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Solutions

1. .

(a) By Itô’s lemma (or Itô’s formula) applied to f(t, x) = exp(σx +
1
2(µ− σ2 − 2r)t) (it is a C1,2 function):

dS̃t =
∂f

∂t
(t, Bt)dt+

∂f

∂x
(t, Bt)dBt +

1

2

∂2f

∂x2
(t, Bt) (dBt)

2

=
1

2
(µ− σ2 − 2r)S̃tdt+ σS̃tdBt +

1

2
σ2S̃tdt

=
(µ

2
− r
)
S̃tdt+ σS̃tdBt.

where we have used (dBt)
2 = dt. Therefore

dS̃t =
(µ

2
− r
)
S̃tdt+ σS̃tdBt.

(b) In general, the discounted price process S̃t is not a martingale
under the real world probability P. Indeed, since in the SDE
above, the drift coefficient

(µ
2 − r

)
S̃t is not zero, the process S̃t

is not a martingale.

Under the equivalent martingale measure Q, the discounted price
process S̃t is a martingale, the drift coefficient is zero and the
diffusion coefficient of the SDE remains the same, i.e.

dS̃t = σS̃tdBt,

where Bt is a standard Brownian motion under Q.
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(c) Replacing the parameter values, we have

P

(
1.05 <

S1
S0

< 1.40

)
= P

(
ln(1.05) <

1

2

(
0.16− 0.152

)
+ 0.15B1 < ln(1.40)

)

and
= P (0.0488 < Z < 0.3365)

where Z = 0.06875 + 0.15B1 ∼ N (0.06875; 0.0225) .

Therefore: P
(

1.05 < S1
S0
< 1.40

)
= 0.5158.

2. .

(a) In the long term, E [V∞] = 0.07+0.15E [V∞] and therefore E [V∞] =
0.0824. Moreover, V ar [V∞] = (0.15)2 V ar [V∞]+0.052 and there-
fore V ar [V∞] = 0.002558. Since Vt is obtainded from Vt−1by
summing one independent normal random variable, the process Vt
is Gaussian and the long term distribution is N [0.0824; 0.002558].
The model (2) corresponds to the Ornstein-Uhlenbeck process
with mean reversion and the long term mean for this model is µ.
The long term distribution is also a normal distribution. There-
fore, we require µ = 0.0824. Moreover, for the model (2), the

long term variance is given by β2

2λ and therefore we require that

V ar [V∞] =
β2

2λ
= 0.002558.

(b) We just need to apply the Itô formula to the function f(x) = x6in
order to obtain

dXt = 6V 5
t dVt+

1

2
30V 4

t (dVt)
2 = 6V 5

t [−λ (Vt − µ) dt+ βdBt]+
1

2
30V 4

t β
2dt

and therefore, we obtain

dXt =

(
−6λXt + 6µλX

5
6
t + 15β2X

4
6
t

)
dt+ 6βX

5
6
t dBt

and this is a SDE for the process Xt. The initial condition is X0 =
V 6
0 = 0.126 = 2.986 ∗ 10−6.

3. .

(a) Global structure of the equation: this year’s value = long run
mean (ln(RMU))+RA(last year’s value − long run mean) + a
stochastic shock to the system + another stochastic shock to the
system.
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The parameter RA is the autoregressive parameter (for the mean-
reverting effect). The term CE(t) is a stochastic shock from
another process.

The term CZ(t) is the random error term used to model con-
ventional bond yields and CZ(t) and RZ(t) are not combined
into a simple series of i.i.d. standard normal random variables
because of the correlations that exist between conventional and
index-linked bonds.

(b) The real yield of an index-linked bond R(t) is positive, that is
the reason why we model ln(R(t)) and not R(t) directly. The
parameters to be estimated from data are: RMU, RA, RBC,
CSD and RSD.

4. .

(a) u = 1.08 and d = 1/u = 0.9259

(i) The model is arbitrage free if and only if d < er < u. If
r = 0.0002 then er = 1.0002. In this case, d < er < u and the
model is arbitrage free.

(ii) If r = 0.1 then er = 1.1051 andu < er. In this situation,
the cash investment would outperform the share investment in
all circumstances. An investor could (at time 0) sell the share
and invest S0 = 10 Euros in a cash account. At time 1 he could
buy again the share and have a certain positive profit of S0e

r −
S0u = 10 exp (0.1) − 10 × 1.08 = 0.2517 > 0 or S0e

r − S0d =
10 exp (0.1)− 10× 0.9259 = 1.7927 > 0 (arbitrage opportunity).

(b) If r = 4%, then the risk-neutral probability for an up-movement
is

q =
er − d
u− d

=
e0.04 − 0.9259

1.08− 0.9259
= 0.7457.

Binomial tree values: 10; 10.8,9.259; 11.664, 10, 8.5729; 12.5971,10.8,
9.259, 7.9376

Payoff function of the derivative (call + put):

Payoff =


8.5− ST if ST < 8.5
0 if 8.5 ≤ ST ≤ 12
ST − 12 ifST > 12

.

Payoff of the derivative: C3

(
u3
)

= 12.5971−12 = 0.5971, C3

(
u2d
)

=
0, C3

(
ud2
)

= 0, C3

(
d3
)

= 8.5− 7.9376 = 0.5624

Using the usual backward procedure with r = 0.04 and q =
0.7457 :

At time 2: C2

(
u2
)

= exp(−r)
[
qC3

(
u3
)

+ (1− q)C3

(
u2d
)]

=
0.4278,
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C2 (ud) = exp(−r)
[
qC3 (udu) + (1− q)C3

(
ud2
)]

= 0, C2

(
d2
)

=
exp(−r)

[
qC3

(
d2u
)

+ (1− q)C3

(
d3
)]

= 0.1374

At time 1: C1(u) = exp(−r)
[
qC2

(
u2
)

+ (1− q)C2 (ud)
]

= 0.3065.,
C1(d) = exp(−r)

[
qC2 (du) + (1− q)C2

(
d2
)]

= 0.0336.

The Final price (at time 0) isC0 = exp(−r) [qC1 (u) + (1− q)C1 (d)] =
0.2278

(c) The non-recombinig binomial model allows for different values
of volatility when in different states (it allows different up and
down factors for different states): ut (j) and dt (j) vary with t
and j. Therefore, the number of states at time N is 2N states:
if N is large, it is a big number with exponential growth (for
computational purposes), since computation times even for sim-
ple derivative securities are at best proportional to the number
of states. For example, with 20 periods, at time t = 20 we have
220 = 1048576 states.

In the recombining binomial model, it is assumed that the volatil-
ity is the same at all states (the up and down factors are the same
irrespective of wether they appear in the binomial tree) and all pe-
riods. At timeN we haveN+1 possible states (linear growth with
N) instead of 2N . For example, in a 20-period model, we have 21
states at time t = 20, instead of 1048576 states. Therefore, with
this model the computing times are substantially reduced.

If we require the expected value and the variance of returns in
one period of size δt of the Binomial model and of the continuous
lognormal model to be equal, then we can deduce the following

relationship u = exp
(
σ
√
δt
)
, which allows the calculation of the

u parameter from the volatility parameter.

5. Consider the Black-Scholes model and a stock currently priced at 10
Euros. The writer of 500000 European call options on this stock, with
strike price 9.75 Euros and one year maturity, invested on a hedging
portfolio containing 400000 shares and a cash loan. Consider that the
continuously compounded risk-free interest rate is 8% and that the
shares pay no dividends.

(a) We can write the price of a call option as

c(S) = SΦ(d1)−Ke−rTΦ(d2),

where d1 =
ln( S

K )+(r+ 1
2
σ2)T

σ
√
T

, d2 = d1 − σ
√
T . Since Φ is the

cumulative distribution function of the N(0,1) distribution, we
have that

Φ′(x) =
1√
2π
exp(−x

2

2
),
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which is the p.d.f. of N(0,1). Therefore, we have that

∆ =
∂c

∂S
= Φ(d1) + SΦ′(d1)

∂d1
∂S
−Ke−rTΦ′(d2)

∂d2
∂S

.

Calculation of the partial derivatives and using the p.d.f. of the
N(0,1) distribution and noting that

∂d1
∂S

=
∂d2
∂S

,

one can deduce that

SΦ′(d1)
∂d1
∂S
−Ke−rTΦ′(d2)

∂d2
∂S

. = 0

and

∆ =
∂c

∂S
= Φ(d1).

For the particular option considered, the Delta is such that: Num-
ber of Shares = ∆×number of call options, or

400000 = ∆× 500000,

and therefore
∆ = 0.8.

(b) (i) the implied volatility for the call option: Since ∆ = 0.8 =
Φ(d1), . inverting the cumulative distribution function, we obtain
d1 = 0.8416 and

d1 =
ln
(

10
9.75

)
+
(
0.08 + 1

2σ
2
)

σ
= 0.8416

and this equation is a quadratic equation:

1

2
σ2 − 08416σ + 0.1053 = 0.

There is only one solution that is less than 1: it is

σ = 0.1362,

so this is the value for the implied volatility. (ii) In order to
calculate the option price, we use the formula

c(S) = SΦ(d1)−Ke−rTΦ(d2),

with the parameters given before, the implied volatility calculated
previously and using the value

d2 = d1 − σ
√
T = 0.8416− 0.1362 = 0.7054.

We obtain

c(10) = 10× 0.8416− 9.75× e−0.08Φ (0.7054) = 1.1624.
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6. .

(a) (1) if we look at historical interest rate data we can see that
changes in the prices of bonds with different terms to maturity
are not perfectly correlated as one would expect to see if a one-
factor model was correct. Sometimes we even see, for example,
that short-dated bonds fall in price while long-dated bonds go
up.

(2) If we look at the long run of historical data we find that there
have been sustained periods of both high and low interest rates
with periods of both high and low volatility. Again these are
features which are difficult to capture without introducing more
random factors into a model. This issue is especially important
for two types of problem in insurance: the pricing and hedging
of long-dated insurance contracts with interest-rate guarantees;
and asset-liability modelling and long-term risk-management.

(3) we need more complex models to deal effectively with deriva-
tive contracts which are more complex than, say, standard Euro-
pean call options. For example, any contract which makes refer-
ence to more than one interest rate should allow these rates to
be less than perfectly correlated.

(b) If the bond market is complete then the discounted zero-coupon

bond price B̃ (t, T ) = exp
(
−
´ t
0 r (s) ds

)
B (t, T ) is a martingale

with respect to the risk-neutral probability measure Q. By the

Itô formula applied to f(t, x) = exp
(
−
´ t
0 r (s) ds

)
x, and by the

fundamental theorem of integral calculus, we have that

dB̃ (t, T ) = −r(t) exp

(
−
ˆ t

0
r (s) ds

)
B (t, T ) dt+ exp

(
−
ˆ t

0
r (s) ds

)
dB (t, T )

= −r(t)B̃ (t, T ) dt+ B̃ (t, T ) [h(t, T )dt+ S(t, T )dWt]

= B̃ (t, T ) [(h(t, T )− r(t)) dt+ S(t, T )dWt] .

In order to be a martingale, the drift coefficient must be zero,
that is, h(t, T )− r(t) = 0. Therefore

ˆ T

t
b(t, u)du =

(ˆ T

t
v(t, u)du

)2

.

and replacing these expressions in the dynamics of the zero-
coupon bond prices, we obtain:

dB (t.T ) = B (t, T )

[
r(t)dt−

(ˆ T

t
v(t, u)du

)
dWt

]
.
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