0	0,144	0,018	1E+30
\$D\$9	Fund C	110	0	0,114	0,057	1E+30

Constraints

		Final	Shadow	Constraint	Allowable	Allowable
Cell	Name	Value	Price	R.H. Side	Increase	Decrease
\$E\$5	rule 1	110	-0,057	110	311,05	110
\$E\$6	rule 2	400	-0,01	400	591	400
\$E\$7	budget	1200	0,09	1200	1E+30	591